
Rate-Agnostic (Causal) Structure Learning

Sergey Plis,
The Mind Research Network, Albuquerque, NM

David Danks,
Carnegie-Mellon University, Pittsburgh, PA

Cynthia Freeman, and
The Mind Research Network, CS Dept., University of New Mexico, Albuquerque, NM

Vince Calhoun
The Mind Research Network, ECE Dept., University of New Mexico, Albuquerque, NM

Sergey Plis: s.m.plis@gmail.com; David Danks: ddanks@cmu.edu; Cynthia Freeman: cynthiaw2004@gmail.com; Vince
Calhoun: vcalhoun@mrn.org

Abstract

Causal structure learning from time series data is a major scientific challenge. Extant algorithms

assume that measurements occur sufficiently quickly; more precisely, they assume approximately

equal system and measurement timescales. In many domains, however, measurements occur at a

significantly slower rate than the underlying system changes, but the size of the timescale

mismatch is often unknown. This paper develops three causal structure learning algorithms, each

of which discovers all dynamic causal graphs that explain the observed measurement data, perhaps

given undersampling. That is, these algorithms all learn causal structure in a “rate-agnostic”

manner: they do not assume any particular relation between the measurement and system

timescales. We apply these algorithms to data from simulations to gain insight into the challenge

of undersampling.

1 Introduction

Dynamic causal systems are a major focus of scientific investigation in diverse domains,

including neuroscience, economics, meteorology, and education. One significant limitation

in all of these sciences is the difficulty of measuring the relevant variables at an appropriate

timescale for the particular scientific domain. This challenge is particularly salient in

neuroimaging: standard fMRI experiments sample the brain’s bloodflow approximately

every one or two seconds, though the underlying neural activity (i.e., the major driver of

bloodflow) occurs much more rapidly. Moreover, the precise timescale of the underlying

causal system is unknown; it is almost certainly faster than the fMRI measurements, but it is

unknown how much faster.

SP & DD contributed equally.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of
Health.

HHS Public Access
Author manuscript
Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

Published in final edited form as:
Adv Neural Inf Process Syst. 2015 December ; 28: 3303–3311.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In this paper, we aim to learn the causal structure of a system that evolves at timescale τS,

given measurements at timescale τM. We focus on the case in which τS is faster than τM to

an unknown degree. We assume that the underlying causal structure can be modeled as a

directed graphical model G without simultaneous influence. There has been substantial work

on modeling the statistics of time series, but relatively less on learning causal structure, and

almost all of that assumes that the measurement and causal timescales match [1–5]. The

problem of causal learning from “under-sampled” time series data was explicitly addressed

by [6, 7], but they assumed that the degree of undersampling—i.e., the ratio of τS to τM —

was both known and small. In contrast, we focus on the significantly harder challenge of

causal learning when that ratio is unknown.

We provide a formal specification of the problem and representational framework in Section

2. We then present three different Rate-Agnostic Structure Learning (RASL) algorithms in

Section 3. We finish in Section 4 by exploring their performance on synthetic data.

2 Representation and Formalism

A dynamic causal graphical model consists of a graph G over random variables V at the

current time t, as well as nodes for V at all previous (relative) timesteps that contain a direct

cause of a variable at the current timestep.1 The Markov order of the system is the largest k

such that , where superscripts denote timestep. We assume throughout that the

“true” underlying causal system is Markov order 1, and that all causally relevant variables

are measured.2 Finally, we assume that there are no isochronal causal edges ; causal

influences inevitably take time to propagate, and so any apparent isochronal edge will

disappear when measured sufficiently finely. Since we do not assume that the causal

timescale _S is known, this is a relatively innocuous assumption.

G is thus over 2V nodes, where the only edges are , where possibly i = j. There is

additionally a conditional probability distribution or density, P(Vt|Vt−1), which we assume to

be time-independent. We do not, however, assume stationarity of P(Vt). Finally, we assume

appropriate versions of the Markov (“Variable V is independent of non-descendants given

parents”) and Faithfulness/Stability (“The only independencies are those implied by

Markov”) assumptions, such that the graph and probability distribution/density mutually

constrain each other.

