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Abstract. The synthesis of acute-phase protein serum
amyloid A (SAA) is largely regulated by inflamma-
tion-associated cytokines and a high concentration of
circulating SAA may represent an ideal marker for
acute and chronic inflammatory diseases. However,
SAA is also synthesized in extrahepatic tissues, e.g.
human carcinoma metastases and cancer cell lines. An
increasing body of in vitro data supports the concept of
involvement of SAA in carcinogenesis and neoplastic
diseases. Accumulating evidence suggests that SAA

might be included in a group of biomarkers to detect a
pattern of physiological events that reflect the growth
of malignancy and host response. This review is meant
to provide a broad overview of the many ways that
SAA could contribute to tumour development, and
accelerate tumour progression and metastasis, and to
gain a better understanding of this acute-phase
reactant as a possible link between chronic inflamma-
tion and neoplasia.
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Introduction

Inflammation is generally regarded as an organism�s
protective mechanism against trauma, irritation, in-
jury or infection. Whereas acute inflammation has
mainly beneficial effects, clinical and epidemiological
studies have suggested a strong association between
chronic infection, chronic inflammation and cancer.
Recurrent or persistent chronic inflammation may
induce, promote, or influence susceptibility to carci-
nogenesis by causing DNA damage, inciting tissue
reparative proliferation, and/or by creating an envi-

ronment that is enriched with tumour-promoting
cytokines and growth factors. Clinically and patho-
logically classifiable inflammatory diseases are estab-
lished precursors of cancers occurring in gastrointes-
tinal, respiratory, anogenital, and lymphoid organs
and tissues [1]. It has been clear for some time now
that the tumour microenvironment, largely orches-
trated by inflammatory cells and a network of signal-
ling molecules, are indispensable participants in the
neoplastic process, fostering proliferation, survival
and migration [2, 3]. Important components in this
linkage are cytokines produced by activated innate
immune cells that stimulate tumour growth. Subse-
quently, soluble mediators synthesized by cancer cells
may also recruit and activate inflammatory cells that,* Corresponding author.
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in turn, may stimulate cancer progression [4, 5].
Basically, a number of pro-inflammatory gene prod-
ucts have been described as mediators of tumour
development. Recent evidence suggested a possible
involvement of serum amyloid A (SAA) in carcino-
genesis. SAA is a generic term for a family of acute-
phase proteins coded for by different genes with a high
allelic variation and a high degree of homology
between species [6, 7]. In humans, the bona fide
acute-phase SAA genes SAA1 and SAA2 share
approx. 95 % overall sequence identity in their pro-
moter regions, exons and introns [8]. The different
alleles of the SAA1 and SAA2 loci encode for non-
glycosylated SAA proteins (104 amino acids, 11.7
kDa). The dominant isotype, SAA1, consists of at
least five allelic variants, while less have been reported
for SAA2 [9].
Hepatic synthesis of acute-phase proteins is largely
regulated by inflammation-associated cytokine-pep-
tide hormone signals produced by endothelial cells,
lymphocytes and, in particular, activated monocytes
and macrophages. Indeed, the acute-phase response is
an orchestrated response to tissue injury, infection,
and inflammation, and the primary function of acute-
phase proteins is the restoration of homeostasis.
Depending on the extent of inflammation, major
acute-phase proteins may reach levels up to 1000-fold
greater than those in the non-inflammatory state. As
compared to the currently widely used C-reactive
protein, SAA is frequently a more sensitive marker of
inflammation, particularly in some conditions [10],
while it has the advantage of also being involved in the
acute-phase response in species other than humans,
such as mice. As concentrations of acute-phase
reactants might correlate with the amount of damaged
tissue, measurements of SAA are of value in the
assessment of activity and response to therapy during
several inflammatory diseases [10]. Normally, SAA
levels peak on the third day after the onset of the acute
event and, approximately four days later, levels of
SAA – the major apolipoprotein of high-density
lipoprotein (HDL) during inflammation – return to
baseline [10]. Thus the ”natural” role of SAA seems to
be one of maintaining homeostasis. In chronic inflam-
mation, however, which is a driving force in tumour
development, SAA levels increase substantially and,
together with other pro-inflammatory molecules,
contribute to the vicious positive feedback cycle,
unable to be balanced by anti-inflammatory media-
tors. Indeed, serum levels of SAA are increased in a
number of chronic inflammatory and neoplastic dis-
eases that may predispose to amyloidosis, a clinical
disorder caused by extracellular deposition of insolu-
ble abnormal fibrils, derived from aggregation of
misfolded, normally soluble protein. Sustained SAA

levels may give rise to secondary amyloidosis, now
called reactive systemic amyloid A (AA) amyloidosis,
where the 76 amino acid N-terminal portion of intact
SAA is deposited as AA fibrils [11, 12]. AA amyloi-
dosis always involves the spleen but typically presents
with proteinuria and/or hepatosplenomegaly while
cardiac involvement is very rare [13]. Basically,
amyloid deposits contain abundant heparan sulfate
and dermatan sulfate proteoglycans and glycosamin-
glycan chains, some of which are tightly bound to the
fibrils [13].
Malignant transformation can be closely associated
with chronic infection and inflammation, while bio-
synthesis and secretion of pro-inflammatory cytokines
represent the primary cause for this close connection.
Key molecular links between inflammation and
tumour promotion/progression involve various signal
transduction pathways, which are activated by many
pro-inflammatory cytokines. A number of previous
and recent studies proposed a direct correlation
between SAA concentrations and tumour grading
[14, 15]. This led to the assumption that SAA might be
considered a marker to monitor tumour progression
and that SAA might act as a biomarker candidate for
specific cancer types [16, 17]. Finally, as elevated SAA
levels accompany neoplastic processes, and poor
prognosis correlates with the level of SAA, it is most
interesting to clarify whether SAA plays an active role
in the pathophysiology of cancer.

