
Integrated genomics for pinpointing survival loci within arm-
level somatic copy number alterations

David M. Roy1,2,8, Logan A. Walsh1,8, Alexis Desrichard1, Jason T. Huse1,3,4, Wei Wu1, 
JianJiong Gao5, Promita Bose1, William Lee5,6, and Timothy A. Chan1,3,6,7,*

1Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New 
York, NY

2Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY

3Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY

4Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY

5Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY

6Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY

7Cellular and Developmental Biology, Weill Cornell Medical College, New York, NY

SUMMARY

The identification of driver loci underlying arm-level somatic copy number alterations (SCNAs) in 

cancer has remained challenging and incomplete. Here we assess the relative impact and present a 

detailed landscape of arm-level SCNAs in 10985 patient samples across 33 cancer types from The 

Cancer Genome Atlas (TCGA). Further, using chromosome 9p loss in lower grade glioma (LGG) 

as a model, we employ a unique multi-tiered genomic dissection strategy using 540 patients from 

3 independent LGG datasets to identify genetic loci that govern tumor aggressiveness and poor 

survival. This comprehensive approach uncovered several 9p loss-specific prognostic markers, 

validated existing ones, and re-defined the impact of CDKN2A loss in LGG.

INTRODUCTION

Cancer initiation and progression is a step-wise process that is characterized by the gradual 

accumulation of molecular events. Of these, somatic copy number alterations (SCNAs) are 

now well documented throughout human cancer. SCNAs comprise genetic losses or gains of 
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varying size, ranging from only 1 kilobase (kb) to entire chromosome arms (Feuk et al., 

2006). Importantly, focal SCNAs have yielded some of the earliest insight into mechanisms 

underlying malignant transformation, helping to identify loci that function as tumor 

suppressor genes (TSGs) or oncogenes (Zack et al., 2013). In contrast, less is known about 

the larger arm-level SCNAs despite occurring 30 times more frequently than focal SCNAs 

when adjusted for size (Beroukhim et al., 2010). These broad regions of gain or loss can 

include hundreds of genes, several of which are likely bona fide cancer genes (Weir et al., 

2007). As a result, narrowing the list of potential “drivers” in large SCNAs has proven 

difficult, mainly due to limitations of traditional laboratory methods and conventional 

technologies (Beroukhim et al., 2010).

Recent advances in the field of genomics have helped shed light on some of cancer biology’s 

most difficult dilemmas (Green et al., 2011; Hoadley et al., 2014; Leiserson et al., 2014). 

Aided by multiple tiers of next-generation data and large patient cohorts, contemporary 

exploration of the genome via computational approaches allows an efficient means by which 

to reveal new aspects of tumor biology. Recent innovation in the field of genomics may 

allow a more thorough characterization of arm-level SCNAs, an incredibly common yet 

poorly understood aspect of cancer biology.

Large alterations have long been associated with poor outcomes, though underlying 

mechanisms and gene-specific biomarkers remain elusive (Baudis, 2007; Bown et al., 1999; 

Gross et al., 2014; Jen et al., 1994). For example, one of the most frequent arm-level SCNAs 

is chromosome 9p loss, which is linked to disease progression and worse survival in many 

types of cancer, including lower grade glioma (LGG; WHO grade II and III) (Idbaih et al., 

2008; James et al., 1991; Wiltshire et al., 2004). Although known TSG CDKN2A is located 

on 9p, it is believed that other cancer genes exist that may be the target of the broad 9p 

deletion (Beatty et al., 1999; Bredel et al., 2005; Olopade et al., 1992; Pollock et al., 2001; 

Schmid et al., 2000; Ueki et al., 1994). The identity of these driver genes remains unknown, 

however. Additionally, we still lack a global portrait of arm-level SCNAs in cancer. 

Understanding the relative impact of these SCNAs across cancer and identifying underlying 

target genes is of vital importance to help uncover prognostic markers and potential 

therapeutic targets. We therefore set out to employ a multi-faceted genomic strategy to rank 

prognostic SCNAs in cancer as well as underlying driver loci.

