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Abstract

Causal structure learning from time series data is a major scientific challenge. Extant algorithms 

assume that measurements occur sufficiently quickly; more precisely, they assume approximately 

equal system and measurement timescales. In many domains, however, measurements occur at a 

significantly slower rate than the underlying system changes, but the size of the timescale 

mismatch is often unknown. This paper develops three causal structure learning algorithms, each 

of which discovers all dynamic causal graphs that explain the observed measurement data, perhaps 

given undersampling. That is, these algorithms all learn causal structure in a “rate-agnostic” 

manner: they do not assume any particular relation between the measurement and system 

timescales. We apply these algorithms to data from simulations to gain insight into the challenge 

of undersampling.

1 Introduction

Dynamic causal systems are a major focus of scientific investigation in diverse domains, 

including neuroscience, economics, meteorology, and education. One significant limitation 

in all of these sciences is the difficulty of measuring the relevant variables at an appropriate 

timescale for the particular scientific domain. This challenge is particularly salient in 

neuroimaging: standard fMRI experiments sample the brain’s bloodflow approximately 

every one or two seconds, though the underlying neural activity (i.e., the major driver of 

bloodflow) occurs much more rapidly. Moreover, the precise timescale of the underlying 

causal system is unknown; it is almost certainly faster than the fMRI measurements, but it is 

unknown how much faster.
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In this paper, we aim to learn the causal structure of a system that evolves at timescale τS, 

given measurements at timescale τM. We focus on the case in which τS is faster than τM to 

an unknown degree. We assume that the underlying causal structure can be modeled as a 

directed graphical model G without simultaneous influence. There has been substantial work 

on modeling the statistics of time series, but relatively less on learning causal structure, and 

almost all of that assumes that the measurement and causal timescales match [1–5]. The 

problem of causal learning from “under-sampled” time series data was explicitly addressed 

by [6, 7 ], but they assumed that the degree of undersampling—i.e., the ratio of τS to τM —

was both known and small. In contrast, we focus on the significantly harder challenge of 

causal learning when that ratio is unknown.

We provide a formal specification of the problem and representational framework in Section 

2. We then present three different Rate-Agnostic Structure Learning (RASL) algorithms in 

Section 3. We finish in Section 4 by exploring their performance on synthetic data.

2 Representation and Formalism

A dynamic causal graphical model consists of a graph G over random variables V at the 

current time t, as well as nodes for V at all previous (relative) timesteps that contain a direct 

cause of a variable at the current timestep.1 The Markov order of the system is the largest k 

such that , where superscripts denote timestep. We assume throughout that the 

“true” underlying causal system is Markov order 1, and that all causally relevant variables 

are measured.2 Finally, we assume that there are no isochronal causal edges ; causal 

influences inevitably take time to propagate, and so any apparent isochronal edge will 

disappear when measured sufficiently finely. Since we do not assume that the causal 

timescale _S is known, this is a relatively innocuous assumption.

G is thus over 2V nodes, where the only edges are , where possibly i = j. There is 

additionally a conditional probability distribution or density, P(Vt|Vt−1), which we assume to 

be time-independent. We do not, however, assume stationarity of P(Vt). Finally, we assume 

appropriate versions of the Markov (“Variable V is independent of non-descendants given 

parents”) and Faithfulness/Stability (“The only independencies are those implied by 

Markov”) assumptions, such that the graph and probability distribution/density mutually 

constrain each other.

Let {t0, t1, …, tk, …} be the measurement timesteps. We undersample at rate u when we 

measure only timesteps {t0, tu, …, tuk, …}; the causal timescale is thus “undersampled at 

rate 1.” We denote the causal graph resulting from undersampling at rate u by Gu. To obtain 

Gu, we “unroll” G1 by introducing nodes for Vt−2 that bear the same graphical and 

parametric relations to Vt−1 as those variables bear to Vt, and iterate until we have included 

Vt−u. We then marginalize out all variables except those in Vt and Vt−u.

1We use difference equations in our analyses. The results and algorithms will be applicable to systems of differential equations to the 
extent that they can be approximated by a system of difference equations.
2More precisely, we assume a dynamic variant of the Causal Sufficiency assumption, though it is more complicated than just “no 
unmeasured common causes.”
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Marginalization yields an Acyclic Directed Mixed Graph (ADMG) Gu containing both 

directed and bidirected edges [8].  in Gu iff there is a directed path from  to 

 in the unrolled graph. Define a trek to be a pair of directed paths (π1, π2) such that both 

have the same start variable.  in Gu iff there is a trek between  and  with 

length(π1) = length(π2) = k < u. Clearly, if a bidirected edge occurs in Gm, then it occurs in 

Gu for all u ≥ m.

