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Serum amyloid P-component (SAP) contributes to host defense and prevents fibrosis. Macrophages are the most abundant
inflammatory cell type in atherosclerotic plaques. In the present study, using 3H-cholesterol-labeled counting radioactivity assay,
we demonstrated that the apoAI-mediated cholesterol efflux in RAW264.7 macrophages was increased by SAP treatment in a
time- and dose-dependent manner. We analyzed global gene expression changes upon SAP treatment using RNA sequencing.
As a result, a total of 175 differentially expressed genes were identified, of which 134 genes were downregulated and 41 genes
were upregulated in SAP treated cells compared to control cells. Quantitative RT-PCR analysis confirmed decreased expression
of 5 genes and an increase in expression of 1 gene upon SAP treatment. Gene ontology analysis showed that genes involved in
response to stimulus were significantly enriched in differentially expressed genes. Beyond protein-coding genes, we also identified
8 differentially expressed long noncoding RNAs. Our study may provide new insights into mechanisms underlying the functional
role of SAP in macrophages.

1. Introduction

Serum amyloid P-component (SAP) is a member of the
pentraxin protein family which was first isolated and iden-
tified in “amyloid” pathological deposits. Under normal
conditions, SAP is thought to be synthesized and secreted
only in hepatocytes. In some diseases, SAP can also be
generated by macrophages and smooth muscle cells such
as in the atherosclerotic aortic intima [1]. In humans, SAP
is constitutively expressed and contributes to host defense
through the classical pathway. Studies indicate that SAP
does not exist in normal aortic intima but deposits in
human atherosclerotic aortic intima and that plasma SAP
levels are positively associated with cardiovascular disease
[2]. Additionally, SAP binds to amyloid-like structures in
oxidized low density lipoprotein (ox-LDL) and prevents lipid
uptake bymacrophages, suggesting an important role for SAP
in atherosclerosis [3]. It will be necessary to further explore
the roles of SAP in lipid metabolism and atherosclerosis.

Atherosclerosis has been known as an inflammatory dis-
ease formany years.Macrophages are an essential component

of the innate immunity and mediate inflammatory responses
by recognizing pathogens and producing proinflammatory
mediators. Macrophages are the most abundant inflam-
matory cell type in atherosclerotic plaques. Macrophages
are transformed into foam cells upon modified low den-
sity lipoprotein uptake and their subsequent death within
lesions fuels the formation of the highly proinflammatory
and thrombogenic lipid-rich necrotic core [4, 5]. A study
revealed that SAP may participate in cholesterol removal
from macrophages through its role in promoting cholesterol
efflux [6]. The murine macrophage cell line RAW264.7 is
easy to propagate and possesses high efficiency for DNA
transfection and sensitivity to RNA interference.This cell line
is often used in vitro to evaluate the effects of inflammation
process [7] in progress of atherosclerosis [8] and especially
in cholesterol efflux research [9]. It is a suitable cell line
for experiments and our research group has done many
experiments using this cell line [10, 11].

By decreasing the numbers of fibrocytes and profibrotic
macrophages [12], exogenous administration of SAP has
been shown to reduce fibrosis in animal models [13, 14].
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Recently, it has also been demonstrated that a type of
recombinant human SAP (PRM-151) is able to reduce fibro-
cytes in pulmonary fibrosis patients [15]. The decreased
accumulation of fibrocytes by SAP might be due to reduced
leukocyte recruitment via lowering the levels of inflammatory
cytokines [16]. Our research group has found that SAP levels
significantly increased in acute coronary syndrome (ACS)
patients compared with controls [17]. Furthermore, we also
revealed that HDL subfractions from ACS patients possess
significantly elevated SAP levels, suggesting that SAP may
have vital effects on HDL subfraction functions [17]. In the
present study, we investigated the effect of SAP on cholesterol
efflux in macrophages, and we also attempted to analyze
global gene changes associated with RAW264.7 macrophage
cells after SAP treatment using RNA sequencing. Our data
afforded the opportunity to test the hypothesis that SAP
exerts global transcriptional effects on macrophages.

2. Materials and Methods

2.1. Cell Culture and Treatment. Murine RAW264.7
macrophage cell line was purchased from China Center
for Type Culture Collection (CCTCC, Wuhan, China).
The RAW264.7 macrophages were seeded in six-well flat
bottom culture at 1.0 × 106 cells per well in DMEM (Gibco,
Life Technologies, China) containing 10% fetal bovine
serum (Gibco, Life Technologies, EU Approved Origin,
South America) and maintained at 37∘C in a humidified
atmosphere of 5%CO

2
. Human serum amyloid P-component

(SAP) was purchased from Calbiochem (Calbiochem, EMD
Chemicals, MA, USA). SAP was frozen in PBS without the
sodium azide preservative. Before experiment, cells were
synchronized by changing DMEM supplemented with 2%
bovine serum albumin (BSA, Amresco, USA) for 24 h. Then,
cells were cultured in primary six-well plates and treated
with different concentrations of SAP. BSA served as control.