Let {t0, t1, …, tk, …} be the measurement timesteps. We undersample at rate u when we

measure only timesteps {t0, tu, …, tuk, …}; the causal timescale is thus “undersampled at

rate 1.” We denote the causal graph resulting from undersampling at rate u by Gu. To obtain

Gu, we “unroll” G1 by introducing nodes for Vt−2 that bear the same graphical and

parametric relations to Vt−1 as those variables bear to Vt, and iterate until we have included

Vt−u. We then marginalize out all variables except those in Vt and Vt−u.

1We use difference equations in our analyses. The results and algorithms will be applicable to systems of differential equations to the
extent that they can be approximated by a system of difference equations.
2More precisely, we assume a dynamic variant of the Causal Sufficiency assumption, though it is more complicated than just “no
unmeasured common causes.”

Plis et al. Page 2

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Marginalization yields an Acyclic Directed Mixed Graph (ADMG) Gu containing both

directed and bidirected edges [8]. in Gu iff there is a directed path from to

 in the unrolled graph. Define a trek to be a pair of directed paths (π1, π2) such that both

have the same start variable. in Gu iff there is a trek between and with

length(π1) = length(π2) = k < u. Clearly, if a bidirected edge occurs in Gm, then it occurs in

Gu for all u ≥ m.

Unrolling-and-marginalizing can be computationally complex due to duplication of nodes,

and so we instead use compressed graphs that encode temporal relations in edges. For an

arbitrary dynamic causal graph H, ℋ is its compressed graph representation: (i) ℋ is over

non-time-indexed nodes for V; (ii)Vi → Vj in ℋ iff in H; and (iii) Vi ↔ Vj in ℋ

iff in H. Compressed graphs can be cyclic (Vi ⇄ Vj for and

), including self-cycles. There is clearly a 1-1 mapping between dynamic

ADMGs and compressed graphs.

Computationally, the effects of undersampling at rate u can be computed in a compressed

graph simply by finding directed paths of length u in 1. More precisely, in u

iff there is a directed path of length u in 1. Similarly, in u iff there is a trek with

length(π1) = length(π2) = k < u in 1. We thus use compressed graphs going forward.

3 Algorithms

The core question of this paper is: given ℋ = u for unknown u, what can be inferred about
1? Let ⟦ℋ⟧ = { 1 : ∃u u = ℋ} be the equivalence class of 1 that could, for some

undersample rate, yield ℋ. We are thus trying to learn ⟦ℋ⟧ from ℋ. An obvious brute-force

algorithm is: for each possible 1, compute the corresponding graphs for all u, and then

output all u = ℋ. Equally obviously, this algorithm will be computationally intractable for

any reasonable n, as there are 2n2
 possible 1 and u can (in theory) be arbitrarily large.

Instead, we pursue three different constructive strategies that more efficiently “build” the

members of ⟦ℋ⟧ (Sections 3.2, 3.3, and 3.4). Because these algorithms make no assumptions

about u, we refer to them each as RASL—Rate Agnostic Structure Learner—and use

subscripts to distinguish between different types. First, though, we provide some key

theoretical results about forward inference that will be used by all three algorithms.

3.1 Nonparametric Forward Inference

For given 1 and u, there is an efficient algorithm [9] for calculating u, but it is only useful

in learning if we have stopping rules that constrain which 1 and u should ever be

considered. These rules will depend on how 1 changes as u → ∞. A key notion is a

strongly connected component (SCC) in 1: a maximal set of variables S ⊆ V such that, for

every X, Y ∈ S (possibly X = Y), there is a directed path from X to Y. Non-singleton SCCs

are clearly cyclic and can provably be decomposed into a set of (possibly overlapping)

simple loops (i.e., those in which no node is repeated): σ1, …, σs [10]. Let ℒS be the set of

those simple loop lengths.