Unrolling-and-marginalizing can be computationally complex due to duplication of nodes, 

and so we instead use compressed graphs that encode temporal relations in edges. For an 

arbitrary dynamic causal graph H, ℋ is its compressed graph representation: (i) ℋ is over 

non-time-indexed nodes for V; (ii)Vi → Vj in ℋ iff  in H; and (iii) Vi ↔ Vj in ℋ 

iff  in H. Compressed graphs can be cyclic (Vi ⇄ Vj for  and 

), including self-cycles. There is clearly a 1-1 mapping between dynamic 

ADMGs and compressed graphs.

Computationally, the effects of undersampling at rate u can be computed in a compressed 

graph simply by finding directed paths of length u in 1. More precisely,  in u 

iff there is a directed path of length u in 1. Similarly,  in u iff there is a trek with 

length(π1) = length(π2) = k < u in 1. We thus use compressed graphs going forward.

3 Algorithms

The core question of this paper is: given ℋ = u for unknown u, what can be inferred about 
1? Let ⟦ℋ⟧ = { 1 : ∃u u = ℋ} be the equivalence class of 1 that could, for some 

undersample rate, yield ℋ. We are thus trying to learn ⟦ℋ⟧ from ℋ. An obvious brute-force 

algorithm is: for each possible 1, compute the corresponding graphs for all u, and then 

output all u = ℋ. Equally obviously, this algorithm will be computationally intractable for 

any reasonable n, as there are 2n2
 possible 1 and u can (in theory) be arbitrarily large. 

Instead, we pursue three different constructive strategies that more efficiently “build” the 

members of ⟦ℋ⟧ (Sections 3.2, 3.3, and 3.4). Because these algorithms make no assumptions 

about u, we refer to them each as RASL—Rate Agnostic Structure Learner—and use 

subscripts to distinguish between different types. First, though, we provide some key 

theoretical results about forward inference that will be used by all three algorithms.

3.1 Nonparametric Forward Inference

For given 1 and u, there is an efficient algorithm [9] for calculating u, but it is only useful 

in learning if we have stopping rules that constrain which 1 and u should ever be 

considered. These rules will depend on how 1 changes as u → ∞. A key notion is a 

strongly connected component (SCC) in 1: a maximal set of variables S ⊆ V such that, for 

every X, Y ∈ S (possibly X = Y), there is a directed path from X to Y. Non-singleton SCCs 

are clearly cyclic and can provably be decomposed into a set of (possibly overlapping) 

simple loops (i.e., those in which no node is repeated): σ1, …, σs [10]. Let ℒS be the set of 

those simple loop lengths.
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One stopping rule must specify, for given 1, which u to consider. For a single SCC, the 

greatest common divisor of simple loop lengths (where gcd(ℒS) = 1 for singleton S) is key: 

gcd(ℒS) = 1 iff ∃f s.t. ∀u > f[ u = f]; that is, gcd() determines whether an SCC “converges” 

to a fixed-point graph as u → ∞. We can constrain u if there is such a fixed-point graph, and 

Theorem 3.1 generalizes [9, Theorem 5] to provide an upper bound on (interesting) u. (All 

proofs found in supplement.)

Theorem 3.1—If gcd(ℒS) = 1, then stabilization occurs at f ≤ nF + γ+ d + 1.

where nF is the Frobenius number,3 d is the graph diameter, and γ is the transit number (see 

supplement). This is a theoretically useful bound, but is not practically helpful since neither 

γ nor nF have a known analytic expression. Moreover, gcd(ℒS) = 1 is a weak restriction, but 

a restriction nonetheless. We instead use a functional stopping rule for u (Theorem 3.2) that 

holds for all :

Theorem 3.2—If u = v for u > v, then ∀w > u∃kw < u[ w = kw
].

That is, as u increases, if we find a graph that we previously encountered, then there cannot 

be any new graphs as u → ∞. For a given 1, we can thus determine all possible 

corresponding undersampled graphs by computing 2, 3, … until we encounter a 

previously-observed graph. This stopping rule enables us to (correctly) constrain the u that 

are considered for each 1.

We also require a stopping rule for 1, as we cannot evaluate all 2n2
 possible graphs for any 

reasonable n. The key theoretical result is:

Theorem 3.3—If 1 ⊆ 1, then ∀u[ u ⊆ u].