2.2. Assay of apoAI-Mediated Cholesterol Efflux. Murine
RAW264.7 macrophage cells were incubated in culture
medium containing 30 𝜇g/mL ox-LDL (Yiyuan Biotech-
nologies, Guangzhou, China) and 1 𝜇Ci/mL [1𝛼,2𝛼-3H]-
cholesterol (Amersham Life Science, USA) for 24 h. After
being washed with serum-free medium, the cells were
incubated in DMEM with 0.2% BSA containing various
concentrations of SAP (0∼10 𝜇M, 1 𝜇M SAP = 127mg/mL
of SAP pentamers) for another 6 h, 24 h, 48 h, respectively.
Cells were subsequently incubated in serum-free medium
(without BSA)with orwithout 10 𝜇g/mL apoAI (Calbiochem,
Germany) for 6 h. Then the incubation medium was col-
lected while the cells were washed with PBS and lysed with
0.1M NaOH. Lastly, the radioactivity of medium and cell
lysates wasmeasured by liquid scintillation spectrometry.The
cholesterol efflux rate was presented as the 3H-cholesterol
radioactivity of medium normalized to total 3H-cholesterol
radioactivity [18].

2.3. RNA Sequencing. Before RNA isolation, cells were
washed by PBS for three times. Total RNA was isolated

using TRIzol reagent (Invitrogen, USA). Samples were sent
to Beijing Genomics Institute (BGI) for further bioinformatic
analysis. BGI is a genome sequencing center headquartered
in Shenzhen, Guangdong Province, China. RNA purity was
assessed using the ND-1000 NanoDrop. The A260/A280
ratio for each RNA sample was greater than 1.8 and the
A260/A230 ratio was greater than 2.0. RNA integrity was
evaluated using the Agilent 2100 TapeStation. Only RNA
samples with a RINe value above 7.0 were retained. Oligo(dT)
magnetic beads were used to isolate poly(A) + mRNAs.
The mRNAs were fragmented to approximately 200 bp in
fragmentation buffer. Subsequently, these fragments were
used as templates for first-strand and second-strand cDNA
synthesis. The double-stranded cDNA fragments were puri-
fied, end-repaired, and then ligated to sequencing adapters.
After purification, suitable fragments were enriched by PCR
amplification according to instructions of TruSeq� RNA
LT/HT Sample Prep Kit (Illumina). Finally, PCR products
were purified and quantified for high-throughput sequencing
using the Illumina HiSeq� 2500.

2.4. Bioinformatic Analysis of RNA Sequencing Data. A com-
putational pipeline was employed to process the raw data
from RNA sequencing. Sequence data in fastq format were
filtered to remove reads with unknown nucleotides. Clean
reads were mapped to mouse reference genome mm9 by
using Tophat v1.4.0 [19]. No more than two mismatches were
allowed. The mapped reads were assembled into genes and
transcripts by Cufflinks v1.3.0 [20]. Gene models were down-
loaded from the UCSC RefSeq annotation. Gene expression
levels were calculated using fragments per kilobase of tran-
script per million mapped fragments (FPKM) in Cufflinks.
Differentially expressed genes were chosen according to the
criteria of fold change > 2 and FDR < 0.05. GO enrichment
analysis was performed by using BiNGO 2.3 with the GOslim
dataset [21]. To test for enrichment, a hypergeometric test
was conducted followed byBenjamini andHochbergmultiple
test correction. The adjusted 𝑝 value < 0.05 was used as
the significance threshold to identify enriched categories.
The STRING database v10.0 (http://string-db.org/) was used
to create gene network. Connectivity for each gene was
analyzed by in-house MATLAB scripts. The connectivity
threshold value for hub geneswas themean plus two standard
deviations.