RESULTS

Prognostic impact of arm-level SCNAs across cancer types

Here, we report a two-fold genomics approach to aid in clarifying the role of arm-level 

SCNAs in cancer (Figure 1A). First, using copy number and clinical data from 10,985 

patient samples in 33 TCGA tumor datasets, we employed three statistical indices to 

determine the relative prognostic impact of all 82 arm-level SCNAs in cancer. Second, we 

implemented a multifaceted genomic analysis of the 9p loss event in LGG to identify 

specific genes involved in progression and overall survival (OS). We obtained all available 

clinical and molecular data from the TCGA (Cancer Genome Atlas Research et al., 2015) as 

of the Broad Firehose run on 21 August 2015. Six tiers of data – clinical variables, copy 

number, mRNA expression, miRNA expression, DNA methylation and somatic mutation – 
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were analyzed for a total of 379 LGG cases. In addition, two independent datasets were used 

for validation, including the Repository for Molecular Brain Neoplasia Data 

(REMBRANDT) (Madhavan et al., 2009) and the MSKCC LGG dataset (Turcan et al., 

2012), representing an additional 109 and 52 LGG cases, respectively.

In order to establish the prognostic associations of arm-level SCNA in cancer, arm-level 

copy number calls from GISTIC2.0 and corresponding survival data were obtained and 

analyzed. Specifically, the following three parameters were utilized in concert to determine 

overall prognostic impact of each arm-level SCNA in cancer: event frequency, GISTIC2.0 

significance (q value), log-rank survival significance (p value) (Figure S1A).

Following a composite analysis of all three parameters, we characterized the relative 

prognostic impact of all arm-level SCNAs in cancer (Figures 1B, S1B and Table S1). 

Interestingly, chromosome 9p loss was ranked nearly highest in all three categories. In fact, 

across all types of cancer, 9p loss was the third most frequent arm-level deletion and eighth 

most frequent arm-level SCNA overall.

We further focused on the 9p loss event alone across 33 cancer types using a event-specific 

analysis of SCNA prognostic impact (Figure 1C). In fact, LGG had a high frequency of 9p 

loss (24%), highest event significance for 9p loss, and the third most significant 9p survival 

association. Additionally, the 9p loss event was among the top arm-level events within LGG 

when evaluated by cancer-specific analysis of prognostic impact (Figure S1C). These data 

suggest that 9p loss is one of the most substantial arm-level events in LGG, as well as across 

cancer. Therefore, 9p loss in LGG provided an ideal model to explore genomic approaches 

for identifying genetic loci responsible for arm-level SCNA-associated phenotypes in cancer.

Characterization of LGG test cohorts

The nature of genetic alterations on 9p and which underlying loci affect survival is an 

important question in cancer biology that remains controversial. To address this, we 

assembled data from the TCGA to form a 379 patient cohort that was complete for both 

clinical and molecular tiers of data (Figure S2A). GISTIC2.0 was used to determine focal 

and arm-level SCNA events – including 9p loss – across all patients in this cohort, and we 

found these data to be consistent with other published SCNAs in glioma (Figure S2B) 

(Beroukhim et al., 2007). For validation purposes, the REMBRANDT glioma database 

(n=109) and the MSKCC LGG dataset (n=52) were utilized (Table 1). In order to perform a 

genomic dissection of chromosome 9p in all three LGG cohorts, we first sought to validate 

the 9p survival phenotype, characterize tumor subtypes, identify any potential confounding 

variables, and confirm independent prognostic status for the 9p loss event.

The frequency of 9p loss in TCGA, REMBRANDT, and MSKCC cohorts was 22.4%, 

26.6%, and 15.4%, respectively, which is consistent with previous findings (Bello et al., 

1994; James et al., 1991). The lower frequency of 9p loss in the MSKCC cohort may be due 

to smaller sample size and/or differences in cohort heterogeneity. Using a Kaplan-Meier log-

rank test based on 9p status, we showed that 9p loss is significantly associated with worse 

OS in the TCGA, REMBRANDT, and MSKCC cohorts (Figures 2A and S2C).
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In order to address the genetic diversity that characterizes LGG, we stratified patients into 

recently identified molecular subtypes that could potentially confound any subsequent 

analysis of survival outcomes. Using IDH mutation status and the presence of 1p/19q 

codeletion as proposed by Jiao and colleagues (Jiao et al., 2012), we separated the TCGA 

cohort into 3 molecular subtypes with distinct patterns of SCNAs (Figure S2D–S2G). All 

three subtypes showed marked differences in OS, with IDH wild-type (IDHWT) patients 

having survival outcomes similar to that of glioblastoma (GBM; Figure 2B). To uncover 

additional confounders underlying any subtype-specific analysis, we performed a large-scale 

associations test for LGG-specific clinical and molecular variables by subtype (Figure S2H). 