Serum levels of SAA in cancer

SAA is found at low levels in sera of healthy donors
[18]. Although fluctuations with time for various
individuals may occur as a reflection of subclinical
infection, inflammation or even malnutrition, no age-
related increase in plasma SAA concentrations was
observed in healthy subjects [19]. Thus, the high SAA
levels measured in octogenarians [20] were apparently
due to occult inflammatory and neoplastic diseases
[21]. In 277 patients with a broad spectrum of neo-
plastic diseases, including ten classes of solid tumours
(stomach, colon, pancreas, prostate, breast, ovary,
testis, lung, endocrine, and sarcoma) and three classes
of haematological malignancies (Hodgkin�s disease,
non Hodgkin�s disease, and leukaemia), SAA levels in
these patients varied substantially but were generally
elevated [22]. SAA levels were significantly higher in
patients with quantitatively advanced diseases. The
difference between metastatic and limited disease was
consistent within all the individual tumour categories
and histologic groups, i.e., adenocarcinoma, squa-
mous carcinoma, sarcoma, lymphoma, and acute
leukaemia [22]. SAA levels were increased in patients
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with proven carcinoma of the lung (squamous cell
carcinoma, adenocarcinoma, oat cell carcinoma, and
anaplastic large cell carcinoma) [23–25], prostate
cancer [26], and colorectal carcinoma [27] suggesting
that SAA could act at least as a non-specific tumour
marker and independent prognostic factor as obtained
by univariate and multivariate analysis. Most impor-
tantly, SAA levels were also high in renal cell
carcinoma (RCC) [28], a disease found to be associ-
ated with reactive systemic AA amyloidosis, consist-
ing of b-sheets of SAA-derived AA protein deposited
in tissues and organs. Other authors have suggested
SAA as an indicator of distant metastases but not as an
early tumour marker in patients with RCC [29].
Rosenthal and Sullivan [30] even proposed SAA as a
biochemical marker that discriminates between dis-
seminated and localized or regional disease. Biran and
coworkers [14] further addressed a direct correlation
between SAA concentrations and cancer activity,
stage (early to metastasis) and prognosis. Initial SAA
values had prognostic significance: a value below 10
mg/ml correlated with survival advantage, whereas a
higher initial value indicated a greater likelihood of
poor outcome. Gastric cancer patients with SAA
levels above 97 mg/ml had a nearly four-fold increase in
risk of death [31]. In 233 patients with a number of
different tumours (lung, bladder, stomach, and color-
ectal) a higher percent of raised SAA levels was found
in patients with more advanced disease [32]; patients
with breast carcinoma (stages I–III) had a poor acute-
phase response. These findings are in line with others
[33] where elevated SAA levels were seen in stage IV
patients with the highest levels in ulcerating tumours;
these observations suggest that, in the absence of
metastatic disease, breast cancer is a poor stimulus for
the production of acute-phase proteins. High levels of
SAA in cancer patients (progressive metastatic renal
cell cancer, malignant melanoma, stage III/IV breast
cancer or non small cell lung cancer) were drastically
increased when patients received human recombinant
interleukin 6 (rIL-6) as an anti-tumour immunother-
apy in phase I and phase II studies [34–36]. SAA levels
increased dose-dependently during the first week of
rIL-6 administration, with peak values occurring at
day 3 [34–36]. However, SAA levels decreased
slightly during the following weeks of immunotherapy
[34–36]. In contrast to rIL-6 immunotherapy, treat-
ment of ovarian cancer patients (stage III/IV) with
rIL-3 only slightly increased SAA levels [37]. In
patients with colorectal liver metastasis, partial hep-
atectomy is associated with increased serum SAA
levels [38, 39] probably a consequence of alterations in
the liver proteome. Serum SAA levels increased
postoperatively in laparoscopy-assisted distal gastrec-
tomy as well as in open distal gastrectomy, but

temporal increase was lower in the laparoscopy-
assisted distal gastrectomy group [40]. Mean plasma
SAA concentrations were also high in gastric cancer
patients and SAA concentrations were associated
with tumour stage and location [41]. Most important-
ly, SAA turned out to be useful in predicting survival
of patients with gastric cancer, but also as a valuable
tool for postoperative follow-up [31]. SAA levels were
high in sera from patients with multiple myeloma
compared to controls [42]. Whether SAA can be used
as a specific clinical marker in cancer patients under-
going febrile neutropenia is still a matter of debate
[43–45].
SAA was found to be up-regulated around 30-fold
using microarray gene expression profiling and anal-
ysis in RCC [46]. Antibody microarray analysis of
samples from lung cancer patients showed a two-fold
increase of SAA above control samples. A distinct
serum protein profile involving abundant acute-phase
proteins was observed and could be useful as a utility
for detecting lung cancers [47]. Microarray analysis
from prostate cancer tissue samples revealed that 466
network and 423 functions-pathways eligible genes
were upregulated; SAA was found as a member of the
network around the IL-1b pathway [48].

SAA is synthesized in cancer tissues of non-hepatic
origin

Although hepatoma cells retain the ability to produce
SAA in response to cytokines, they express less SAA
in the transformed state in comparison to primary
hepatocytes [49–51]. Nevertheless, human hepato-
blastoma HepG2 cell lines [52] and various hepato-
cellular carcinoma cell lines, e.g. Hep3B [52, 53],
HuH-7 [52, 54, 55], and NPLC/PRF/5 [56], served as
in vitro models to mimic time- and cytokine concen-
tration-dependent hepatic expression of SAA at the
RNA and protein levels [57, 58]. Using quantitative
RT-PCR and immunohistochemistry, SAA has been
identified as a specific marker for hepatocellular
adenoma subtype classification [59]. As SAA1/2 tran-
scripts are also expressed in epithelial cells, fibro-
blasts, endothelial cells, and monocytes/macrophages
[52, 60, 61], the question has arisen as to whether
tumour cell lines of non-hepatic-origin are also prone
to express SAA at the RNA and protein levels?
Using serial analysis of gene expression in normal and
tumour tissues/cell lines (colon and pancreas), SAA
was among 183 genes elevated in human pancreatic
cancer but not colon cancer; the ratio of SAA in
pancreatic tumour to normal colon and pancreatic cell
line to normal colon was 11 and 25, respectively [62].
Serial analysis of gene expression further revealed
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high SAA expression in a primary colon tumour cell
line (SW480) compared to its low abundance in an
isogenic lymph-node metastasis cell line (SW620) and
other metastatic colon cancer cell lines (LoVo and
Colo201) isolated from the same patient [63]. In a
model of p53-induced apoptosis, SAA was among 14
genes markedly increased in the colorectal cancer cell
line DLD-1 (containing an inactive endogenous p53
gene), that has been infected with a replication-
defective adenovirus encoding p53 [64]. Gene ex-
pression in macroscopically normal colonic mucosa
revealed a higher expression of SAA in individuals
with a family history of sporadic colon cancer [65].
Using suppression subtractive hybridization, SAAwas
found to be one out of nine highly expressed genes in
the cancerous region of human renal biopsies [66].
Gene expression analyses identified a protein signa-
ture for tumour aggressiveness in clear cell RCC; SAA
was one out of six candidate biomarkers upregulated
in aggressive primary and metastatic clear cell RCC
compared with non-aggressive primaries [67]. Vali-
dation by quantitative reverse transcription PCR
revealed SAA among three candidate biomarkers
with most significant upregulation [67]. SAA tran-
scripts and/or SAA protein were found in different
cell lines of tumour origin, e.g. adrenal cortex carci-
noma (SW13), ileoceal carcinoma (HCT-8), and oral
epidermal carcinoma (KP) [52, 68]. SAA expression
was also observed in colonic adenocarcinoma cells
(CaCo-2), colonic carcinoma cell lines (colo-205 and
T-84), and in neoplastic human colonic mucosa [69];
the local and differential expression of SAA in human
colon cancer tissues suggests its role in colonic
tumourigenesis and may have both prognostic and
therapeutic applications. SAA is also highly expressed
in the colorectal carcinoma cell line SW620 [70].
SAA1/2 transcripts are expressed in highly proliferat-
ing trophoblast-like choriocarcinoma cell lines (JAR
and Jeg-3) and non-malignant first trimester tropho-
blasts, supporting the notion that SAA is a product of
local inflammation probably contributing to choles-
terol homeostasis during embryonic development
[71]. Also, osteoblast-like human osteosarcoma cell
lines (SAOS-2 and MG-63) express SAA1/2 tran-
scripts upon cytokine-mediated stimulation; SAOS-2
cells express both SAA transcripts even under non-
stimulating conditions [72]. Most importantly, SAA
activating factor-1 (SAF-1), a transcriptional regula-
tor of SAA, is also expressed in osteosarcoma cells,
prior to and post cytokine stimulation [72]. In
addition, SAA1/2 transcripts are present in non-
differentiated human embryonic stem cells, but to a
higher extent in culture-expanded human embryonic
stem cells differentiated to osteogenic lineage [72].
The expression of SAA in normal and cancerous