Plis et al. Page 3

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

One stopping rule must specify, for given 1, which u to consider. For a single SCC, the

greatest common divisor of simple loop lengths (where gcd(ℒS) = 1 for singleton S) is key:

gcd(ℒS) = 1 iff ∃f s.t. ∀u > f[u = f]; that is, gcd() determines whether an SCC “converges”

to a fixed-point graph as u → ∞. We can constrain u if there is such a fixed-point graph, and

Theorem 3.1 generalizes [9, Theorem 5] to provide an upper bound on (interesting) u. (All

proofs found in supplement.)

Theorem 3.1—If gcd(ℒS) = 1, then stabilization occurs at f ≤ nF + γ+ d + 1.

where nF is the Frobenius number,3 d is the graph diameter, and γ is the transit number (see

supplement). This is a theoretically useful bound, but is not practically helpful since neither

γ nor nF have a known analytic expression. Moreover, gcd(ℒS) = 1 is a weak restriction, but

a restriction nonetheless. We instead use a functional stopping rule for u (Theorem 3.2) that

holds for all :

Theorem 3.2—If u = v for u > v, then ∀w > u∃kw < u[w = kw
].

That is, as u increases, if we find a graph that we previously encountered, then there cannot

be any new graphs as u → ∞. For a given 1, we can thus determine all possible

corresponding undersampled graphs by computing 2, 3, … until we encounter a

previously-observed graph. This stopping rule enables us to (correctly) constrain the u that

are considered for each 1.

We also require a stopping rule for 1, as we cannot evaluate all 2n2
 possible graphs for any

reasonable n. The key theoretical result is:

Theorem 3.3—If 1 ⊆ 1, then ∀u[u ⊆ u].

Let be the graph resulting from adding the edges in E to 1. Since this is simply another

graph, it can be undersampled at rate u; denote the result . Since can always serve

as 1 in Theorem 3.3, we immediately have the following two corollaries:

Corollary 3.4—If u ⊈ ℋ, then Corollary 3.5

If ∀u[u ⊈ ℋ], then ∀E,

We thus have a stopping rule for some candidate 1: if u is not an edge-subset of ℋ for all

u, then do not consider any edge-superset of 1. This stopping rule fits very cleanly with

“constructive” algorithms that iteratively add edge(s) to candidate 1. We now develop three

such algorithms.

3For set B of positive integers with gcd(B) = 1, nF is the max integer with for αi ≥ 0.

Plis et al. Page 4

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2 A recursive edgewise inverse algorithm

The two stopping rules naturally suggest a recursive structure learning algorithm with ℋ as

input and ⟦ℋ⟧ as output. Start with an empty graph. For each edge e (of n2 possible edges),

construct 1 containing only e. If u ⊈ ℋ for all u, then reject; else if u = ℋ for some u,4

then add 1 to ⟦ℋ⟧; else, recurse into non-conflicting graphs in order. Effectively, this is a

depth first search (DFS) algorithm on the solution tree; denote it as RASLre for “recursive

edgewise.” Figure 1a provides pseudo-code, and Figure 1b shows how one DFS path in the

search tree unfolds. We can prove:

Theorem 3.6—The RASLre algorithm is correct and complete.

One significant drawback of RASLre is that the same graph can be constructed in many

different ways, corresponding to different orders of edge addition; the search tree is actually

a search lattice. The algorithm is thus unnecessarily inefficient, even when we use dynamic

programming via memoization of input graphs.

