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Abstract

The ability to determine patient acuity (or severity of illness) has immediate practical use for 

clinicians. We evaluate the use of multivariate timeseries modeling with the multi-task Gaussian 

process (GP) models using noisy, incomplete, sparse, heterogeneous and unevenly-sampled 

clinical data, including both physiological signals and clinical notes. The learned multi-task 

GP (MTGP) hyperparameters are then used to assess and forecast patient acuity. Experiments 

were conducted with two real clinical data sets acquired from ICU patients: firstly, estimating 

cerebrovascular pressure reactivity, an important indicator of secondary damage for traumatic 

brain injury patients, by learning the interactions between intracranial pressure and mean arterial 

blood pressure signals, and secondly, mortality prediction using clinical progress notes. In both 

cases, MTGPs provided improved results: an MTGP model provided better results than single-task 

GP models for signal interpolation and forecasting (0.91 vs 0.69 RMSE), and the use of MTGP 
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hyperparameters obtained improved results when used as additional classification features (0.812 

vs 0.788 AUC).

1 Introduction

Motivation

Decisions in the intensive care unit (ICU) are frequently made in settings with a high degree 

of uncertainty based on a wide variety of data sources, such as vital signs, clinical notes, 

fluids, medications, etc. Clinical data collection is rapidly expanding, but these data are 

often sparse and irregularly sampled, and contaminated by a variety of noise interference 

and human error. The ICU is playing an expanding role in acute hospital care (Vincent 

2013), and in such data-heavy settings, a more concise representation of patient records 

would help clinical staff to quickly assess patient state and plan care.

Goal

High quality clinical care depends on the ability to combine heterogeneous clinical data to 

understand the severity of illness (acuity) in patients. Clinical research often uses risk of 

mortality as a surrogate for patient acuity, often evaluated at a single end point, such as 

after 28-days post-discharge. Most acuity scores rely on static snapshots of a patient and do 

not incorporate evolving clinical information such as new notes, lab values, etc. Our goal is 

to provide a concise representation of these multiple related timeseries so that they can be 

compared and assessed.

Challenge

The general issue of comparing signals that are not aligned and irregularly sampled has 

been considered before (see 2.2). Establishing similarity metrics among timeseries data is an 

important part of many learning tasks and often is achieved using a variety of summarization 

methods. However, many modeling methods fail when applied to irregularly sampled data 

unless strong assumptions are made about the functional form present in the underlying data 

source. Furthermore, in cases where such methods work, data imputation is often necessary, 

which can introduce additional sources of error and bias. Finally, many methods work on 

a single timeseries, but fail to generalize to (or take advantage of) other related time-series 

data. In the remainder of this paper, we refer to noisy, sparse, heterogeneous, irregularly 

sampled data as “irregularly-sampled” data.

Solution

Our proposed technique transforms a variety of irregularly-sampled clinical data into a 

new latent space using the hyperparameters of multi-task GP (MTGP) models. Patients are 

compared based on their similarity in the new hyperparameter space. Our work differs from 

other work in that it: 1) uses the correlation between and within multiple time-series to 

estimate parameters instead of considering each timeseries separately; 2) infers a compact 

latent representation of the source data, rather than finding patterns that are common within 

different timeseries; and 3) leverages the information contained in the inferred model 
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hyperparameters for supervised learning, whereas others use the predicted mean function 

of the GP as a pre-processing or smoothing step (see 2.3).

Contributions

This paper makes the following contributions:

• We propose a method using MTGP for forecasting patient acuity based on 

irregularly sampled heterogeneous clinical data.

• We propose a new latent space for representing multidimensional timeseries 

using inferred MTGP hyperparameters.

• We evaluate our approach in two ways: 1) estimating and forecasting a 

cerebrovascular autoregulation index from noisy physiological time-series data 

in patients who suffered a traumatic brain injury and 2) transforming irregular 

ICU patient clinical notes into timeseries, and using MTGP hyperparameters 

from these timeseries as features to predict mortality probability.