extrahepatic tissues has been confirmed by immuno-
histo- and immunocytochemistry [69, 71–73] and the
predominant localization of SAA is the epithelium
[73].

SAA and its role as a candidate tumour-specific
surrogate biomarker

Recent developments in cancer biotherapy intro-
duced protein profiling as a high-throughput platform
that allows the simultaneous analysis of multiple low-
molecular weight proteins from small quantities of
material. Among different techniques, mass spec-
trometry (MS) may serve as a diagnostic and a cancer
biomarker discovery tool [74] and matrix-assisted
laser desorption and ionisation time-of-flight
(MALDI-TOF) and surface-enhanced laser desorp-
tion/ionization time-of-flight mass spectrometry
(SELDI-TOF) MS can profile proteins in the low-
molecular-weight range [75].
SAA was identified as a biomarker in serum that
distinguished prostate cancer patients with and with-
out bone lesions (bone metastases) using SELDI-
TOF-MS and two-dimensional gel electrophoresis, in-
gel trypsin digestion and tandem MS; SAA identifi-
cation was confirmed by ELISA and immunodeple-
tion experiments [76]. In the same report, prostate
specific antigen serum concentrations were reported
to be useful for initial diagnosis; however, when used
alone prostate specific antigen can be associated with
a high degree of false positives and cannot predict the
presence of metastases. Li and coworkers [77] sug-
gested the 11.7 kDa SAA protein as one of the plasma
proteins in the proteomic signature able to differ-
entiate between pediatric osteosarcoma and benign
osteochondroma.
Using the SELDI-TOF-MS technique, the 11.7 kDa
SAA protein has been identified in plasma as a human
ovarian cancer marker [78] and as an important
component of the proteome diagnostic profiling in
ovarian cancer [17]. Performing serum proteomic
patterns for human ovarian cancer, Helleman and
coworkers [79] discovered eight potential biomarkers,
among them SAA, for monitoring disease progres-
sion. In both studies [78, 79], SELDI-TOF-MS data
for the 11.7 kDa SAA protein and the SAA immuno-
assay were combined with cancer antigen 125 data.
SELDI-TOF-MS analyses confirmed haptoglobin and
SAA as differentiating proteins in serum from RCC
patients (n = 25) compared to their normal counter-
parts (n = 26) [80]. Of particular emphasis is the
detection of a cluster of multiple SAA peaks; in
addition to the 11.7 kDa peak, a 11.5 kDa (SAA
lacking the N-terminal arginine) and a 11.4 kDa peak
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(SAA lacking the N-terminal arginine-serine resi-
dues) have been identified [80]. This is of importance
as the corresponding des-arginine forms (11.5 kDa)
have been used previously to identify SAA1, SAA2 or
other isoelectric focusing SAAvariants [10, 81]. Using
the SELDI-TOF-MS technique, the 11.7 kDa and 11.5
kDa peaks of SAA have further been identified in
serum of RCC patients after rIL-2 treatment [82]; this
observation parallels high SAA levels measured in
cancer patients following rIL-6 therapy [34, 35];
however, it is indicative that SAA may not necessarily
act as a candidate biomarker in RCC [80].
Engwegen and coworkers [83] further confirmed the
expression of SAA and the corresponding peak
cluster in two sets of RCC; the first set (40 RCC
patients and 32 healthy controls) consisted of mainly
pre-surgery samples from patients with disease stage
I-IV, while the second set (26 RCC patients and 27
healthy controls) were mostly sera from patients with
stage-IV disease, drawn after nephrectomy. The SAA
peak cluster (11.7, 11.5, and 11.4 kDa) was validated as
a robust RCC biomarker candidate [83]. This peak
cluster is also present in sera from patients undergoing
laparoscopic colon resection to remove a colon
carcinoma [84] and during plasma protein profiling
for diagnosis of pancreatic cancer [85] when SELDI-
TOF-MS or MALDI-TOF-MS was used. Applying
the PVDF-aided MALDI-TOF-MS technique, the
same SAA peak cluster was observed with high SAA
levels in a group of gastric cancer patients [41]. When
performing a serum proteome profile that discrim-
inates lung cancer patients from matched controls, the
same SAA peak cluster (indicative for N-terminal
fragmentation) was found by MALDI-based analysis
[86]. Using SELDI-TOF-MS techniques, SAA (11.7
kDa) and transthyretin were identified in a group of
proteins specific for RCC, although the value of SAA
in monitoring and therapy response needs evaluation
in further studies [87–89]. Furthermore, the SELDI-
TOF-MS technology was useful to identify SAA as a
candidate serum biomarker that strongly correlates
with prognosis in neuroblastoma, the most common
extra-cranial solid tumour in children [90]. Serum
protein profiling using the MALDI-TOF-MS tech-
nology revealed SAA among four proteins up-regu-
lated in patients with stage IV neuroblastoma [91].
A comprehensive, longitudinal follow-up study using
serum proteomic profiling suggested SAA as a useful
marker to monitor relapse of nasopharyngeal cancer
with a gradual elevation of SAA occurring on meta-
stasis of nasopharyngeal cancer to bone, lung or liver
and a dramatic decrease in the protein to background
level with chemotherapy [92, 93]. Two-dimensional
gel electrophoresis and MALDI-TOF-MS analysis
revealed SAA as a potential nasopharyngeal carcino-