Let  be the graph resulting from adding the edges in E to 1. Since this is simply another 

graph, it can be undersampled at rate u; denote the result . Since  can always serve 

as 1 in Theorem 3.3, we immediately have the following two corollaries:

Corollary 3.4—If u ⊈ ℋ, then  Corollary 3.5

If ∀u[ u ⊈ ℋ], then ∀E, 

We thus have a stopping rule for some candidate 1: if u is not an edge-subset of ℋ for all 

u, then do not consider any edge-superset of 1. This stopping rule fits very cleanly with 

“constructive” algorithms that iteratively add edge(s) to candidate 1. We now develop three 

such algorithms.

3For set B of positive integers with gcd(B) = 1, nF is the max integer with  for αi ≥ 0.
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3.2 A recursive edgewise inverse algorithm

The two stopping rules naturally suggest a recursive structure learning algorithm with ℋ as 

input and ⟦ℋ⟧ as output. Start with an empty graph. For each edge e (of n2 possible edges), 

construct 1 containing only e. If u ⊈ ℋ for all u, then reject; else if u = ℋ for some u,4 

then add 1 to ⟦ℋ⟧; else, recurse into non-conflicting graphs in order. Effectively, this is a 

depth first search (DFS) algorithm on the solution tree; denote it as RASLre for “recursive 

edgewise.” Figure 1a provides pseudo-code, and Figure 1b shows how one DFS path in the 

search tree unfolds. We can prove:

Theorem 3.6—The RASLre algorithm is correct and complete.

One significant drawback of RASLre is that the same graph can be constructed in many 

different ways, corresponding to different orders of edge addition; the search tree is actually 

a search lattice. The algorithm is thus unnecessarily inefficient, even when we use dynamic 

programming via memoization of input graphs.

3.3 An iterative edgecentric inverse algorithm

To minimize multiple constructions of the same graph, we can use RASLie (“iterative 

edgewise”) which generates, at stage i, all not-yet-eliminated 1 with exactly i edges. More 

precisely, at stage 0, RASLie starts with the empty graph; if ℋ is also empty, then it adds the 

empty graph to ⟦ℋ⟧. Otherwise, it moves to stage 1. In general, at stage i + 1, RASLie (a) 

considers each graph 1 resulting from a single edge addition to an acceptable graph at stage 

i; (b) rejects 1 if it conflicts (for all u) with ℋ; (c) otherwise keeps 1 as acceptable at i + 1; 

and (d) if ∃u[ u = ℋ], then adds 1 to ⟦ℋ⟧. RASLie continues until there are no more edges 

to add (or it reaches stage n2 + 1). Figure 2 provides the main loop (Figure 2a) and core 

function of RASLie (Figure 2c), as well as an example of the number of graphs potentially 

considered at each stage (Figure 2b). RASLie provides significant speed-up and memory 

gains over RASLre (see Figure 3).

We optimize RASLie by tracking the single edges that could possibly still be added; for 

example, if a single-edge graph is rejected in stage 1, then do not consider adding that edge 

at other stages. Additional conflicts can be derived analytically, further reducing the graphs 

to consider. In general, absence of an edge in ℋ implies, for the corresponding (unknown) u, 

absence of length u paths in all 1 ∈ ⟦ℋ⟧. Since we do not know u, we cannot directly apply 

this constraint. However, lemmas 3.7 and 3.8 provide useful, special case constraints for u > 

1 (implied by a single bidirected edge).

Lemma 3.7—If u > 1, then ∀V ↛ W ∈ ℋ, 1 cannot contain any of the following paths: 

.

Lemma 3.8—If u > 1, then ∀V↮ W ∈ ℋ ∄ T[V ← T → W] ∈ 1

4This check requires at most min(eu, eℋ) + 1 (fast) operations, where eu, eℋ are the number of edges in u, ℋ, respectively. This 
equality check occurs relatively rarely, since u and ℋ must be non-conflicting.
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3.4 An iterative loopcentric inverse algorithm

RASLie yields results in reasonable time for ℋ with up to 8 nodes, though it is 

computationally demanding. We can gain further computational advantages if we assume 

that ℋ is an SCC. This assumption is relatively innocuous, as it requires only that our time 

series be generated by a system with (appropriate) feedback loops. As noted earlier, any 

SCC is composed of a set of simple loops, and so we modify RASLie to iteratively add loops 
instead of edges; call the resulting algorithm RASLil for “iterative loopwise.” More 

precisely, RASLil uses the same algorithm as in Figure 2, but successively attempts to add 

non-conflicting simple loops, rather than non-conflicting edges. RASLil also incorporates 

the additional constraints due to lemmas 3.7 and 3.8.