2 Related Work

2.1 Clinical Assessment

In the clinical world, there are practical examples of data being used to infer patient acuity 

in the form of ICU scoring systems. ICU scoring systems such as SAPS (simplified acute 

physiology score) use physiologic and other clinical data for acuity assessment. However, 

in 2012 scoring systems were used in only 10% to 15% of US ICUs (Breslow and Badawi 

2012). Recent work has focused on feature engineering for mortality prediction. This is 

usually accomplished by windowing or aggregating the structured numerical data so that a 

single feature matrix can be fed into a structured deterministic classifier (Hug and Szolovits 

2009; Lehman et al. 2012; Joshi and Szolovits 2012; Ghassemi et al. 2014).

2.2 Timeseries Abstraction

The timeseries abstraction/summarization literature deals more directly with the time-

varying nature of data. Dynamic time warping measures similarity between two temporal 

sequences that may vary in time or speed (Li and Clifford 2012). Another approach is 

time-series symbolization, which involves discretizing timeseries into sequences of symbols 

and attaching meaning to the groupings of the symbols (Lin et al. 2007; Saeed and Mark 

2006; Syed and Guttag 2011). These approaches rely on some known regularity underlying 

a signal (e.g. ECG signals), and are often unsuitable for irregularly sampled timeseries. 

Full latent variable models have been applied to abstracting signals into higher level 

representations. For example, Fox et al. used beta processes to model multiple related 

time-series (Fox et al. 2011), and Marlin et al. used Gaussian mixture models on the first 24 

hours of monitor-signals data with hourly-discretization (Marlin et al. 2012). Nevertheless, 

latent variable approaches are unable to cope with missing and unevenly-sampled data as is, 

and require either strong assumptions about observations when they change asynchronously, 

or the computationally expensive approach of modeling time between observations directly 

as another latent variable.
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2.3 Gaussian Processes

Gaussian processes (GP) form the basis for a Bayesian modeling technique that has been 

used for various machine learning tasks (Rasmussen and Williams 2006). Most commonly, 

GPs are used to predict a single output (denoted here as “task”) based on one or more input 

timeseries. We refer to this model as a single-task GP (STGP). Lasko et al. attempted to use 

Gaussian process regression as a smoothing function of irregularly-sampled signals (Lasko, 

Denny, and Levy 2013). This is a common usage model for GPs on clinical timeseries: 

GPs are used to model observed data through the predicted mean function of the timeseries. 

Clifton et al. used GPs as a framework for coping with data artifacts and incompleteness 

in mobile sensor data (Clifton et al. 2013b). In a related work (Clifton et al. 2013a), a 

functional version of extreme value statistics was proposed for physiological data in order to 

compare different timeseries. Similarly, GPs were used for robust regression of noisy heart 

rate data (Stegle et al. 2008). The remainder of the related work has used STGP models to 

predict a single output based on one or more input variables.

3 Methods

In the present study, we explore the potential of a novel approach using MTGP models 

(Bonilla, Chai, and Williams 2007) to learn the correlation between and within time-series, 

and obtain a concise representation of time-varying physiological and clinical data based on 

the inferred hyperparameters.

Here, we motivate the use of MTGPs and describe the method (source code is available 

on-line1) that we have adapted for hyperparameter construction (Durichen et al. 2014).

3.1 Multi-Task Gaussian Process Models

The general STGP framework may be extended to the problem of modeling m tasks 

simultaneously where each model uses the same index set x (e.g., physiological or clinical 

timeseries). A naïve approach is to train a STGP model independently for each task, as 

illustrated in Figure 1(a). We introduce instead an extension to multi-task GP models 

proposed in (Bonilla, Chai, and Williams 2007), which makes use of the covariance in 

related tasks to reduce uncertainty in the inferred signal.

Let Xn = {xi
j | j = 1, …, m, i = 1, …, nj} and Yn = {yi

j | j = 1, …, m, i = 1, …, nj, } be the training 

indices and observations for the m tasks, where task j has nj number of training data. We 

consider the regression model y⃗n = g(x⃗n) + ε, in which g(x) represents the latent function 

and ε ∼ N(0, σn
2) is a noise term. GP models assume that the function g(x⃗n) can be interpreted 

as a probability distribution over functions such that y∼n = g(x n) GP(m(x n), k(x n, x n
′ )), where 

m(x⃗n) is the mean function of the process (assumed = 0) and k(x n, x n
′ ) is a covariance 

function describing the coupling among the independent variables x⃗n as a function of their 

kernel distance. To specify the affiliation of index xi
j and observation yi

j to task j, a label 

lj = j is added as an additional input to the model, as shown in Figure 1(b). To model the 

correlation between tasks as well as the temporal behaviour of the tasks within a unified GP 