ma metastasis-specific serum biomarker [94]; ELISA
and immunohistochemistry confirmed identification
of SAA. In lung squamous cell carcinoma patients,
SAA was one out of ten proteins with high abundance
level in sera [95].

SAA and its role in tumour pathogenesis

SAA proteins are highly conserved in vertebrates with
respect to their sequence and inductive capacity [6 –
8]. Their function in inflammation seems to be one of a
protective nature and is over-ridingly necessary in the
acute-phase response and probably also as an im-
mune-effector molecule [7]. However, in chronic
diseases the role of SAA becomes one with adverse
effects. There is a strong relationship between inflam-
mation and cancer progression and it will be further
interesting to determine whether cancer tissue-de-
rived cytokines stimulate SAA synthesis in liver or
epithelial cells.

Regulation of SAA. Expression of SAA is primarily
regulated at the transcriptional level; cytokines, e.g.
IL-1, IL-6, and tumour-necrosis factor a (TNFa), or
glucocorticoids, alone or in combination, act by bind-
ing to their respective receptors. As a consequence,
induction of a series of transcription factors (CCAAT/
enhancer binding proteins, NF-kB, and SAF-1), either
by activation of resident pools of inactive factors in the
cytoplasma and/or by increased factor biosynthesis,
occurs; alternatively, post-transcriptional regulation
of human SAA genes has been reported [17, 96].
rSAA may activate transcription factors mentioned
above [97, 98]. SAA (purified from plasma, rSAA or
the rSAA-HDL complex [99]) exerts cytokine-like
properties by promoting secretion of IL-1b, IL-1
receptor antagonist, IL-8, IL-10, IL-12, IL-23, and
TNFa from granulocytes [97, 100], lymphocytes [101],
and monocytes/macrophages [98, 99, 102].

The influence of elevated SAA on cancer develop-
ment. Besides known utilities of SAA as an inflam-
matory and clinical marker [10], its role of modulating
properties of HDL during the inflammation [103], and
its association with amyloidosis [104], accumulating
evidence supports a role of SAA in human malignan-
cies. A potential role of SAA in tumour pathogenesis
may be deduced from its likely role of acting as an
extracellular matrix (ECM) adhesion protein. The
ECM is a highly organized network of proteins,
glycoproteins, hyaluronan and proteoglycans, which
form a molecular scaffold that provides mechanical
strength, elasticity, and binding sites for cells and also
controls the diffusion and migration of cells. Alter-
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ations in ECM composition and its degradation have a
major influence on tumour initiation and develop-
ment. SAA contains binding sites for ECM-compo-
nents, laminin [105] and heparin/heparan sulfate [106]
and has YIGSR-like and RGD-like adhesion epitopes
(residues 29–42), that correspond to laminin and
fibronectin cell-binding domains, respectively. Se-
quence-specific antibodies raised against various
synthetic peptides of SAA were used as an immuno-
logical tool to identify surface-located epitopes pres-
ent on lipid-free and lipid(HDL)-associated SAA
[107, 108]. A hypothetical structural model for SAA
further suggested that the proposed binding sites for
laminin, fibronectin, and calcium are segregated to
one face of the molecule and that the heparin/heparan
binding site is located in the putatively disordered
region of the protein [106, 109]. Via these adhesion
motifs, SAA may interact with ECM [110, 111],
thereby changing the affinity of different cell types to
ECM. This implies the role of SAA in various
pathologic conditions, including cancer. Either syn-
thetic peptides (corresponding to SAA residues
29–42), rSAA (corresponding to human SAA1) or
human AA protein inhibited the binding of human T-
lymphocytes and mouse M-4 melanoma cells to
surfaces coated with laminin or fibronectin [110].
The inhibitory effects of SAA and SAA-peptides on
cell adhesion to glycoproteins of the ECM might have
a role in metastasis, by inhibiting the adhesion of
tumour cells to the ECM.
SAA interacts specifically with the vessel wall and
ECM-linked glycoprotein moieties (including lami-
nin, but not fibronectin or collagen), attaching tem-
porarily to those matrix substrates and thereby
providing proadhesive stimuli for resting CD4+ T
cells [112]. SAA-ECM complex (achieved via binding
of SAA domain in the 2–82 region to laminin) is also
shown to enhance secretion of TNF-a by human T
lymphocytes in a dose-dependent manner [112].
Similarly, SAA influences murine mast cell adhesion
to ECM or laminin [113]. rSAA binds to mast cells,
and when preincubated with ECM, SAA and its
amyloidogenic AA fragment (also containing an
RGD-like adhesion epitope), cause the binding of
inactive mast cells to ECM or laminin, at least partly
through an integrin recognition site [113, 114]. The
ECM is known to affect intracellular signalling mostly
mediated by interactions between the matrix within
the pericellular microenvironment and integrins on
the cell surface.
Furthermore, SAA may modulate platelet adhesion
and influences adhesion of tumour cells to platelets.
Immobilized SAA supports adhesion of washed
platelets, which may further be induced by Mn2+ and
thrombin. SAA-derived peptide 29–42 (containing an