3.3 An iterative edgecentric inverse algorithm

To minimize multiple constructions of the same graph, we can use RASLie (“iterative

edgewise”) which generates, at stage i, all not-yet-eliminated 1 with exactly i edges. More

precisely, at stage 0, RASLie starts with the empty graph; if ℋ is also empty, then it adds the

empty graph to ⟦ℋ⟧. Otherwise, it moves to stage 1. In general, at stage i + 1, RASLie (a)

considers each graph 1 resulting from a single edge addition to an acceptable graph at stage

i; (b) rejects 1 if it conflicts (for all u) with ℋ; (c) otherwise keeps 1 as acceptable at i + 1;

and (d) if ∃u[u = ℋ], then adds 1 to ⟦ℋ⟧. RASLie continues until there are no more edges

to add (or it reaches stage n2 + 1). Figure 2 provides the main loop (Figure 2a) and core

function of RASLie (Figure 2c), as well as an example of the number of graphs potentially

considered at each stage (Figure 2b). RASLie provides significant speed-up and memory

gains over RASLre (see Figure 3).

We optimize RASLie by tracking the single edges that could possibly still be added; for

example, if a single-edge graph is rejected in stage 1, then do not consider adding that edge

at other stages. Additional conflicts can be derived analytically, further reducing the graphs

to consider. In general, absence of an edge in ℋ implies, for the corresponding (unknown) u,

absence of length u paths in all 1 ∈ ⟦ℋ⟧. Since we do not know u, we cannot directly apply

this constraint. However, lemmas 3.7 and 3.8 provide useful, special case constraints for u >

1 (implied by a single bidirected edge).

Lemma 3.7—If u > 1, then ∀V ↛ W ∈ ℋ, 1 cannot contain any of the following paths:

.

Lemma 3.8—If u > 1, then ∀V↮ W ∈ ℋ ∄ T[V ← T → W] ∈ 1

4This check requires at most min(eu, eℋ) + 1 (fast) operations, where eu, eℋ are the number of edges in u, ℋ, respectively. This
equality check occurs relatively rarely, since u and ℋ must be non-conflicting.

Plis et al. Page 5

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.4 An iterative loopcentric inverse algorithm

RASLie yields results in reasonable time for ℋ with up to 8 nodes, though it is

computationally demanding. We can gain further computational advantages if we assume

that ℋ is an SCC. This assumption is relatively innocuous, as it requires only that our time

series be generated by a system with (appropriate) feedback loops. As noted earlier, any

SCC is composed of a set of simple loops, and so we modify RASLie to iteratively add loops
instead of edges; call the resulting algorithm RASLil for “iterative loopwise.” More

precisely, RASLil uses the same algorithm as in Figure 2, but successively attempts to add

non-conflicting simple loops, rather than non-conflicting edges. RASLil also incorporates

the additional constraints due to lemmas 3.7 and 3.8.

RASLil is surprisingly much faster than RASLie even though, for n nodes, there are

 simple loops (compared to n2 edges). The key is that introducing a

single simple loop induces multiple constraints simultaneously, and so conflicting graphs are

discovered at a much earlier stage. As a result, RASLil checks many fewer graphs in

practice. For example, consider the 1 in Figure 1, with corresponding ℋ for u = 3. RASLre

constructs (not counting pruned single edges) 28,661 graphs; RASLie constructs only 249

graphs; and RASLil considers only 47. For u = 2, these numbers are 413, 44, and 7

respectively. Unsurprisingly, these differences in numbers of examined graphs translate

directly into wall clock time differences (Figure 3).

4 Results

All three RASL algorithms take a measurement timescale graph ℋ as input. They are

therefore compatible with any structure learning algorithm that outputs a measurement

timescale graph, whether Structural Vector Autoregression (SVAR) [11], direct Dynamic

Bayes Net search [12], or modifications of standard causal structure learning algorithms

such as PC [1, 13] and GES [14]. The problem of learning a measurement timescale graph is

a very hard one, but is also not our primary focus here. Instead, we focus on the performance

of the novel RASL algorithms.