We confirmed the presence of several subtype-defining molecular characteristics – CIC and 

FUBP1 mutation in IDHmut-codel, ATRX and TP53 mutation in IDHmut-non-codel, 7p 

gain and 10p loss in IDHWT – as well as several unpublished associations of these 3 LGG 

subtypes (Figure 2C and Table S2) (Appin and Brat, 2014; Cancer Genome Atlas Research 

et al., 2015; Eckel-Passow et al., 2015). Importantly, these SCNA subtype associations 

allowed us to stratify subtypes in the REMBRANDT cohort, for which IDH mutation status 

is unavailable (Figure S2I and S2J). Similar to the TCGA cohort, LGG subtypes in both 

validation cohorts also corresponded to significant differences in OS (Figure S2K). This 

confirmed that any analysis of driver genes in LGG must consider the marked differences in 

OS and molecular signature between subtypes.

Notably, we observed differences in frequency of 9p loss in the TCGA cohort by subtype, 

occurring in 12.4%, 39.0%, and 28.6% of cases in IDHmut-codel, IDHmut-non-codel, and 

IDHWT, respectively, though no significant co-association with subtype was found via 

Fisher’s exact test. Further, in the TCGA cohort, 9p loss predicted significantly worse OS in 

IDHmut-non-codel gliomas, though its association with OS in IDHmut-codel tumors is less 

clear (Figure 2D). Within each LGG subtype, very few molecular alterations were found to 

significantly co-occur with 9p loss (Figure 2E and Table S3). Additionally, 9p loss alone, 

even in the absence of each co-occurring alteration, was sufficient to predict poor survival 

via log-rank test (Figure S2L and data not shown). All together, these results suggest that 9p 

loss may independently predict progression of LGG in IDH mutant tumors, at least when 

tested against 379 possible confounding variables.

Anatomy of the 9p commonly deleted region and gene-specific survival analysis

We defined a region on chromosome 9p that is lost in more than 90% of LGG patients with 

broad deletions on this arm (Figure S3A). The 9p commonly deleted region is characterized 

mostly by heterozygous loss, though one major focal homozygous deletion is observed at 

9p21.3, which contains known TSGs CDKN2A and MTAP (Figures 3A and S2B). A total of 

87 genetic loci are contained within the 9p commonly deleted region, including several 

which have been implicated in cancer through clinical and/or functional methods (Figure 3B 

and Table S4) (Kent et al., 2002).

To further dissect genetic alterations at 9p deleted loci, we extracted copy number status and 

sequencing mutation calls to identify additional genetic inactivation or second “hits” in the 

TCGA LGG cohort. Interestingly, very few genes were subject to homozygous deletion 

except for those within the focal peak at 9p21.3 (Figures 3C and S3B). Additionally, 
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amplifications and nonsynonymous mutations were exceptionally rare. As such, it seemed 

unlikely that analysis of genetic alterations alone would allow us to pinpoint genetic loci 

involved in LGG progression on 9p.

Copy number and gene expression associations on 9p in LGG

Using RNAseqV2 data from the TCGA, we showed widespread discrepancy between copy 

number status and gene expression at many loci within the 9p commonly deleted region 

(Figure 4A). Upon analysis of gene expression by zygosity, we found that copy number 

status did not uniformly predict gene expression levels. Specifically, several loci exhibited 

no change in expression following heterozygous deletion alone, while others such as 

CDKN2A even had elevated expression in this context (Figure S4A). Further, mRNA 

expression by genetic locus varied considerably across LGG subtypes (Figure S4B). In fact, 

when we examined copy number status of each gene in regard to distance from CDKN2A 
where homozygous deletions were most prominent, a strong correlation was observed in the 

entire LGG cohort and in most subtypes (Figures 4B and S4C). In contrast, mRNA/miRNA 

expression at each locus was poorly correlated to distance from CDKN2A (Figures 4C and 

S4C) as well as copy number status at each respective locus (Figure S4D). These findings 

are consistent with published data showing large SCNAs have variable effects on gene 

expression, which depends heavily on genomic location and genetic context (Henrichsen et 

al., 2009).