incomplete RGD motif) inhibits platelet adhesion to
fibronectin, and the adhesion of human platelets to
SAA occurs in an RGD- and aIIbb3-dependent manner
[111, 115]. The tetrapeptide RGDS inhibits adhesion
of tumour cells to platelets in the same manner [116].
Thus, SAA produced locally at the sites of tumour
invasion may modulate adhesion of tumour cells to
platelets.
Michaeli and coworkers [117] recently reported that
SAA enhances plasminogen activation, a process that
points towards a potential role of SAA in colon cancer
progression. Indeed, plasminogen activation, i.e. con-
version of plasminogen to the active serine protease
plasmin, is a feature of many physiologic and patho-
logic processes involving ECM degradation and tissue
remodelling, including inflammation and tumour
metastasis. Although the main effects of inflammation
on tumour development are exerted at the promotion
and progression stages, it is also accepted that chronic
inflammation might enhance tumour initiation. Per-
haps the most compelling clinical evidence for a
causative link between chronic inflammation and
cancer development comes from epidemiological
studies reporting that usage of anti-inflammatory
drugs such as selective cyclooxygenase-2 inhibitors
significantly reduces cancer risk. This indicates that
cyclooxygenase-2 could act as a mediator per se (at
least in colon cancer) [118] or in concert with other key
molecules involved in prostaglandin biosynthesis, and
might thus be effective anticancer targets. One of the
crucial molecules that mediate these effects is the
prostaglandin E2 receptor EP2 subtype; however,
SAA has been reported to induce expression of
cyclooxygenase and to promote formation of cyclo-
oxygenase metabolites, e.g. prostaglandin E2, in
neutrophils and preactivated monocytes [119, 120].
A second pathway that, however, favours induction of
apoptosis and downregulation of cyclooxygenase-2
occurs via activation of peroxisome-proliferating
activated receptor-g. Clinical trials have further
shown that specific peroxisome-proliferating activat-
ed receptor-g ligands reduce serum concentrations of
SAA and matrix metalloproteinases (MMPs), in
particular MMP-9 [121].
Indeed, one of the main causes of ECM alterations
during cancer development is its degradation by
MMPs. MMPs, a family of zinc-dependent endopep-
tidases, are not only capable of targeting the ECM, but
also influence growth factors, cytokines and cell
surface-associated adhesion and signalling receptors.
MMPs are important factors in tissue remodelling
during various physiological responses including em-
bryogenesis, wound healing and bone tissue forma-
tion. Because of their role in ECM degradation and
angiogenesis, and the ability to initiate epithelial-
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mesenchymal transition and genomic instability, aber-
rant expression of MMPs contributes to pathogenesis
in various diseases, including cancer [122]. An in-
creased expression of MMPs in human malignant
tissue has often been correlated with poor prognosis.
Elevated expression of many MMPs, including MMP-
1, -2, -3, -7, -9, -13, -14, in both primary tumours and/or
metastases, are positively associated with tumour
progression, i.e. poor tumour differentiation, invasive
stage of cancer, poor prognosis, metastasis and shorter
survival time [123].
Several reports suggest a link between the expression
of SAA and MMPs. Different members of the MMP
family (MMP-1, MMP-2, MMP-3 and MMP-9) have
been identified in tissue sections of amyloidotic
patients [124], and both, SAA (purified from human
plasma) and AA protein (isolated from spleenic
tissue), are prone to be cleaved by MMP-2 and
MMP-3 in vitro [125]. These findings not only imply
a role of MMPs in amyloidosis, but also point towards
a potential negative feedback mechanism of MMPs in
the regulation by SAA.
Since cancer is often seen as a consequence of chronic
inflammation, SAA might influence tumour invasion
through the ECM by stimulating the production of
MMPs. An increasing number of studies report the
induction of different MMPs by rSAA. Recently, Lee
and coworkers [126] showed that rSAA selectively
stimulated the production of MMP-9 in THP-1 cells
and human monocytes. SAA-induced upregulation of
MMP-9 was mediated via the formyl peptide receptor
like-1 (FPRL-1) and was achieved at the transcrip-
tional level via NF-kB.
In synovial fibroblasts from patients with rheumatoid
arthritis, SAA stimulated the production of MMP-2
and MMP-3 in a dose-dependent manner, whereas
pre-treatment of cells with cycloheximide or immu-
nodepletion of SAA-containing media by anti-SAA-
specific antibodies prevented SAA-mediated MMP-2
and MMP-3 secretion [127]. When stimulated with
rSAA, fibroblast-like synoviocytes from patients with
inflammatory arthritis had increased production of
MMP-1 and MMP-3 by a mean of 2.5-fold and 9-fold,
respectively, 24 h upon stimulation [128]. The fact that
IL-1b-induced MMP-1 and MMP-3 production was
observed after 12 h, and that MMP levels were over
three-fold greater than SAA-induced levels suggested
the possibility that SAA-induced MMP production
might be mediated through IL-1 signalling pathways.
Furthermore, rSAA was shown to induce expression
of intercellular adhesion molecule 1 and vascular cell
adhesion molecule 1, as well as the expression of
MMP-1 on human microvascular endothelial cells and
synovial fibroblasts from patients with rheumatoid
arthritis, a mechanism that is, at least partly, regulated

through the NF-kB/IkB signalling pathway. In con-
sequence, the binding of peripheral blood monocytes
to human microvascular endothelial cells and synovial
fibroblasts from patients with rheumatoid arthritis
increased, and angiogenesis through endothelial cell
migration and tubule formation was induced [129].
Most importantly, both SAA and MMPs may be
activated by SAF-1, a transcription factor similar to
human MAZ zinc finger protein. SAF-1 is known for
cytokine-mediated induction of SAA genes [130], and
recently has been found responsible for the up-
regulation of MMPs [131–133]. SAF-1 was found to
interact with a novel promoter element in the human
MMP-1 gene, and overexpression of SAF-1, in human
and canine chondrocytes of osteoarthritic cartilage,
led to an increase in the activity of the MMP-1
promoter. This effect could be inhibited by an
interference of endogenous SAF-1 activity by anti-
sense SAF-1 messenger RNA [131]. Mouse MMP-14
promoter has also been shown to contain the DNA-
binding site for SAF-1. When THP-1 cells were
transfected with an SAF-1 expression plasmid, the
transcription from MMP-14 promoter and the level of
endogenous MMP-14 protein increased. The fact that
MMP-14 promoter was markedly reduced, but not
completely inhibited with an antisense SAF-1 oligo-
nucleotide, identified SAF-1 as one of the mediators
of MMP-14 promoter activation [132]. Similarly, SAF-
1 binding elements were identified in the MMP-9
promoter of rabbit synoviocyte cells and human
chondrocytes [134]. The high SAF-1 expression in
differentiated over non-differentiated osteoblast-like
human mesenchymal stem cells suggested that differ-
entiated cells contain nuclear factor(s) that synergize
SAF-1 activity [72]. SAF-1 is also constitutively
expressed in human MG-63 osteosarcoma cells,
while the presence of cytokines led to a decrease in
expression of SAF-1 in these cells [72].