First, we abstract away from learning measurement timescale structure and assume that the

correct ℋ is provided as input. For these simulated graphs, we focus on SCCs, which are the

most scientifically interesting cases. For simplicity (and because within-SCC structure can

be learned in parallel for a complex ℋ [9]), we employ single-SCC graphs. To generate

random SCCs, we (i) build a single simple loop over n nodes, and (ii) uniformly sample

from the other n(n − 1) possible edges until we reach the specified density (i.e., proportion

of the n2 total possible edges). We employ density in order to measure graph complexity in

an (approximately) n-independent way.

We can improve the runtime speed of RASLre using memoization, though it is then memory-

constrained for n ≥ 6. Figure 3 provides the wall-clock running times for all three RASL

algorithms applied to 100 random 5-node graphs at each of three densities. This graph

substantiates our earlier claims that RASLil is faster than RASLie, which is faster than

RASLre. In fact, each is at least an order of magnitude faster than the previous one.

Plis et al. Page 6

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RASLre would take over a year on the most difficult problems, so we focus exclusively on

RASLil. Unsurprisingly, run-time complexity of all RASL algorithms depends on the density

of ℋ. For each of three density values (20%, 25%, 30%), we generated 100 random 6-node

SCCs, which were then undersampled at rates 2, 3, and 4 before being provided as input to

RASLil. Figure 4 summarizes wall clock computation time as a function of ℋ’s density, with

different plots based on density of 1 and undersampling rate. We also show three examples

of ℋ with a range of computation runtime. Unsurprisingly, the most difficult ℋ is quite

dense; ℋ with densities below 50% typically require less than one minute.

4.1 Equivalence classes

We first use RASLil to determine ⟦ℋ⟧ size and composition for varying ℋ; that is, we

explore the degree of underdetermination produced by undersampling. The worst-case

underdetermination occurs if ℋ is a super-clique with every possible edge: ∀ X, Y[X → Y &

X ↔ Y]. Any SCC with gcd(ℒS) = 1 becomes a super-clique as u → ∞ [9], so ⟦ℋ⟧ contains

all such graphs for super-clique ℋ. We thus note when ℋ is a super-clique, rather than

computing the size of ⟦ℋ⟧.

Figures 5 and 6 plot equivalence class size as a function of both 1 density and the true

undersampling rate. For each n and density, we (i) generated 100 random 1; (ii)

undersampled each at indicated u; (iii) passed u = ℋ to RASLil; and (iv) computed the size

of ⟦ℋ⟧. Interestingly, ⟦ℋ⟧ is typically quite small, sometimes even a singleton. For example,

5-node graphs at u = 2 typically have singleton ⟦ℋ⟧ up to 40% 1 density. Even 10-node

graphs often have a singleton ⟦ℋ⟧ (though with relatively sparse 1). Increased

undersampling and density both clearly worsen underdetermination, but often not intractably

so, particularly since even nonsingleton ⟦ℋ⟧ can be valuable if they permit post hoc

inspection or analysis.

To focus on the impact of undersampling, we generated 100 random 5-node SCCs with 25%

density, each of which was undersampled for u ∈ {2, …, 11}. Figure 7 plots the size of ⟦ℋ⟧

as a function of u for these graphs. For u ≤ 4, singleton ⟦ℋ⟧ still dominate. Interestingly,

even u = 11 still yields some non-superclique ℋ.

Finally, 1 ∈ ⟦ℋ⟧ iff ∃ u[u = ℋ], but the appropriate u need not be the same for all

members of ⟦ℋ⟧. Figure 8 plots the percentages of u-values appropriate for each 1 ∈ ⟦ℋ⟧,

for the ℋ from Figure 5. If actually utrue = 2, then almost all 1 ∈ ⟦ℋ⟧ are because of 2;

there are rarely 1 ∈ ⟦ℋ⟧ due to u > 2. If actually utrue > 2, though, then many 1 ∈ ⟦ℋ⟧ are

due to u where u ≠ utrue. As density and utrue increase, there is increased

underdetermination in both 1 and u.