1 http://www.robots.ox.ac.uk/davidc/publications_MTGP.php 
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model, two independent covariance functions are assumed, and the covariance matrix KMT 

for all m tasks can be written

KMT(Xn, l, θc, θt) = Kc(l, θc) ⊗ Kt(Xn, θt) (1)

where ⊗ is the Kronecker product, l = {j | j = 1,…, m}, Kc and Kt represent the correlation 

and temporal covariance functions, and θc and θt are vectors containing hyperparameters for 

Kc and Kt, respectively. Within geostatistics, this approach is also known as the intrinsic 
correlation model (Wackernagel 2003).

By modifying the temporal covariance function we can encode our prior knowledge 

concerning the functional behavior of the tasks that we wish to model. The most frequently-

used example is the squared-exponential covariance function (Rasmussen and Williams 

2006):

Kt = θA
2 exp − ‖x − x′‖2

2θL
2 , (2)

where θt = {θA, θL}, and θA and θL are hyperparameters modeling the y-scaling and 

x-scaling (or time-scale if the data are timeseries) of the covariance function, respectively.

To construct a valid positive semidefinite correlation covariance function Kc, we used the 

Cholesky decomposition and the “free-form” parameterization of the elements of the lower 

triangular matrix L proposed in (Bonilla, Chai, and Williams 2007), such as

Kc = LL⊤, L =

θc, 1 0 ⋯ 0
θc, 2 θc, 3 0
⋮ ⋱ ⋮

θc, k − m + 2 θc, k − m + 2 ⋯ θc, k

(3)

where k = ∑i = 1
m i is the number of correlation hyperparameters.

Identically to STGPs, the hyperparameters θ for a MTGP may be optimized by minimizing 

the negative log marginal likelihood via gradient descent (Rasmussen and Williams 2006), 

and predictions for test indices {xp
∗, lp

∗} can be made by computing the conditional probability 

p(yp
∗ |xp

∗, lp, xn, ln, yn).

Figure 2 shows an example of STGPs and an MTGP applied to a simple synthetic dataset 

with 4 sample tasks. Tasks 1 and 2 were correlated, task 1 and task 2 were both anti-

correlated with task 4, and task 3 was uncorrelated with all other tasks. For this, 4 tasks were 

sampled from a MTGP model with the following hyperparameters: θL = θA = θc,1 = θc,2 

= θc,3 = θc,6 = θc,10 = 1, θc,4 = θc,5 = θc,0 = 0, and θc,7 = θc,8 = −1. Artificial gaps were 

then randomly created in different tasks at different time points and with different durations. 

The STGP (Figure 2(b)), applied to each task independently, fails to adequately represent 
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the functions, particularly where data are not available. Figure 2(c) shows that the MTGP 

improves the predictions in all 4 tasks by capturing the relationships between them.

The MTGP has several useful properties as compared to the traditional GP:

• We can allow task-specific training indices nj; i.e., training data may be observed 

at different times for different tasks (Figure 2);

• The correlations within and between tasks are automatically learned from the 

data by fitting the covariance function in Equation 1; and

• The framework assumes that the tasks have similar temporal characteristics and 

hyperparameters θt.

A limitation of the MTGP is computational cost: (m3n3) compared with m × (n3) for 

STGPs. This limitation is not as relevant for our application, given that we are not dealing 

with densely-sampled time-series data, but data which is sparse and irregular. Another 

limitation of the MTGP is that the number of hyperparameters can increase rapidly for an 

increasing number of tasks, which can lead to a multi-modal parameter space.

3.2 Signal Representation via Hyperparameters

We propose using the inferred MTGP hyperparameters θ that describe the temporal 

correlation within and between tasks as features that represent our set of observations: 

θA and θL which respectively govern each output scale of our functions and the input, or 

time, scale, and θc,i that correspond to the correlation between the different tasks (outputs) 

modelled. In effect, θ provides a new latent search space to examine and evaluate the 

similarity of any two given multidimensional functions. Importantly, these parameters are:

1. a means of representing the functional behavior a set of observations {y⃗n, x⃗n};

2. learned directly from data; and

3. generalizable to any type of longitudinal data, including categorical and 

numerical types.