2.5. Validation by Quantitative RT-PCR. The total RNA was
extracted with RNAiso Plus (TaKaRa Biotechnology, Dalian,
China). Reverse transcription was performed at 37∘C for
15min followed by 98∘C for 5min using ReverTra Ace
qPCR RT Kit (Toyobo, Osaka, Japan). Quantitative PCR
was performed using THUNDERBIRD SYBR qPCR Mix
(Toyobo, Osaka, Japan) on the Applied Biosystems 7500 (Life
Technologies). The program was as follows: 95∘C for 60 sec,
followed by 40 cycles of 95∘C for 15 sec and 60∘C for 45 sec.
All reactions were run in triplicate. The GAPDH gene was
amplified as a reference gene for normalization. Data were
analyzed using 2−ΔΔCt method. Primers used in this study
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Figure 1: Systematic identification of genes that are altered in SAP treated cells compared to control cells. (a) SAP enhanced apoA1-mediated
cholesterol efflux in a time-dependent manner in macrophages. (b) SAP enhanced apoA1-mediated cholesterol efflux in a dose-dependent
manner in macrophages for 24 h. (c) Scatter plot depicting the expression profiles of all genes. Log

2
transformed FPKM values from RNA

sequencing were used in the scatter plot. We added 1 to FPKM value before log
2
transformation to facilitate calculation. Nonchanged genes

were shown in blue color while differently expressed genes (fold change > 2 and FDR < 0.05) were denoted in red or green. (d) Distribution of
fold change of genes significantly different in SAP treated cells compared to control cells. (e)Validation of RNA sequencing data by quantitative
RT-PCR.The GAPDH gene was used as the reference gene for normalization.The statistical significance was tested using unpaired 2-sample
t-test. Values were plotted as means ± standard error of the mean (SEM) of triplicate measurements. 𝑛 = 3. ∗𝑝 < 0.05.

were listed in Supplementary Table 1, available online at
http://dx.doi.org/10.1155/2016/9380290.

3. Results

3.1. ApoAI-Mediated Cholesterol Efflux and Global Analysis
of Gene Changes. SAP enhanced apoA1-mediated choles-
terol efflux in a time- and dose-dependent manner in
macrophages. After 10 𝜇M SAP treatment for 6 h, the choles-
terol efflux rate began to rise.The cholesterol efflux rate signif-
icantly increased after 24 h compared with 48 h (Figure 1(a)).
Compared with control, after SAP treatment for 24 h, 5
and 10 𝜇M SAP significantly increased the cholesterol efflux
rate, but there was no significant difference with 1 𝜇M SAP
treatment (Figure 1(b)). In order to investigate the molecular

mechanism underlying SAP-mediated cholesterol efflux rate
increase, transcriptome analysis was performed. For simplic-
ity, cells were treated with 5 𝜇M for 24 h and then subjected
to RNA sequencing analysis. We obtained 12,050,636 reads
from SAP treated cells and 11,651,186 reads from control cells,
respectively. Among all reads obtained in this study, a total
of 20,242,256 (85.4%) reads were mappable to the mouse
reference genome, of which 79.3% were mapped uniquely
to only one location. Absolute gene expression levels were
calculated in FPKM (fragments per kilobase of transcript per
million mapped fragments) based on RefSeq gene models.
We then compared the relative gene abundance in SAP
treated cells and control cells. Differentially expressed genes
were identified according to their fold changes (>2) and false
discovery rate (FDR) adjusted p values (<0.05) (Figure 1(c)).
Compared to control, 134 genes were downregulated and 41
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genes were upregulated after SAP treatment (Supplementary
Table 2).The range of fold changes was 41.01∼2.00 and 54.14∼
2.01 for downregulated and upregulated genes, respectively
(Figure 1(d)). In order to validate RNA-seq data, we randomly
picked up 6 genes for qRT-PCR analysis.The expression trend
of these genes measured by qRT-PCR was consistent with
RNA sequencing data (Figure 1(e)), suggesting that our RNA-
seq data are of high quality.

3.2. Gene Ontology (GO) Analysis. All differentially expres-
sed genes (134 downregulated and 41 upregulated) were
functionally categorized based on gene ontology (GO) anno-
tation terms using BiNGO software. Enrichment analysis
revealed that a total of 9 GO terms exhibited significance
as overrepresented terms (𝑝 < 0.05). In the biological
process category, 5 GO terms, namely, biosynthetic process,
macromolecule metabolic process, nucleic acid metabolic
process, response to stimulus, and cell death, were found to be
significantly enriched. GO terms related to cell chromosome
and nucleus were significantly enriched under the cellular
component category. Enriched GO terms in the molecular
function category were binding and nucleic acid binding.
The hierarchical organization of these GO terms is shown
in Figure 2(a), together with the significance of enrichment
indicated by different colors. Strikingly, a total of 24 differ-
entially expressed genes fell into the response to stimulus
category. Included were 17 downregulated genes (Atr, Fancm,
Tnfsf15, Thbd, Tlr13, F3, Acot11, Tlr3, Ahrr, Mt1, Edn1, Rif1,
Mt2, Rrm2b, Lig4, Mlh3, and Kin) and 7 upregulated genes
(Tnfsf10, H2-Ab1, Bc1, Ltb, Hspa1a, Gadd45g, and Hspa1b)
(Figure 2(b)).