4.2 Synthetic data

In practice, we typically must learn ℋ structure from finite sample data. As noted earlier,

there are many algorithms for learning ℋ, as it is a measurement timescale structure (though

small modifications are required to learn bidirected edges). In pilot testing, we found that

structural vector autoregressive (SVAR) model [11] optimization provided the most accurate

and stable solutions for ℋ for our simulation regime. We thus employ the SVAR procedure

Plis et al. Page 7

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

here, though we note that other measurement timescale learning algorithms might work

better in different domains.

To test the two-step procedure—SVAR learning passed to RASLil—we generated 20 random

6-node SCCs for each density in {25%, 30%, 35%}. For each random graph, we generated a

random transition matrix A by sampling weights for the non-zero elements of the adjacency

matrix, and controlling system stability (by keeping the maximal eigenvalue at or below 1).

We then generated time series data using a vector auto-regressive (VAR) model [11] with A
and random noise (σ = 1). To simulate undersampling, datapoints were removed to yield u =

2. SVAR optimization on the resulting time series yielded a candidate ℋ that was passed to

RASLil to obtain ⟦ℋ⟧.

The space of possible ℋ is a factor of larger than the space of possible 1, and so

SVAR optimization can return an ℋ such that ⟦ℋ⟧ = ∅. If RASLil returns ∅, then we rerun it

on all ℋ* that result from a single edge addition or deletion on ℋ. If RASLil returns ∅ for

all of those graphs, then we consider the ℋ* that result from two changes to ℋ, then three

changes. This search through the 3-step Hamming neighborhood of ℋ essentially always

finds an ℋ* with ⟦ℋ*⟧ ≠ ∅.

Figure 9 shows the results of the two-step process, where algorithm output is evaluated by

two error-types: omission error: the number of omitted edges normalized to the total

number of edges in the ground truth; comission error: number of edges not present in the

ground truth normalized to the total possible edges minus the number of those present in the

ground truth. We also plot the estimation errors of SVAR (on the undersampled data) to

capture the dependence of RASLil estimation errors on estimation errors for ℋ. Interestingly,

RASLil does not significantly increase the error rates over those produced by the SVAR

estimation. In fact, we find the contrary (similarly to [6]): the requirement to use an ℋ that

could be generated by some undersampled 1 functions as a regularization constraint that

corrects for some SVAR estimation errors.

5 Conclusion

Time series data are widespread in many scientific domains, but if the measurement and

system timescales differ, then we can make significant causal inference errors [9, 15].

Despite this potential for numerous errors, there have been only limited attempts to address

this problem [6, 7], and even those methods required strong assumptions about the

undersample rate.

We here provided the first causal inference algorithms that can reliably learn causal structure

from time series data when the system and measurement timescales diverge to an unknown

degree. The RASL algorithms are complex, but not restricted to toy problems. We also

showed that underdetermination of 1 is sometimes minimal, given the right methods. ⟦ℋ⟧

was often small; substantial system timescale causal structure could be learned from

undersampled measurement timescale data. Significant open problems remain, such as more

Plis et al. Page 8

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

efficient methods when ℋ has ⟦ℋ⟧ = ∅. This paper has, however, expanded our causal

inference “toolbox” to include cases of unknown undersampling.

Acknowledgments

This work was supported by awards NIH R01EB005846 (SP); NSF IIS-1318759 (SP); NSF IIS-1318815 (DD); &
NIH U54HG008540 (DD) (from the National Human Genome Research Institute through funds provided by the
trans-NIH Big Data to Knowledge (BD2K) initiative).

References

1. Moneta, A.; Chlaß, N.; Entner, D.; Hoyer, P. Causal search in structural vector autoregressive
models. Journal of Machine Learning Research: Workshop and Conference Proceedings, Causality
in Time Series (Proc. NIPS2009 Mini-Symposium on Causality in Time Series); 2011. p. 95-114.

2. Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica: Journal of the Econometric Society, pages. 1969:424–438.

3. Thiesson, B.; Chickering, D.; Heckerman, D.; Meek, C. Arma time-series modeling with graphical
models. Proceedings of the Twentieth Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-04); Arlington, Virginia. AUAI Press; 2004. p. 552-560.