4 Experiment 1: From Multiple Noisy Time-Series Data to Acuity 

Assessment

In this experiment, we use physiological signals from Traumatic Brain Injury (TBI) patients 

to test the MTGP's ability to assess and forecast multiple related signals. We examine two 

noisy timeseries: the intracranial pressure (ICP) and mean arterial blood pressure (ABP). 

Continuous monitoring of ICP and ABP has become a standard in neurological ICUs. 

Cerebrovascular autoregulation is an important mechanism to sustain adequate cerebral 

blood flow (Werner and Engelhard 2007), and impairment of this mechanism indicates an 

increased risk to secondary brain damage and mortality (Hlatky, Valadka, and Robertson 

2005).

Cerebrovascular autoregulation is most commonly assessed based on the Pressure-Reactivity 

Index (PRx), which is defined as a sliding window Pearson's correlation between the 

Ghassemi et al. Page 6

Proc AAAI Conf Artif Intell. Author manuscript; available in PMC 2016 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ICP and ABP (Czosnyka et al. 1997). However, the ICP and ABP timeseries are often 

contaminated by artifacts and missing data, and PRx can no longer be calculated in these 

situations. Although methods have been proposed to detect and remove artifacts (Feng et al. 

2011), the artifact removal process still creates gaps of missing data in the timeseries.

In this experiment, we demonstrate how the proposed MTGP model can be applied to 

interpolate the incomplete data in ICP and ABP signals and, more importantly, to accurately 

estimate PRx.

4.1 Data

The ICP and ABP data were collected from 35 TBI patients who were monitored for 

more than 24-hours in a Neuro-ICU of a tertiary care hospital between January 2009 

and December 2010. The continuously monitored physiological readings were sampled 

and recorded every 10 seconds. For experimental evaluation, we selected 30 ten-minute 

windows from each patient recording, where ICP and ABP signals were free from artifacts 

and missing values. We then randomly introduced artificial gaps in both signals as 

shown in Figure 3. We evaluated the PRx estimation accuracy, and we further compared 

the performance of MTGP to that of STGP, which models each signal independently. 

For implementation, priors over the hyperparameters were selected after 100 random 

initializations for each case.

4.2 Results

The quality of predictions are evaluated using the squared error loss, where we compute the 

squared residual (y* −ŷ*)2 between the mean prediction (ŷ*) and the target (y*) at each 

test point, and the squared root of the average over the test set to produce the root mean 

squared error (RMSE). As the RMSE is sensitive to the overall scale of the target values, we 

additionally evaluate the negative log probability of the target under the model, by defining 

the mean standardized log loss (MSLL) as

MSLL(y ∗ , y ∗ ) = 1
p ∑

i = 1

p
− log p(yi

∗ |f, xi
∗) + log p(yi

∗ |m(yn), var(yn), xi
∗ ,

where the first term is the log likelihood of y i
∗ given our latent function f and the test index 

xi
∗. This probability is normalized by the second term, the log likelihood of y i

∗ under a trivial 

model that predicts using a Gaussian with mean m(yn) and variance var(yn) of the training 

labels.

Table 1 shows the overall performance of our approach. We note that the MTGP was able 

to estimate the correlation between the ICP and ABP signals – PRx – accurately even 

with incomplete data. The average RMSE between the true correlation coefficients and the 

MTGP estimated ones with the incomplete data was 0.09 (Table 1). This suggests that the 

posterior hyperparameter of MTGP, which measures the interactions between ICP and ABP, 

may be used as an index to model the cerebrovascular autoregulation mechanism and thus 

the risk of secondary brain injury.
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We note that the scale of ICP values is normally between 1 to 20 mmHg, and the specific 

ICP value determines whether the achieved reduction in RMSE is clinically significant. If 

the ICP has already elevated to somewhere near 20 mmHg, any slight increase in ICP may 

result in secondary damage to the brain. In this case, even small reductions to RMSE are 

more desirable to guide the medical interventions.