Historically, efforts to identify driver genes utilized copy number status, either via southern 

blotting or targeted semi-quantitative PCR, have resulted in a plethora of proposed 

prognostic loci along 9p (Caldas et al., 1994; Cheng et al., 1994; Stadler and Olopade, 

1996). Furthermore, these studies were neither exhaustive nor complete for all gene loci 

within the 9p deleted region. In order to determine specific genetic loci driving poor survival 

in the 379 patient TCGA LGG cohort, we selected 44 of 87 loci that had measurable mRNA/

miRNA expression, independent of 9p loss status, and performed a univariate Cox 

proportional hazards regression for each (Figure S4A and Table 2). Not surprisingly, copy 

number status was significantly correlated with worse OS at every locus whereas expression 

was much more variable across all LGG subtypes (Figures 4D and S4E). To better 

understand this phenomenon, we calculated odds ratios to test associations between all loci 

for both copy number and gene expression. Copy number status between every locus was 

found to significantly co-occur due to the overriding 9p loss event in absence of additional 

focal deletions (Figure 4E). Importantly, this trend toward co-occurrence was not observed 

with gene expression. These results suggest that any dissection of arm-level events must 

examine gene expression at least in addition to gene-specific copy number status, as the 

latter does not provide adequate resolution in the absence of additional genetic “hits.”

Genes underlying 9p loss-dependent tumor aggressiveness in LGG

We next sought to determine which genes could predict worse OS in the context of 9p loss in 

our TCGA LGG cohort, as these would represent the most promising candidates responsible 

for the 9p survival phenotype in LGG (Figure S5). Student’s t-tests were performed for all 

44 loci and average mRNA/miRNA fold change between 9p loss (9p+/−) and 9p diploid 

(9p+/+) was compared (Table S5). These significance values (−log10p) for 9p loss-driven 
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expression changes were plotted against Cox survival significance values (−log10p) for each 

gene to reveal candidate 9p loss-targeted loci that drive progression in LGG (Figure 5A).

In total, we identified 5 genes on 9p that likely contribute to tumor aggressiveness within 

LGG IDHmut-non-codel and IDHWT patients, along with 4 genes in IDHmut-codel patients 

(Figure 5B). Perhaps most striking was that only two candidates were identified as 9p loss-

specific target genes in multiple LGG subtypes – PTPRD and PLAA. Still, several intriguing 

candidates emerged, including MTAP and the recently identified GBM TSG, KLHL9 (Chen 

et al., 2014; Schmid et al., 2000). Notably, no single candidate emerged in any of the LGG 

subtypes. This may be due to inactivation of several genes, likely by some combination of 

cumulative haploinsuffiency and additional epigenetic downregulation that provides the 

necessary second “hit(s)” (Figure 5C) (Davoli et al., 2013; McCarthy, 2012). These results 

suggest that a small number of specific genes on 9p are actually responsible for tumor 

aggressiveness of LGG and that the loci involved may be both cooperative and context 

dependent.

Characterization of CDKN2A as a prognostic marker in LGG

For many years, CDKN2A deletion has been associated with poor survival in LGG, leading 

to speculation that it is important for both initiation of high grade disease as well as tumor 

aggressiveness (Idbaih et al., 2008; Zhai and Yuan, 1998). In our 379 patient TCGA LGG 

cohort, CDKN2A downregulation was only weakly associated with survival outcome and 

expression did not predict outcome in any subtype-specific analysis (Figure 4A, Tables 2 and 

S5). Furthermore, CDKN2A did not emerge as a candidate to explain poor survival in the 

context of 9p loss (Figures 5A, 5B and Table S5). Based on these findings, we sought to 

clarify the role of CDKN2A in LGG.

In agreement with prior publications (Bortolotto et al., 2000; James et al., 1999), patients 

with CDKN2A homozygous deletion (CDKN2A−/−) had significantly shorter survival in the 

TCGA and validation cohorts (Figures 6A and S6A). In addition, only in the TCGA LGG 

cohort did heterozygous loss at CDKN2A (CDKN2A+/−) predict worse OS, though only 

CDKN2A−/− and not CDKN2A+/− correlated with lower mRNA expression of the gene in all 

three cohorts (Figures 6B and S6B). This suggests that any change in survival in the context 

of CDKN2A heterozygous deletion is likely due to the confounding 9p loss phenotype.