Receptors for SAA

FPRL-1/ALX. Local expression of SAA at the RNA
and protein levels is tightly coupled with induced
transcription of MMPs [135] and expression of FPRL-
1 or genes in disease [128]. Indeed, SAA has been
reported to be a specific ligand for FPRL-1 [136, 137].
FPRL-1, found to be identical with the lipoxin A4
(LXA4) receptor (termed ALX) [138] has also been
shown to mediate SAA-induced IL-6, IL-8 and MMP-
3 protein release and to up-regulate NF-kB and AP-1
DNA binding activity in fibroblast-like synoviocytes
[139]. Most importantly, Kd-values for LXA4 (0.1–1.0
nM [140]) and SAA (20–40 nM, [136]) are markedly
different.
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ALX undergoes post-translational glycosylation as
predicted by putative N-glycosylation sites and shown
by the apparent molecular mass of the expressed
protein of ~75 kDa (SDS-PAGE) vs. the expected size
of ~40 kDa (deduced from the primary structure
containing 351 amino acids) [141]. Treatment of
human fibroblast-like synoviocytes with glycosidase
PNGaseF attenuated SAA-dependent NF-kB activa-
tion, presumably by causing reduced ALX N-glyco-
sylation, while sparing LXA4-dependent inhibition of
the IL-1b response (Sodin-Semrl et al. , unpublished).
These findings are compatible with results from an
earlier study indicating that LXA4 binding to its
receptor was insensitive to glycosidase treatment
[140] but targets the seventh transmembrane domain
of ALX [142]. These observations thus suggest that
receptor interactions of SAA and LXA4 involve
different domains of ALX, with SAA (but not
LXA4) requiring the glycosylated extracellular loops
of the receptor.
SAA may contribute to inflammation by rescuing
neutrophils from apoptosis. SAA suppression of
neutrophil apoptosis is mediated via phosphorylation
of the mitogen-activated protein kinase (MAPK) p42/
44 and Akt signalling, and it can be reversed by
aspirin-triggered LXA4 [143]. Culturing neutrophils
with 15-epi-LXA4 alone, however, failed to produce
changes in the development of apoptosis [143]. This is
in contrast to LXA4-stimulated apoptosis in rat
fibroblasts as reported earlier [144] and implies
organism- as well as cell-specificity. Both LXA4 and
15-epi-LXA4 can facilitate phagocytosis of apoptotic
neutrophils by macrophages, specifying a role in the
clearance mechanisms [145, 146]. SAA may further
rescue human neutrophils from constitutive apoptosis
by preventing mitochondrial dysfunction and subse-
quent activation of caspase-3 [147]. However, SAA
may also inhibit apoptosis in human neutrophils via an
FPRL-1/ALX-independent pathway [148]. Contrary
to human neutrophils, overexpression of SAA1/2
isoforms in mouse mammary epithelial cells acceler-
ated their apoptosis by increasing caspase activity
[149] indicating a different mechanism by which SAA
influences epithelial cell death and tissue remodelling.
The binding of SAA to FPRL-1 may stimulate
upregulation of MMPs in human monocytic THP-1
cells [126]. An association between overexpressed
SAA and FPRL-1 with the production of MMPs in
inflamed synovial tissue has been determined [128]
and SAA has been shown to induce synovial hyper-
plasia that can lead to the development of pannus. The
rheumatoid pannus has some properties that are
similar to those exhibited by localized tumour:
synovial fibroblasts from rheumatoid arthritic pa-
tients can proliferate abnormally, resist apoptosis,

invade the local environment [150, 151] and may have
somatic mutations in the p53 tumour suppressor gene
and point mutations in the oncogene H-ras [152, 153].
Lee and coworkers [154] showed that rSAA acts to
protect rheumatoid synoviocytes against apoptosis via
FPRL-1. This mechanism appears to occur via phos-
phorylation of p42/44 and Akt signalling pathway,
similarly to the mechanism occurring in neutrophils
[143].
FPRL-1/ALX, a member of the chemoattractant
subfamily of G protein-coupled receptors, is involved
in regulating leukocyte migration in inflammation.
Chemoattractant properties of SAA on monocytes,
neutrophils, and T-cells have been demonstrated [155,
156] and several physiological processes that are
necessary for tumour development, such as increased
cell survival, tissue remodelling, angiogenesis and
suppression of anti-tumour adaptive immune respons-
es, are regulated by leukocytic infiltrates in neoplastic
environments. Recently, it has been reported that
SAA can mediate the production of reactive oxygen
species in primary human neutrophils independently
of FPRL-1/ALX [157].

SR-BI and ABCA1. Numerous studies carried out on
tumour cell lines, experimental tumours, and human
tumours have shown an abnormal cholesterol metab-
olism that is reflected by an increase in intracellular
cholesteryl esters [158, 159] apparently via receptor-
mediated uptake of cholesteryl esters from circulating
plasma lipoproteins, primarily HDL [159–161]. SR-
BI, a class B type I scavenger receptor, is considered
the prime receptor for native HDL. SAA as apoA-I,
the major apolipoprotein of HDL under physiolog-
ical, i.e. non-inflammatory, conditions, is a high
affinity ligand for SR-BI and is efficiently internalized
by transfected cells in an SR-BI-dependent manner.
As a consequence, markedly enhanced levels of
phosphorylation of the MAPK p42/44, p38, and JNK
[162] have been reported. SAA, when present on
HDL, did not affect interaction of the lipoprotein
particle with SR-BI, although it did not reduce SR-BI-
mediated selective lipid uptake from HDL [163, 164].
The selective uptake of cholesteryl esters by mono-
cytes from acute-phase HDL (containing between
22 % and 42 % SAA in the total apolipoprotein
content) is higher compared to native HDL [165];
most importantly, expression of SR-BI is upregulated
in human monocytes and macrophages during inflam-
matory conditions and high SR-BI expression has
been demonstrated in lipid-laden macrophages in
human atherosclerotic lesions [166] where SAA is also
present [60].
A major physiological function of native HDL is to
promote cellular cholesterol efflux. However, HDL
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experimentally remodelled with purified human SAA
showed a decreased cellular cholesterol efflux from
human monocytic THP-1 cells [167]. A decrease in
cellular cholesterol efflux by acute-phase HDL,
compared with native HDL, from cells of hepatic
origin might be compatible with the role of SR-BI
mediating bidirectional cholesterol flux [168]. Indeed,
SAA has been reported to promote cellular choles-
terol efflux via SR-BI [169]; however, the lipidation
status of SAA, an amphipathic apolipoprotein similar
as apoA-I, seems to be a critical factor governing its
cholesterol acceptor properties [164]. SAA and apoA-
I mediate cellular cholesterol efflux via SR-BI and/or
the human ATP binding cassette protein ABCA1
[164, 170–172]. In principal, ABCA1 and SR-BI may
act in concert; ABCA1 is involved in the lipidation
process (cholesterol and phospholipids) of the corre-
sponding apolipoprotein (apoA-I and/or SAA), while
SR-BI may promote cholesterol flux to the lipidated
HDL-like particles. Recent in vivo experiments
performed in abca1-/- mice have confirmed that SAA
and apoA-I generate HDL largely in hepatocytes only
in the presence of ABCA1; both apolipoproteins will
be secreted in a lipid-free form and may then interact
with cellular ABCA1 [172]. Most importantly, human
SAA binds cholesterol [173] apparently via its am-
phipathic helical content in the N-terminus [109, 174].
However, the role(s) of SAA during acute inflamma-
tion to either enhance cholesterol removal from sites
of tissue destruction and/or to direct HDL during the
acute-phase to deliver phospholipids and cholesterol/
cholesteryl esters to cells involved in tissue repair at
sites of inflammation has/have not been completely
resolved yet [175, 176].