RASLil is surprisingly much faster than RASLie even though, for n nodes, there are 

 simple loops (compared to n2 edges). The key is that introducing a 

single simple loop induces multiple constraints simultaneously, and so conflicting graphs are 

discovered at a much earlier stage. As a result, RASLil checks many fewer graphs in 

practice. For example, consider the 1 in Figure 1, with corresponding ℋ for u = 3. RASLre 

constructs (not counting pruned single edges) 28,661 graphs; RASLie constructs only 249 

graphs; and RASLil considers only 47. For u = 2, these numbers are 413, 44, and 7 

respectively. Unsurprisingly, these differences in numbers of examined graphs translate 

directly into wall clock time differences (Figure 3).

4 Results

All three RASL algorithms take a measurement timescale graph ℋ as input. They are 

therefore compatible with any structure learning algorithm that outputs a measurement 

timescale graph, whether Structural Vector Autoregression (SVAR) [11], direct Dynamic 

Bayes Net search [12], or modifications of standard causal structure learning algorithms 

such as PC [1, 13] and GES [14]. The problem of learning a measurement timescale graph is 

a very hard one, but is also not our primary focus here. Instead, we focus on the performance 

of the novel RASL algorithms.

First, we abstract away from learning measurement timescale structure and assume that the 

correct ℋ is provided as input. For these simulated graphs, we focus on SCCs, which are the 

most scientifically interesting cases. For simplicity (and because within-SCC structure can 

be learned in parallel for a complex ℋ [9]), we employ single-SCC graphs. To generate 

random SCCs, we (i) build a single simple loop over n nodes, and (ii) uniformly sample 

from the other n(n − 1) possible edges until we reach the specified density (i.e., proportion 

of the n2 total possible edges). We employ density in order to measure graph complexity in 

an (approximately) n-independent way.

We can improve the runtime speed of RASLre using memoization, though it is then memory-

constrained for n ≥ 6. Figure 3 provides the wall-clock running times for all three RASL 

algorithms applied to 100 random 5-node graphs at each of three densities. This graph 

substantiates our earlier claims that RASLil is faster than RASLie, which is faster than 

RASLre. In fact, each is at least an order of magnitude faster than the previous one.
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RASLre would take over a year on the most difficult problems, so we focus exclusively on 

RASLil. Unsurprisingly, run-time complexity of all RASL algorithms depends on the density 

of ℋ. For each of three density values (20%, 25%, 30%), we generated 100 random 6-node 

SCCs, which were then undersampled at rates 2, 3, and 4 before being provided as input to 

RASLil. Figure 4 summarizes wall clock computation time as a function of ℋ’s density, with 

different plots based on density of 1 and undersampling rate. We also show three examples 

of ℋ with a range of computation runtime. Unsurprisingly, the most difficult ℋ is quite 

dense; ℋ with densities below 50% typically require less than one minute.

4.1 Equivalence classes

We first use RASLil to determine ⟦ℋ⟧ size and composition for varying ℋ; that is, we 

explore the degree of underdetermination produced by undersampling. The worst-case 

underdetermination occurs if ℋ is a super-clique with every possible edge: ∀ X, Y[X → Y & 

X ↔ Y]. Any SCC with gcd(ℒS) = 1 becomes a super-clique as u → ∞ [9], so ⟦ℋ⟧ contains 

all such graphs for super-clique ℋ. We thus note when ℋ is a super-clique, rather than 

computing the size of ⟦ℋ⟧.

Figures 5 and 6 plot equivalence class size as a function of both 1 density and the true 

undersampling rate. For each n and density, we (i) generated 100 random 1; (ii) 

undersampled each at indicated u; (iii) passed u = ℋ to RASLil; and (iv) computed the size 

of ⟦ℋ⟧. Interestingly, ⟦ℋ⟧ is typically quite small, sometimes even a singleton. For example, 

5-node graphs at u = 2 typically have singleton ⟦ℋ⟧ up to 40% 1 density. Even 10-node 

graphs often have a singleton ⟦ℋ⟧ (though with relatively sparse 1). Increased 

undersampling and density both clearly worsen underdetermination, but often not intractably 

so, particularly since even nonsingleton ⟦ℋ⟧ can be valuable if they permit post hoc 

inspection or analysis.

To focus on the impact of undersampling, we generated 100 random 5-node SCCs with 25% 

density, each of which was undersampled for u ∈ {2, …, 11}. Figure 7 plots the size of ⟦ℋ⟧ 

as a function of u for these graphs. For u ≤ 4, singleton ⟦ℋ⟧ still dominate. Interestingly, 

even u = 11 still yields some non-superclique ℋ.