3.3. NetworkAnalysis of SAP-RegulatedGenes. Network anal-
ysis can help understand the molecular and cellular interac-
tions. It can be visualized to represent genes (nodes) and their
relationships (edges). In the present study, we investigated
functional interaction among SAP-regulated genes using
the web-based network tool STRING (http://string-db.org/).
The results from STRING were shown as Figure 3(a). The
highly connected nodes, also known as hub genes, represent
functionally important genes in the network. Connectivity
analysis showed that Atr, Hspa1a, Hspa1b, Mblac2, and Vrk1
were hubs of the network (Figure 3(b)). Additionally, 4 genes
(Tnfsf15, Tlr3, Nlrp3, and Lepr), which have known roles
in cholesterol efflux and atherosclerosis, were present in the
network.

3.4. Altered Expression of Noncoding RNA Genes. Although
the purpose of the present study was to measure polyadeny-
lated mRNAs, it was possible that additional polyadenylated
noncoding RNA genes might be present in our dataset. We
examined all the 175 differentially expressed genes and dis-
covered 19 noncoding RNA genes, including 11 long noncod-
ing RNAs, 4 pseudogenes, 3 snRNAprecursor/hosting RNAs,
and 1 miRNA precursor/hosting RNA (Figure 4(a)). Among
them, we validated the expression levels of 8 noncoding genes
(Figure 4(b)). The expression trend of these genes measured
by qRT-PCR was consistent with RNA sequencing data

(Figure 4(c)). Strikingly, the miRNA hosting gene Mir17hg
is significantly downregulated which is resided on the plus
strand of chromosome 14 (Figure 4(d)).

4. Discussion

Serum concentration of SAP in normal humans is about
30∼40 𝜇g/mL. In healthy mice, normal SAP levels may be
as low as 10 𝜇g/mL in the C57BL strain and as high as
100 𝜇g/mL (approximately 1 𝜇M) in the DBA/2 strain [22].
In the present study, RAW264.7 mouse macrophages were
used. Therefore, we chose 1 𝜇M to represent a physiological
situation. Higher concentrations up to 10𝜇M were used
to mimic the acute phase reaction. We showed that SAP
treatment induced macrophage cholesterol efflux with a
time- and dose-dependent manner. The transcriptomic dif-
ferences upon SAP treatment were determined by using RNA
sequencing (RNA-seq). RNA-seq is an unbiased method
which is not limited to detecting predesigned sequences [23].
In contrast to microarray, RNA-seq does not suffer from
cross-hybridization [24]. Additionally, RNA-seq does not
have any upper limit for quantification, making it a highly
accurate tool for quantifying gene expression levels.

Through RNA sequencing, we identified a total of 175
differentially expressed genes, of which 134 genes were down-
regulated and 41 genes were upregulated after SAP treatment.
Among these genes, 14 genes (6 protein-coding genes and
8 noncoding genes) were selected and validated by using
qRT-PCR. In general, the expression trend of these genes
measured by qRT-PCRwas consistent with RNA sequencing,
suggesting that our data were of high quality. Based on
gene ontology analysis, a total of 9 GO terms exhibited
significance as overrepresented terms: biosynthetic process,
macromolecule metabolic process, nucleic acid metabolic
process, response to stimulus, and cell death in the biological
process category; cell chromosome and nucleus under the
cellular component category; and binding and nucleic acid
binding in the molecular function category. These results
suggest that SAP treatment may have a wide effect on
macrophages.

In our present study, we found that TNFSF15, TLR3, and
NLRP3 were downregulated upon SAP treatment. Tumor
necrosis factor superfamily member 15 (TNFSF15), also
known as vascular endothelial growth inhibitor (VEGI) or
TNF ligand related molecule 1A (TL1A), is a unique cytokine
that functions as a modulator of vascular homeostasis and
inflammation [25, 26]. TNFSF15 is involved in numerous
cellular processes including the suppression of neovascular-
ization which is essential for tumor progression and spread
[26, 27]. TNFSF15 inhibits cholesterol efflux and suppresses
the expression of three proteins, apoE, ABCA1, and ABCG1,
both in vitro and in vivo [28, 29]. Toll-like receptors (TLRs)
are the most characterized innate immune receptors as well
as pattern-recognition receptors (PRRs) [30, 31]. Scavenger
receptors induced by TLR3 could regulate increased lipid
uptake and activated TLR3 also increases TG accumulation
in RAW cells [32, 33]. Indeed, stimulation of TLR3 or
TLR4 by pathogen-derived ligands inhibits expression of
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Figure 2: Functional clustering analysis of differentially expressed genes. (a) Differentially expressed genes were analyzed using BiNGO
software. Significantly enriched GOslim categories were highlighted with different colors representing different levels of significance.The size
of each circle is correlated to the number of genes. (b) Heat map of the 24 differentially expressed genes that fall into the response to stimulus
category. In the heat map, the first and second columns correspond to the absolute gene expression levels (FPKM values) of SAP and control
group, respectively. Values are color-coded, with yellow representing low levels and orange representing high levels. The third column of the
heat map reports the relative expression levels. The values are the log