4. Voortman, Mark; Dash, Denver; Druzdzel, Marek. Learning why things change: The difference-
based causality learner. Proceedings of the Twenty-Sixth Annual Conference on Uncertainty in
Artificial Intelligence (UAI); Corvallis, Oregon. AUAI Press; 2010. p. 641-650.

5. Friedman, Nir; Murphy, Kevin; Russell, Stuart. Learning the structure of dynamic probabilistic
networks. 15th Annual Conference on Uncertainty in Artificial Intelligence; San Francisco. Morgan
Kaufmann; 1999. p. 139-147.

6. Plis, Sergey; Danks, David; Yang, Jianyu. Mesochronal structure learning. Proceedings of the
Thirty-First Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-15);
Corvallis, Oregon. AUAI Press; 2015.

7. Gong, Mingming; Zhang, Kun; Schoelkopf, Bernhard; Tao, Dacheng; Geiger, Philipp. Discovering
temporal causal relations from subsampled data. Proc. ICML; 2015. p. 1898-1906.

8. Richardson T, Spirtes P. Ancestral graph markov models. The Annals of Statistics. 2002; 30(4):962–
1030.

9. Danks, David; Plis, Sergey. Learning causal structure from undersampled time series. JMLR:
Workshop and Conference Proceedings; 2013. p. 1-10.

10. Johnson, Donald B. Finding all the elementary circuits of a directed graph. SIAM Journal on
Computing. 1975; 4(1):77–84.

11. Lütkepohl, Helmut. New introduction to multiple time series analysis. Springer Science &
Business Media; 2007.

12. Murphy, K. PhD thesis. UC Berkeley; 2002. Dynamic Bayesian Networks: Representation,
Inference and Learning.

13. Glymour, Clark; Spirtes, Peter; Scheines, Richard. Erkenntnis Orientated: A Centennial Volume for
Rudolf Carnap and Hans Reichenbach. Springer; 1991. Causal inference; p. 151-189.

14. Chickering, David Maxwell. Optimal structure identification with greedy search. The Journal of
Machine Learning Research. 2003; 3:507–554.

15. Seth, Anil K.; Chorley, Paul; Barnett, Lionel C. Granger causality analysis of fmri bold signals is
invariant to hemodynamic convolution but not downsampling. Neuroimage. 2013; 65:540–555.
[PubMed: 23036449]

Plis et al. Page 9

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
RASLre algorithm 1a specification, and 1b search tree example

Plis et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
RASLie algorithm (a) main loop; (b) example of graphs considered; and (c) core function.

Plis et al. Page 11

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Run-time comparison.

Plis et al. Page 12

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Run-time behavior.

Plis et al. Page 13

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Size of equivalence classes for 100 random SCCs at each density and u ∈ {2, 3, 4}.

Plis et al. Page 14

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Size of equivalence classes for larger graphs n ∈ 7, 8, 10 for u ∈ 2, 3

Plis et al. Page 15

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Effect of the undersampling rate on equivalence class size.

Plis et al. Page 16

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Distribution of u for u = ℋ for 1 ∈ ⟦ℋ⟧ for 5- and 6-node graphs

Plis et al. Page 17

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
The estimation and search errors on synthetic data: 6-node graphs, u = 2, 20 per density.

Plis et al. Page 18

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2016 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	1 Introduction
	2 Representation and Formalism
	3 Algorithms
	3.1 Nonparametric Forward Inference
	Theorem 3.1
	Theorem 3.2
	Theorem 3.3
	Corollary 3.4

	3.2 A recursive edgewise inverse algorithm
	Theorem 3.6

	3.3 An iterative edgecentric inverse algorithm
	Lemma 3.7
	Lemma 3.8

	3.4 An iterative loopcentric inverse algorithm

	4 Results
	4.1 Equivalence classes
	4.2 Synthetic data

	5 Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