Finally, 1 ∈ ⟦ℋ⟧ iff ∃ u[ u = ℋ], but the appropriate u need not be the same for all 

members of ⟦ℋ⟧. Figure 8 plots the percentages of u-values appropriate for each 1 ∈ ⟦ℋ⟧, 

for the ℋ from Figure 5. If actually utrue = 2, then almost all 1 ∈ ⟦ℋ⟧ are because of 2; 

there are rarely 1 ∈ ⟦ℋ⟧ due to u > 2. If actually utrue > 2, though, then many 1 ∈ ⟦ℋ⟧ are 

due to u where u ≠ utrue. As density and utrue increase, there is increased 

underdetermination in both 1 and u.

4.2 Synthetic data

In practice, we typically must learn ℋ structure from finite sample data. As noted earlier, 

there are many algorithms for learning ℋ, as it is a measurement timescale structure (though 

small modifications are required to learn bidirected edges). In pilot testing, we found that 

structural vector autoregressive (SVAR) model [11] optimization provided the most accurate 

and stable solutions for ℋ for our simulation regime. We thus employ the SVAR procedure 
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here, though we note that other measurement timescale learning algorithms might work 

better in different domains.

To test the two-step procedure—SVAR learning passed to RASLil—we generated 20 random 

6-node SCCs for each density in {25%, 30%, 35%}. For each random graph, we generated a 

random transition matrix A by sampling weights for the non-zero elements of the adjacency 

matrix, and controlling system stability (by keeping the maximal eigenvalue at or below 1). 

We then generated time series data using a vector auto-regressive (VAR) model [11] with A 
and random noise (σ = 1). To simulate undersampling, datapoints were removed to yield u = 

2. SVAR optimization on the resulting time series yielded a candidate ℋ that was passed to 

RASLil to obtain ⟦ℋ⟧.

The space of possible ℋ is a factor of  larger than the space of possible 1, and so 

SVAR optimization can return an ℋ such that ⟦ℋ⟧ = ∅. If RASLil returns ∅, then we rerun it 

on all ℋ* that result from a single edge addition or deletion on ℋ. If RASLil returns ∅ for 

all of those graphs, then we consider the ℋ* that result from two changes to ℋ, then three 

changes. This search through the 3-step Hamming neighborhood of ℋ essentially always 

finds an ℋ* with ⟦ℋ*⟧ ≠ ∅.

Figure 9 shows the results of the two-step process, where algorithm output is evaluated by 

two error-types: omission error: the number of omitted edges normalized to the total 

number of edges in the ground truth; comission error: number of edges not present in the 

ground truth normalized to the total possible edges minus the number of those present in the 

ground truth. We also plot the estimation errors of SVAR (on the undersampled data) to 

capture the dependence of RASLil estimation errors on estimation errors for ℋ. Interestingly, 

RASLil does not significantly increase the error rates over those produced by the SVAR 

estimation. In fact, we find the contrary (similarly to [6]): the requirement to use an ℋ that 

could be generated by some undersampled 1 functions as a regularization constraint that 

corrects for some SVAR estimation errors.

5 Conclusion

Time series data are widespread in many scientific domains, but if the measurement and 

system timescales differ, then we can make significant causal inference errors [9, 15]. 

Despite this potential for numerous errors, there have been only limited attempts to address 

this problem [6, 7], and even those methods required strong assumptions about the 

undersample rate.

We here provided the first causal inference algorithms that can reliably learn causal structure 

from time series data when the system and measurement timescales diverge to an unknown 

degree. The RASL algorithms are complex, but not restricted to toy problems. We also 

showed that underdetermination of 1 is sometimes minimal, given the right methods. ⟦ℋ⟧ 

was often small; substantial system timescale causal structure could be learned from 

undersampled measurement timescale data. Significant open problems remain, such as more 
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efficient methods when ℋ has ⟦ℋ⟧ = ∅. This paper has, however, expanded our causal 

inference “toolbox” to include cases of unknown undersampling.
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Figure 1. 
RASLre algorithm 1a specification, and 1b search tree example
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Figure 2. 
RASLie algorithm (a) main loop; (b) example of graphs considered; and (c) core function.
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Figure 3. 
Run-time comparison.
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Figure 4. 
Run-time behavior.
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Figure 5. 
Size of equivalence classes for 100 random SCCs at each density and u ∈ {2, 3, 4}.
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Figure 6. 
Size of equivalence classes for larger graphs n ∈ 7, 8, 10 for u ∈ 2, 3
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Figure 7. 
Effect of the undersampling rate on equivalence class size.
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Figure 8. 
Distribution of u for u = ℋ for 1 ∈ ⟦ℋ⟧ for 5- and 6-node graphs
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Figure 9. 
The estimation and search errors on synthetic data: 6-node graphs, u = 2, 20 per density.
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