We also observe that the MTGP provides a significant improvement in interpolating values 

for both signals, as the correlation between the two physiological variables is taken into 

account. Particularly, in periods of incomplete data (see Figure 3), the predictions are 

much more accurate compared to STGP. This shows that the proposed MTGP model can 

also be used for accurate interpolation and forecasting of ICP and ABP timeseries in the 

applications of advanced alarming and physiological trajectory analysis.

5 Experiment 2: From Heterogenous Clinical Data to ICU Acuity Forecasting

To demonstrate the effectiveness of the proposed MTGP model on features inferred from 

sparse, irregularly sampled timeseries, we applied MTGPs to clinical notes from the ICU for 

mortality prediction as summarized in Figure 4. Gold-standard clinical models typically use 

population-based acuity scores, such as SAPS-I (Le Gall et al. 1984), based on snapshots of 

the patient's status during their stay in the ICU. These scores are inherently limited because 

patient state (or severity of illness) constantly evolves.

5.1 Data

We used 2001–2006 ICU data from the open-access MIMIC II 2.6 database (Saeed et al. 

2011), which includes electronic medical records (EMRs) for 26, 870 ICU patients at the 

Beth Israel Deaconess Medical Center (BIDMC).

For each patient we extracted the SAPS-I score, calculated from clinical variables over a 

patient's first 24-hours in the ICU. We used all notes from nursing, physicians, labs, and 

radiology recorded prior to the patient's first discharge from ICU. Discharge summaries were 

excluded because they typically state the patient's outcome explicitly. Patients were excluded 

if their notes had fewer than 100 words, fewer than 6 total notes in their record, or were 

under the age of 18. Patient mortality outcomes were measured at hospital discharge and 1 

year post-discharge.

The final cohort consisted of 10,202 patients with 313,461 notes. A random 30% of the 

patients (3,040) were held back as a test set. The remaining 70% of patients (7,162) were 

used to train topic models and mortality predictors. The test set contained 93,411 notes, and 

the training set had 220,005.

5.2 Clinical Note Decomposition to Timeseries

Beginning from sparse, irregularly sampled clinical notes, we first performed topic modeling 

as a form of dimensionality reduction as described in (Ghassemi et al. 2014). Topics 

inference was performed on notes using T = 50 topics over the words (W) in our vocabulary 

(Blei, Ng, and Jordan 2003; Griffiths and Steyvers 2004). We normalized hyperparameters 
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on the Dirichlet priors for the topic distributions (α) and the topic-word distributions (β) as 

α = 50
T , and β = 200

W .

The topic inference resulted in a 50-dimensional vector of topic proportions for each note in 

every patient's record. We concatenated topic vectors into a matrix q where the element qnk 

was the proportion of topic k in the nth note.

5.3 Hyperparameter Construction

Once notes were transformed into multi-dimensional numeric vectors, we used the MTGPs 

to model the per-note change in topic membership over a patient's stay. This is critical for 

comparing two patients' records given that patients have different lengths of stay and note 

taking intervals depend on staff, clinical condition, and other factors.

From the topic enrichment measure (ϕ), we chose the topics with a posterior likelihood 

above or below 5% of the population baseline likelihood across topics. This yielded nine 

topics (see Table 5.3 for a summary of the chosen topics, and the Appendix for more 

details). We employed MTGP to learn the temporal correlation between the nine topics and 

the overall temporal variability of the multiple timeseries.

From the available data sources, we formed a set of three feature matrices: (1) the admitting 

SAPS-I score for every patient, (2) the average topic membership for the nine identified 

topics (matrix q), and (3) the inferred MTGP hyperparameters across the nine topic vectors 

from q. Importantly, the admitting SAPS-I score and mean topic members (1 and 2) are 

both static measures. SAPS-I collapses data from the first 24 hours of the record, while the 

average topic membership collapses the entire per-note timeseries for each patient's record 

into an aggregate measure. Our proposed MTGP hyperparameters (3) complement these 

measures with information about the per-note timeseries.

5.4 Outcome Classification

We considered five feature prediction regimes that combined subsets of the feature matrices 

1, 2, and 3 as an aggregate feature matrix. We trained two supervised classifiers that 

were identical in the five feature sets used, but provided different objective functions for 

optimization: Lasso logistic regression and L2 linear kernel SVM.