In order to reconcile the differences in OS between CDKN2A copy number status and 

expression, we performed a large associations test for 376 important clinical and molecular 

variables in the TCGA LGG cohort (Table S6). Notably, we found that CDKN2A−/− 

significantly co-occurred with both increased tumor grade and patient age. Additionally, 

CDKN2A−/− significantly associated with chromosome 7 gain, chromosome 10 loss, EGFR 
mutation, and PTEN mutation – the defining characteristics of IDHWT subtype tumors 

(Figure 6C). This association has been recently reported by others, as well (Brat and Group, 

2014; Perry et al., 2014). Further, CDKN2A−/− was only observed in one patient in the 

IDHmut-codel subtype (0.9%) and few significant associations were found within a 

constrained analysis of IDHmut-non-codel and IDHWT tumors (Figure S6C, S6D and Table 

S6).
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Since LGG IDHWT carries the worst prognosis of all 3 subtypes, we sought to clarify 

whether the worse survival observed in patients harboring CDKN2A homozygous deletion 

was a result of this association. We found that CDKN2A deletion status did not correlate 

with OS in either IDHWT or IDH mutant (IDHmut-codel and IDHmut-non-codel) patients 

in both TCGA and REMBRANDT LGG cohorts (Figures 6D, S6E and S6F). Although there 

was a trend toward worse survival following CDKN2A deletion of any type (CDKN2A−/− or 

CDKN2A+/−), decreased mRNA expression was only observed among samples with 

CDKN2A−/− (Figures 6E and S6E).

We then sought to determine if non-CDKN2A−/− tumors lacking CDKN2A expression were 

more likely to be associated with worse OS. First, we verified that CDKN2A mRNA 

expression correlated with protein expression in both glioma cell lines and in patient 

samples (Figure S6G and Table S7). Then, non-CDKN2A−/− tumors were categorized by the 

absence or presence of CDKN2A mRNA expression (Figure S6H). Absent CDKN2A 

mRNA expression did not associate with any change in OS across all subtypes (Figures 6F 

and S6I) or within IDHWT alone (Figures 6G and S6J). In fact, patients with absent 

CDKN2A protein expression (p16) had improved OS in the MSKCC cohort (Figure S6K). 

Further, in the setting of 9p loss, CDKN2A expression did not alter OS (Figure S6L). In fact, 

of all the molecular alterations that define IDHWT tumors, only chromosome 10 loss was 

linked to worse outcomes (Figure S6M and S6N). In light of these results, CDKN2A does 

not appear to promote tumor aggressiveness in LGG, though it is likely important for the 

initiation of IDHWT LGGs.

DISCUSSION

In this study, we present an analytical strategy to assess the relative prognostic impact of all 

arm-level events in pan-cancer SCNA cohort. This comprehensive landscape of arm-level 

gains/losses highlights the specific alterations associated most strongly with survival across 

human cancers and within each specific type. Importantly, this complete ranked list 

represents several attractive candidates for additional genomic and functional exploration. To 

provide a framework for subsequent analyses, we proceeded to perform a large-scale, 

multidimensional analysis of 9p loss in LGG to identify candidate driver genes linked to 

poor outcomes in this disease. Using several tiers of clinical and molecular data from 3 

independent datasets, we analyzed 540 individual patient samples to clarify the roles of 

several known cancer genes and more poorly characterized genetic loci. Our data suggest 

that no single gene is responsible for the 9p loss phenotype in LGG and several likely act in 

concert to promote tumor aggressiveness in a context-dependent manner.

Although no single gene emerged as a driver of progression in all 3 LGG subtypes, PTPRD 
and PLAA influenced patient survival in 2 of 3 subtypes. There is extensive evidence 

already that PTPRD is a TSG in cancer, with widespread inactivation across many tumor 

types and the ability to slow tumor growth and invasion in vitro and in vivo (Funato et al., 

2011; Veeriah et al., 2009). PLAA has been less extensively characterized, though there is 

some indication it may function as a TSG since it is capable of causing tumor regression in 

mouse models (Beatty et al., 1999; Goddard et al., 1998; Goddard et al., 1996). We also 

identified other intriguing 9p loss-specific candidates involved in progression, including the 
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recently identified GBM TSG KLHL9 and much-debated TSG MTAP (Chen et al., 2014; 

Schmid et al., 2000). Both of these emerged in the LGG IDHWT, or GBM-like, tumors. 

Although we lacked sufficient power to further elucidate which combination of genes are 

driving tumor progression, the short list of genes discovered here provides attractive 

candidates for functional characterization. In addition, the identification of subtype-specific 

candidates allows the use of more accurate models and supports the possible implementation 

of these as biomarkers.