2
ratio of SAP versus control. Red indicates increase and green indicates

decrease.
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Figure 3: Network analysis of SAP-regulated genes. (a) The gene network generated by STRING. (b) Bar plot showing connection degrees
for all genes.

LXR-dependent gene targets and macrophage cholesterol
efflux via a MyD88-independent mechanism and involves
IRF3 [34, 35]. The nucleotide-binding domain, leucine-
rich-containing family, pyrin domain-containing-3 (NLRP3)
inflammasome has emerged as an important regulator of
inflammation in metabolic disorders and atherosclerosis [36,
37]. Recent study also showed abnormal lipid deposition
and lysosomal cholesterol accumulation are due to impaired
intracellular lipid trafficking in macrophages upon Nlrp3
inflammasome activation by nonatherogenic stimulus ATP
[38]. Moreover, mRNA levels of ABCA1 and ABCG1 were
increased after the treatment of NLRP3i, suggesting that
NLRP3 gene silencing could be a potentially therapeutic

mean to increase macrophage cholesterol efflux for the
prevention of atherosclerosis [39].Therefore, elevated choles-
terol efflux in macrophages by SAP may be mediated by the
repression of TNFSF15, TLR3, and NLRP3.

Lepr, the leptin receptor, is expressed in many tissues
including the cardiovascular system [40]. HDL-mediated
cholesterol efflux was suppressed by leptin and expression
of long form of Lepr was upregulated during monocytic
differentiation into macrophages and sustained after dif-
ferentiation [41]. In this study, we found that Lepr was
upregulated upon SAP treatment, suggesting that SAP
may also elevate cholesterol efflux via the upregulation of
Lepr.
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Figure 4: Changed expression of noncoding RNA genes. (a) Classification of noncoding RNA genes. Pie chart is displayed on the differently
expressed 19 noncoding RNA genes. (b) Heat map of the 8 selected long noncoding RNA genes. The first and second columns correspond to
the absolute gene expression levels (FPKM values) in SAP group and control group, respectively. The third column of the heat map reports
the relative expression levels. Values are color-coded as indicated by the color bars. (c) Quantitative RT-PCR analysis of 8 selected lncRNAs.
The GAPDH gene was used as the reference gene for normalization. Statistical significance was tested using unpaired 2-sample t-test. Values
were plotted as means ± standard error of the mean (SEM) of triplicate measurements. 𝑛 = 3. ∗𝑝 < 0.05. (d) RNA sequencing coverage plot
of Mir17hg lncRNA. Coverage plot is displayed on the reference genome (UCSCmm9). The upper panel represents expression in SAP group
and the lower panel represents expression in control group. For both panels, numbers on 𝑦-axis refer to RNA sequencing read-depth at a
given nucleotide position.

Although emerging evidence indicates long noncod-
ing RNAs (lncRNAs) may have functional significance in
development, physiology, and diseases [42], they remain
unexplored on macrophage research. In this study, we iden-
tified 19 differentially expressed lncRNAs. Previously, the
microRNA 17-92 cluster host gene (MIR17HG) has been
shown to regulate expression of genes involved in breast can-
cer development and progression [43]. The functions of the
other lncRNAs, including 6330549D23Rik, 4930528A17Rik,
BC051226, AA465934, 4921508A21Rik, and Gm11974, have

not been determined yet. Notably, SAP-induced genes such as
Gadd45g are associated with cancer [44]. The idea that long-
term use of SAP in patients might promote tumorigenesis
deserves further investigation.

In conclusion, in the present study we found that SAP
treatment increased cholesterol efflux rate. We analyzed
global gene changes upon SAP treatment in RAW264.7
macrophages using RNA-seq. Our study may provide new
insights into the molecular mechanisms underlying the
functional role of SAP in macrophages.
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