Classifiers were trained to create classification boundaries for two clinical outcomes: 

in-hospital mortality and 1-year post-discharge mortality. All outcomes had large class-

imbalance (e.g., in-hospital mortality rates of 10.9%). To address this issue, we randomly 

sub-sampled the negative class in the training set to produce a minimum 70%/30% ratio 

between the negative and positive classes. Test set distributions were not modified, and 

reported performance reflects those distributions. Due to space constraints, we only reported 

results on a completely held out test set. We performed 5-fold cross-validation on the 

remaining data, and cross-validation results were similar to those obtained on the completely 

held-out test set.
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We evaluated the performance of all classifiers using the area under the Receiver Operating 

Characteristic curve (AUC) on the held-out test set. Table 3 reports results from the Lasso 

model. Results obtained using the L2 linear kernel SVM were not statistically different.

5.5 Results

SAPS-I had the poorest predictive power, which is understandable given that it is only an 

initial snapshot (24 hours) of the severity of illness. We used the static SAPS-I score due to 

its status as the gold-standard in clinical scoring, and our argument in the second experiment 

is that the MTGP hyper-parameter space complements this clinical score, rather than 

competes with it. The average value of the most significant topics significantly improved 

upon that predictive power. The performance of MTGP Hyperparameters on their own was 

similar to that of the Topics: AUC of 0.749 and 0.624 for in-hospital and 1 year mortality, 

respectively.

Given that the hyperparameters were optimized from per-note topic features (that are 

themselves the output of an unstructured learning problem), it is most sensible that the 

topics information should be used in combination with the MTGP hyperparameters to 

describe patient state. We obtained improved predictive performance for both mortality 

outcomes when combining both MTGP hyperparameters with SAPS-I and the significant 

topics. This is likely because the hyperparameters provide complementary information to 

both SAPS-I and the significant topics. Both SAPS-I and the topic features capture a single 

aggregate measure of membership in certain latent dimensions related to outcome, while the 

MTGP hyperparameters capture movement over the course of a hospital stay within those 

dimensions. The best predictive performance occurred when all features were combined, e.g. 

SAPS-I + significant topics + MTGP hyperparameters.

6 Conclusion

The ability to determine on-going patient acuity has immediate clinical use. But clinical data 

are often noisy, sparse and irregularly sampled. The secondary nature of medical data is also 

true in other domains of application such as social media, online retailers, and online content 

distributors (e.g., Yelp reviews, Twitter tweets, Amazon product reviews and ratings). In all 

these cases, data are likely to suffer from the same problems mentioned above, but there 

is still a need to understand how sets of information are related. A key to analyzing such 

data is representing the time-series data in a manner that allows for effective discrimination 

between two or more patterns.

The goal of this work was to transform multiple clinical data sources (e.g., notes, acuity 

scores) into a new latent space where the information could be viewed as timeseries 

data, and abstracted features represent the series dynamics. We demonstrated our method's 

applicability to physiological and clinical data using two different experiments.

MTGPs were able to estimate the cerebrovascular autoregulation index in TBI patients. The 

biggest advantage of MTGP over STGP is the ability to estimate the correlations between 

ICP and MAP, even in the presence of missing data. This allows continuous assessment of 
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the cerebral autoregulation mechanism, which is an important indicator of secondary brain 

damage and mortality.

Inferred MTGP hyperparameters were also able to increase classification performance on 

mortality prediction of ICU patients. The use of temporal information in clinical care is 

fundamental, and the large number of independent devices used in a modern ICU provides 

heterogeneous data. Using our method to summarize heterogenous clinical patient data into 

a more concise form, clinicians can leverage the collective knowledge of patient trajectories 

and outcomes. Concise representations of clinical notes are easier for clinicians to use, 

because they aggregate multi-author notes over time into topic timeseries that are more 

easily labeled (e.g. by viewing the top words) and tracked over a patient's record.

The main limitation in using this approach to characterize timeseries is computational 

cost. We conducted an exhaustive grid search over the constrained hyperparameter space. 

Computational costs may be addressed using a recently proposed Bayesian optimization 

for automatically tuning the MTGP hyperparameters (Swersky, Snoek, and Adams 2013) in 

large datasets. In a “real-time” setting, the computational cost for m tasks is O(m3, n3). An 

overview of sparse GP methods is presented in (Quionero-Candela and Rasmussen 2005), 

which aims to find a smaller set of pseudo-inputs n′ to reduce computational complexity. 