Perhaps most surprising was our discovery that CDKN2A inactivation did not promote 

tumor aggressiveness within any of the 3 LGG cohorts we examined. CDKN2A was among 

the first TSGs identified in glioma and has long been linked to poor outcomes in LGG 

(Bortolotto et al., 2000; James et al., 1999). We show, however, that only CDKN2A 
homozygous deletion – not expression – associates with poor OS and that this event almost 

exclusively occurs in IDHWT tumors, a subset of LGG with dismal prognosis (Yan et al., 

2009). Further, within the IDHWT LGG subtype, CDKN2A loss is not a driver of disease 

progression based on our findings. This discovery has major practical implications, as it 

suggests that CDKN2A status cannot be used as an independent prognostic marker within 

LGG. Our data is also in line with the recent consensus that genes involved in cell cycle 

control – like CDKN2A – and those characterized in germline syndromes are most often 

involved in tumor initiation, not progression (Belinsky et al., 1998; Krepischi et al., 2012; 

Malumbres and Barbacid, 2001; Rocco and Sidransky, 2001). Although many have 

suggested that CDKN2A inactivation can lead to progression and worse survival in glioma 

(Idbaih et al., 2008; Zhai and Yuan, 1998), these early studies were unable to account for 

subtype-specific confounding alterations and deconvolute copy number status and 

transcriptional downregulation. Therefore, we believe this study adds clarity to the 

controversy surrounding CDKN2A in glioma progression. Additionally, these findings 

challenge existing beliefs that focal alterations alone can provide sufficient insight into 

underlying biology of superimposed arm-level SCNAs.

These results highlight the power of large datasets to shed light on existing dilemmas in 

cancer biology. Our approach of pairing clinical phenotypes (i.e. overall survival) with 

multiple statistical measures of genetic events (i.e. arm-level SCNAs) represents a powerful 

means by which to distinguish relevant alterations in a given disease. Furthermore, through 

next-generation data and robust computational analyses, dissecting the roles of genes 

underlying arm-level SCNAs is both possible and important in our quest to identify potential 

biomarkers and therapeutic targets in cancer.

EXPERIMENTAL PROCEDURES

Pan-cancer arm-level SCNA analysis

Arm-level SCNA TCGA data and associated clinical reports were downloaded from the 

Broad Firehose on 21 August 2015 from 33 different cancer types for which data were 

available. Processed SNP6.0 copy number data were available for a total of 10985 patients 

and clinical data available for 10594 patients. Copy number data were post-processed by 

GISTIC2.0 and arm-level SCNA calls were extracted, along with frequency and event 

significance (q value) by cancer type. Log-rank significance data (p value) were also 
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extracted for each arm-level SCNA in all 33 TCGA cancer datasets. All data are available 

online (http://gdac.broadinstitute.org/).

Prognostic impact was assessed using the following three parameters: frequency of arm-

level gain/loss, event significance (q values via GISTIC2.0), and event survival association 

(p values via log-rank test). Individual heatmaps for each parameter were constructed for all 

82 arm-level SCNAs and 33 TCGA cancer datasets using obtained data. In the arm-level 

SCNA frequency heatmap, identification of events above background were defined as being 

2 standard deviations above the average SCNA frequency within each TCGA dataset (i.e. 

cancer type).

To establish the relative impact of each arm-level SCNA across cancer, the following 3 

parameters were utilized in both 3D and 2D visualizations in a composite analysis: averaged 

SCNA frequency across all 33 datasets (i.e. cancer types), event index, and survival index. 

Event index was defined as the number of independent TCGA datasets where an individual 

arm-level SCNA event was significantly gained or lost (q<0.25). Survival index was defined 

as the number of independent TCGA datasets where an arm-level SCNA was significantly 

associated with a change in overall survival on Kaplan-Meier log-rank test (p<0.1). 

Prognostic impact via event-specific and cancer-specific analyses utilized the following 3 

parameters: frequency of arm-level gain/loss, −log10(q value) via GISTIC2.0, and −log10(p 

value) via log-rank test.

All three-dimensional (3D) representations were created using OriginPro v9.0. Two-

dimensional (2D) representations were presented as a heatmap, ordered by linearly-

transformed three-parameter composite sum, from highest to lowest.

TCGA LGG cohort

Data were assembled from the TCGA LGG dataset for 379 patients that had completed 

information for the following tiers: clinical, copy number, mRNA expression, miRNA 

expression, DNA methylation, and somatic mutation. All clinical, mutation, and normal 

brain mRNA/miRNA expression data was obtained directly from the TCGA data portal in 

November 2014 (https://tcga-data.nci.nih.gov/tcga/). Tumor-derived mRNA and miRNA 

expression data and level 3 SNP6.0 copy number segmentation was obtained from the Broad 

Firehose in October 2014 (http://gdac.broadinstitute.org/). Methylation data was obtained 

from the MSKCC cBio cancer genomics portal in October 2014 (http://cbioportal.org/) 

(Cerami et al., 2012).