RAGE. Recently, the receptor for advanced glycation
end products (RAGE), has been identified to bind
SAA [177]. This multiligand receptor of the immu-
noglobulin superfamily also binds, in addition to non-
enzymatically glycated adducts, the ß-sheet fibrils
characteristic of amyloid, pro-inflammatory cytokine-
like mediators of the S100/calgranulin family, and
amphoterin, a nuclear protein sometimes found in the
ECM [178]. Activation of cell-surface expressed
RAGE by extracellular ligands results in a specific
signalling cascade ultimately leading to the activation
of NF-kB and MAPK. Increased expression of RAGE
is associated with a number of pathological conditions
(e.g. rheumatoid arthritis, atherosclerosis and some
tumours) with high SAA concentrations. RAGE has
been reported to bind human rSAA1 and to promote
expression of monocyte tissue factor via activation of
NF-kB through the p42/44 and p38 MAPK pathway
[177]. An elevated SAA level is considered a marker
of disease activity in patients with rheumatoid arthri-

tis, and peripheral blood monocytes from these
patients were more reactive to SAA than normals;
this suggests a new link between inflammation and
thrombosis via the SAA-RAGE axis. SAA also binds
to sRAGE [177], the soluble and extracellular form of
RAGE. Thus, sRAGE may be a promising therapeutic
target to prevent vascular damage as a consequence of
chronic inflammatory conditions by acting as a decoy
for circulating RAGE ligands [178]. Indeed, preincu-
bation of SAA with sRAGE prevented SAA-induced
IkBa degradation, suggesting that the SAA-RAGE-
NF-kB axis is operative in rheumatoid synovial
fibroblasts [179]. Yan and coworkers [180] further
reported that 125I-labelled-RAGE specifically binds to
murine SAA1 (forming amyloidogenic fibrils) and
SAA1-derived AA fibrils (isolated from mouse
spleenic tissues) but not to murine SAA2 [180].
Most importantly, incubation of murine microglial
BV2 cells with SAA1 fibrils resulted in nuclear
translocation of NF-kB [180].

Other receptors. In addition to FPRL-1/ALX, SR-BI/
ABCA1, and RAGE (see Fig. 1 for overview) other
receptors have been identified to bind/interact with
SAA. In line with observations that the glycosylphos-
phatidylinositol-anchored protein CD55 (also termed
decay accelerating factor) acts as binding protein for
native HDL [181], a binding protein that comigrates
with CD55 was identified for SAA-enriched (acute-
phase) HDL on macrophages [165]. Although CD55
is abundantly expressed in malignant tumours [182]
where high SAA concentrations may occur, no direct
interaction of SAA with CD55 in relation to tumour
cell growth or the malignant potential of cancer cells
has been reported.
Another SAA binding protein/receptor, identified by
yeast two-hybrid screening, is TANIS [183]. TANIS, a
membrane selenoprotein predicted to have a single
transmembrane region close to its N-terminus, was
shown to be regulated by glucose and is differentially
expressed in type-2 diabetes.
Recent findings revealed that SAA could act as an
endogenous agonist for the Toll-like receptor 4
(TLR4) [184]. SAA stimulated macrophage produc-
tion of nitric oxide radical in a TLR4-dependent
manner that requires phosphorylation of p42/44 and
p38 MAPK but not the myeloid differentiation factor
88 pathway [184]. Macrophages from C3H/HeJ and
C57BL/10ScCr mice lacking this functional receptor
complex (associated with innate immunity) did not
respond to SAA stimulation. In contrast to these
observations, Cheng and coworkers [185] reported
that TLR2, but not TLR4, is involved in NF-kB
activation, a process that promotes phosphorylation
of all three major MAPK, p42/44, p38, and JNK,
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respectively. A neutralizing antibody against TLR2
significantly reduced SAA-stimulated NF-kB activa-
tion in TLR2 overexpressing HeLa cells. SAA-in-
duced expression of the two anti-inflammatory cyto-
kines IL-10 and IL-1 receptor antagonist was com-
pletely abrogated in bone marrow-derived macro-
phages from tlr2-/- mice. However, expression of IL-
12p40 (a common subunit shared by immunomodula-
tory cytokines IL-12 and IL-23) and TNFa was
partially reduced [185]. The expression of IL-23p19
(a unique subunit of IL-23, a member of the IL-12
family) by SAA and TLR2 contribute further support
that SAA may act as an endogenous ligand for IL-23
expression [98].