Further improvement is possible by 1) exploiting the Kronecker product (Stegle et al. 2011), 

2) limiting the training data to the same time instances of each dimension of the data 

(Evgeniou, Micchelli, and Pontil 2005), or 3) by using recursive algorithms (Pillonetto, 

Dinuzzo, and De Nicolao 2010). Applications that require close-to-real-time retraining (e.g. 

Experiment 2), would benefit from these techniques, while operating over longer time-scales 

would be less sensitive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical model for (a) m single-task Gaussian processes with m sets of: inputs Xi, 

temporal covariance hyperparameters θt
i, estimated functions fi, noise terms σi, and outcomes 

yi; and (b) a multi-task Gaussian process which relates m tasks through all prior variables, 

with the tasks' labels l and similarity matrix θc.
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Figure 2. 
(a) A sample function with 4 tasks; (b) Single-task GP (STGP) and (c) multi-task GP 

(MTGP) predictions on all tasks. The dots represent observations, while dashed lines and 

colored areas represent the predictive mean and 95% confidence interval, respectively. 

The line on the bottom represents the mean absolute error (over the 4 tasks) between 

the predictions and the correspondent reference values. We observe that the overall error 

obtained in (c) is lower than that in (b), which suggests that the use of MTGP yielded better 

predictions by taking into account the correlation between the different tasks.
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Figure 3. 
An example of a single-task GP (STGP) and multi-task GP (MTGP) applied to intracranial 

pressure (ICP) and mean arterial blood pressure (ABP) signals from a traumatic brain injury 

patient. (a) and (c) show the performance of STGP, whereas (b) and (d) show the improved 

performance of MTGP, which takes into account the correlation between ICP and ABP. Dots 

represent observations, crosses represent missing observations (test observations), the dotted 

line shows the function mean and the shaded area show the 95% confidence interval. We 

note that the timescale parameter “selected” by the MTGP, which takes into account the 

correlation between the tasks, is shorter than the one selected by the STGP, which yields to 

higher likelihood of the test observations (crosses).
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Figure 4. 
1) We perform a pre-projection step where clinical notes are transformed into timeseries 

using Latent Dirichlet Allocation; 2) the new set of topic proportion timeseries are fitted 

using the MTGPs; 3) inferred hyperparameters θL, θA, θc,1, …, θc,6 are derived, projecting 

into the new latent space; 4) latent features (hyperparameters) are used as features in 

combination with topic proportions and the SAPS acuity score to 5) forecast patient 

mortality.
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Table 1

Performance of single-task GP (STGP) and multitask GP (MTGP). PRx-PRx* refers to the difference between 

the reference PRx (Pearson correlation coefficient of ICP and ABP for a given window) and PRx*, the 

estimated PRx index (posterior MTGP hyperparameter that measures the interaction between the two tasks).

Signal Measure STGP MTGP

ICP
RMSE 0.91 0.69

MSLL 0.6 0.45

ABP
RMSE 2.77 1.98

MSLL 0.65 0.55

PRx-PRx* RMSE - 0.09
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Table 2

Top five words in chosen topics (enriched for in-hospital mortality/survival).

Top Five Words Possible Topic

In-hospital Mortality liver, renal, hepatic, ascites, dialysis Renal Failure

thick, secretions, vent, trach, resp Respiratory infection

remains, family, gtt, line, map Systematic organ failure

increased, temp, hr, pt, cc Multiple physiological changes

intubated, vent, ett, secretions, propofol Respiratory failure

name, family, neuro, care, noted Discussion of end-of-life care

Survival cabg, pain, ct, artery, coronary Cardio-vascular surgery

chest, pneumothorax, tube, reason, clip

pain, co, denies, oriented, neuro Responsive patient
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Table 3

Prediction results of hospital and 1-year mortality, AUC for various feature combinations.

Features Hospital Mortality 1-Year Mortality

SAPS-I 0.702 0.500

Ave. Topics 0.759 0.653

SAPS-I + MTGP 0.775 0.624

Ave. Topics + MTGP 0.788 0.673

SAPS-I + Ave. Topics + MTGP 0.812 0.686
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