Expression data in the 379 TCGA LGG patient cohort was derived from normalized 

RNAseqV2 RSEM read counts. Background noise was determined by comparing read 

counts of genes located on chromosome Y and median read count across the entire sample in 

women. Processing was performed by removing noise in the following manner: All read 

counts < 5 were considered 5 (baseline) for the purpose of subsequent analyses. Normalized 

read counts were used for all fold change calculations by comparing the experimental 

group’s median read count to median read count in diploid tumor samples. For miRNA 

expression analyses, unprocessed normalized miRNAseq data was used, as above for mRNA 

data. For all survival analyses, log2 transformed mRNA/miRNA data was used.
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Level 3 exome data was used to identify mutation calls in the cohort. This matrix was run 

through MutSigCV to identify significantly mutated genes. Level 3 copy number 

segmentation was run through GISTIC2.0 to call SCNAs by patient and amplification/

deletion peaks in the cohort. Clinical data and survival information was used from the 

TCGA without further processing. Only primary tumors were considered for analysis.

REMBRANDT LGG cohort

All clinical and mRNA expression data was downloaded directly from the REMBRANDT 

data portal (Madhavan et al., 2009). Copy number data was obtained directly from the NCI 

caArray data management system (www.array.nci.nih.gov/caarray). Only patients with 

complete data for all 3 tiers (109 patients total) were used for analysis.

Expression data derived from Affymetrix U133 plus 2.0 GeneChips was obtained directly 

from REMBRANDT (Madhavan et al., 2009). Raw data from Affymetrix GeneChip 

Mapping 100K array were analyzed and copy number segmentation constructed using 

Partek Genomics Suite v6.6. All SCNA calls were made using GISTIC2.0. Gender was not 

available for all patients, therefore copy number status was not determined for chromosome 

X.

MSKCC LGG cohort

Clinical, expression, and methylation data were obtained for 52 patients with LGG at 

MSKCC (GEO accession #GSE30336 and #GSE30338) (Turcan et al., 2012). Expression 

data was derived from Affymetrix U133 plus 2.0 GeneChips and raw intensity values were 

log2 transformed. Methylation data was derived from Illumina Infinium 450K Methylation 

Beadchip and were used to construct copy number segmentation for all 52 patient samples 

via the ChAMP package in R (Morris et al., 2014). Inclusion criteria for broad 9p loss were 

deletion beta value < −0.1 and deletion size > 5 Mb. Focal SCNAs were determined using 

GISTIC2.0.

GISTIC2.0

Within TCGA, REMBRANDT, and MSKCC cohorts, SCNA determination was made by 

processing copy number segmentation data through GISTIC2.0 (Mermel et al., 2011). For 

all analyses, GISTIC was run using the following parameters:

• Amplification Threshold = 0.1

• Deletion Threshold = 0.1

• Cap Values = 1.5

• Broad Length Cutoff = 0.7

• Remove X-Chromosome = 0

• Confidence Level = 0.99

• Join Segment Size = 4

• Arm Level Peel Off = 1
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• Maximum Sample Segments = 2000

• Gene GISTIC = 1

• Gene Pattern = 0

Arm-level SCNAs were defined as a region of amplification or deletion (GISTIC2.0 beta 

value > 0.1 or < −0.1, respectively) and occupying 0.7 or 70% of the chromosomal arm. 

Narrow peak gene loci were obtained from the following output tables: table_amp.conf_99 

and table_del.conf_99.

Chromosome 9p commonly deleted region

Level 3 SNP6.0 copy number segmentation data was downloaded from the Broad Firehose 

on 15 July 2014 for all available patients in the TCGA LGG dataset. Deletion was defined as 

any beta value less than −0.2. Any deletion less than 5 Mb in size on chromosome 9p was 

not considered broad. All remaining 9p deletions were mapped to genomic coordinates, with 

the 9p commonly deleted region defined as the chromosomal start/end site which contained 

90% or more of all broad deletions on 9p. Genetic loci contained within this deletion region 

were curated from the UCSC Genome Browser using human reference genome build hg19 

(Kent et al., 2002).

Pearson correlation coefficient was used to determine association between mRNA/miRNA 

expression and copy number status, as well as genomic distance, for all normally distributed 

data. For copy number status vs. genomic distance, a logarithmic regression model was used 

to derive r2.