SAA levels in tumour bearing mice

The link between cancer and inflammation in an organ
or tissue has firmly been established on the basis that
cancer tends to occur at sites of chronic inflammation
and that local inflammatory processes can accelerate
the growth of the pre-existing tumours not only in
humans but also in animals. Serum SAA concentra-
tions in CD1 mice transplanted with S-180 mouse
sarcoma cells or two other tumours (MN MCA/1 and
mFS6 sarcomas) were markedly increased from day
three following transplantation and reached a plateau
at about day six [186]. Surgical removal of the tumour
decreased SAA levels similar to those in control mice
within three days of surgery, while SAA levels in
recipient mice injected with serum from tumour-
bearing mice were massively increased [186]. Subcu-

taneous injection of cells of the mastocytoma line
P815 in syngenic DBA/2 mice revealed elevated SAA
plasma concentrations starting at day five and de-
creasing to normal values around day 21 [187].
Injection of human pancreatic cancer cell line L3.9pl
into the pancreas of an orthotopic nude mouse model
identified significant positive correlation between
tumour weight and expression of the 11.7 kDa SAA
protein in serum, clearly identified by protein profil-
ing using SELDI-MS, N-terminal sequencing, and
Western blot analysis [188]; ELISA experiments
revealed a significant positive correlation between
tumour weight and serum SAA levels [188]. In
another tumour model, BALB/c mice inoculated
with Line-1 (a weakly immunogenic tumour cell line
derived from a spontaneously arising lung alveolar
carcinoma of the BALB/c mouse) expressed elevated
levels of SAA, but not IL-1b or TNF-a, in their sera in
comparison to na�ve mice [189]. While the SAA levels
within each group displayed considerable variability,
the correlation between primary tumour size and
SAA levels was significant. As an SAA level of> 0.05
ng/ml was predictive for the presence of metastatic
lung tumour, SAA has been considered to be more
useful as a diagnostic (tumour vs. no tumour) than a
quantitative marker for metastatic disease in this
model [189]. Using a surgical spontaneous metastasis
model as a clinically relevant tool for the evaluation of
anti-cancer therapy, comparative time-dependent
analysis of potential inflammation biomarkers in
RcsX lymphoma-bearing SJL mice revealed SAA as
a representative within a group of highly up-regulated
genes [190]; protein digests were analyzed by LC-

Figure 1. Candidate SAA recep-
tors with selected biological ac-
tivities; for details see text.
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tandem MS technique and resulting data were proc-
essed by ProQuant and Spectrum software packages
[191]. Identification of tumour-associated plasma
proteins using proteomic analysis (two-dimensional
gel electrophoresis and MS techniques) revealed
overexpression of haptoglobin and SAA in plasma
only in nude mice subcutaneously inoculated with SC-
M1 cells (human adenocarcinoma), while inoculation
with HONE-1 (human nasopharyngeal carcinoma),
CC-M1 (human colon adenocarcinoma), OECM1
(human oral cancer), and GBM 8401 (human glio-
blastoma multiforme) was accompanied by expres-
sion of haptoglobin only [192]. These authors [192]
further suggested that acute-phase proteins may be
used as non-specific tumour-associated serum mark-
ers, but SAA may serve as a potential marker for
detecting stomach cancer. SAA is also expressed in
As4.1 cells isolated from a kidney tumour from
transgenic mice [193]. Intraperitoneal injection of
C6 (rat astrocytoma) cell supernatant into C57BL/10
ScCR mice induced production of SAA [194]. To
acquire further insight into the pre-clinical relevance
of biomarkers in identifying neuroblastoma, nude
mice were inoculated with a human neuroblastoma
cell line (SK-N-DZ); SAA was among five proteins
overexpressed in neuroblastoma tumour-bearing
mice [91].
In a murine model of fibrosarcoma, tumour growth
was paralleled by a massive increase in SAA concen-
trations reaching levels of 5 mg/ml serum 35 days after
tumour growth [195]. Intraperitoneal injection of a
single dose of dexamethasone (0.75 mg/kg) reduced
parameters of systemic inflammation to almost base-
line levels. Furthermore, partial hepatectomy in
C57BL6 mice revealed SAA as one out of 12 proteins
– identified by two-dimensional gel electrophoresis,
MS, and mass fingerprinting – to be upregulated at
least two-fold, indicating that liver regeneration
followed by partial hepatectomy affects various
signalling and metabolic pathways [196].

Future perspectives

There is a critical need for cancer biomarkers in order
to make clinical decisions about patient treatment
early and aid in shortening the development time for
vaccines. It has become very clear that tumour
markers with absolute specificity are not currently
available. This lack of biomarkers is also a result of
problems associated with their validation and devel-
opment. A key difficulty is that tumour markers are
also expressed in normal/healthy tissue or in other
disease states at elevated concentrations. However, in
addition to those used for diagnosis, there is a need for

prognostic biomarkers and biomarkers that can strat-
ify patients into potential chemoradiotherapy res-
ponders and non-responders [197]. During treatment,
signatures or profiles of multiple markers are gener-
ally necessary to distinguish between development
and progression of various types of cancers. Clusters of
biomarkers, when used in combination, can achieve a
diagnostic specificity and sensitivity greater than
single markers [92]. We will increasingly rely on
bioinformatics tools that allow for the diagnosis,
prognosis and monitoring of cancer using clusters of
cancer associated biomarkers with well-defined spe-
cificities [198] (author�s response). A line of thought is
that elevated SAA levels are cancer epiphenomena,
unlikely to be of clinical use for more effective
diagnoses and monitoring of cancer [74, 198, 199].
Elevated serum SAA might be a primary product of
tumour lesions, but could, additionally or alternative-
ly, be the product of hepatocytes. The aim of this
review reaches beyond the purpose of promoting
SAA as a surrogate biomarker for cancer, and it does
not promote a certain analytical technique as a
suitable diagnostic and discovery tool for its analysis
[74]. However, the elevation of SAA during cancer
relapse is so high that its role in disease monitoring in
cancer patients is not only warranted but also critical,
especially when monitoring disease outcome and
survival prediction. A number of studies has under-
scored that SAA is involved in tumourigenesis,
apparently due to its capacity to interact with the
ECM. Alternatively, a potential role of SAA is its
protection from infection [200] and its capacity to bind
to a surprisingly large number of Gram-negative
bacteria [201]. Although a number of key molecular
players linking cancer to inflammation have been
identified and chronic inflammation is a common and
important factor in the pathogenesis of neoplasia [1,
2], the whole story between inflammation and cancer
is still far from being completely understood. For
instance, the question regarding the intriguing feed-
back loop between cytokines and NF-kB is, which
activation is the initial event [3]? Future studies may
reveal the underlying mechanisms for how SAA may
promote tumour development and accelerate tumour
progression and metastasis [3]. Animal models for
inflammation-derived cancers in combination with
molecular approaches, such as specific saa-/- animals or
mice overexpressing SAA [202] even in specific
tissues, will be helpful. Clinical studies and basic
research may further help to clarify whether SAA may
act as an individual biomarker for the detection, the
monitoring of disease activity, and the staging of
specific types of cancer.
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