MutSigCV

To determine if any genes were significantly mutated in the 379 patient TCGA LGG cohort, 

level 3 mutation calls were downloaded directly from the TCGA data portal. These data 

were processed through MutSigCV (Lawrence et al., 2013) to identify significant mutation 

calls in LGG. Default settings were used for the analysis.

Survival analyses

Cox proportional hazards regression analysis was performed for 44 loci in the TCGA LGG 

cohort using IBM SPSS statistical software. Both copy number data and log-transformed 

expression data were used. These results were used to determine 9p loss-specific candidate 

loci.

For Kaplan-Meier survival analyses, patients without a date of death were censored. For 

each analysis, significance was calculated by log-rank test and the hazard ratio reported. For 

validation of 9p loss-specific candidates, the top/bottom 25% of patients were used for each 

gene analyzed. For determination of CDKN2A role in LGG, patients with amplifications at 

this locus were not analyzed. In TCGA, REMBRANDT, and MSKCC cohorts, CDKN2A 

mRNA expression threshold of “absent” vs. “present” was set at the 90th percentile of 

CDKN2A−/− tumors.
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Statistical Analyses for clinical and molecular associations

In order to test for any molecular or clinical associations in regard to 9p loss, CDKN2A, or 

LGG subtype, we analyzed 7 distinct parameters within the 379 patient TCGA LGG cohort: 

clinical variables, arm-level amplification/deletion, significant gene amplifications/deletions, 

significant focal peaks, significant MutSigCV mutated genes, TERT upregulation, and 

MGMT promoter hypermethylation. 376 variables were tested in total. Significantly 

amplified or deleted genes, as well as focal peaks, were extracted from our GISTIC2.0 run 

on the TCGA cohort. Mutated genes were identified using MutSigCV and manual curation 

based on literature evidence. Fisher’s exact test p values and Bonferroni adjusted q values 

are reported along with odds ratios for each comparison. Statistical tests were performed 

using IBM SPSS.

Statistical testing for gene expression

Determination of mRNA/miRNA expression differences was made using a one-tailed 

Student’s t-test in MSKCC validation cohort only, otherwise all Student’s t-test used were 

two-tailed. All groups compared had similar variance and estimates of variation are shown in 

figures using standard error of mean (SEM). 9p loss-targeted loci were determined by 

comparing mRNA/miRNA expression in 9p loss patients (9p+/−) to average expression in 9p 

diploid (9p+/+) patients.

Establishment of LGG subtypes through copy number status

In order to cluster previously published LGG subtypes by copy number alone, we used 

results from association testing by subtype to test new combinations of SCNAs. In the 379 

patient TCGA LGG cohort, using 1p/19q codeletion along with 10p, 7p and 7q, and 

CDKN2A status, we achieved > 90% accuracy. In order to test this on a validation set, we 

utilized 134 patients from the TCGA LGG dataset that were excluded from our 379 patient 

cohort but still had SNP6.0 copy number data and IDH mutation calls from whole exome 

sequencing. In this set, 95% accuracy was achieved using the new copy number criteria 

alone.

CDKN2A Protein Quantification

The immunohistochemical detection of p16 antibody (Roche, cat# 0669522100) was 

performed at Molecular Cytology Core Facility of Memorial Sloan Kettering Cancer Center 

using Discovery XT processor (Ventana Medical Systems). Sections were blocked for 30 

minutes with Background Buster solution (Innovex). Antibody was applied and sections 

were incubated for 5 hours, followed by 60 minutes incubation with biotinylated goat anti-

mouse IgG (Vector labs) or biotinylated horse anti-mouse IgG (Vector Labs) at 1:200 

dilution. The detection was performed with DAB detection kit (Ventana Medical Systems) 

according to manufacturer instruction. Slides were counterstained with hematoxylin and 

coverslips mounted with Permount (Fisher Scientific). Staining was blindly scored by a 

clinical pathologist.

All cell lines were obtained from ATCC and cultured in the recommended growth 

conditions. Total cell extracts were obtained using CellLytic M protein lysis buffer (Sigma) 

and the protein concentration was determined via BCA assay (Thermo Scientific). Equal 
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amounts of total protein were run at 120V on 12% Bis-Tris gels (Invitrogen) with MOPS 

running buffer (Invitrogen). Proteins were transferred onto PVDF membranes (Millipore) 

and blocked using 0.1% TBST containing 5% non-fat dry milk. The following antibodies 

were used: p14 ARF (Cell Signaling, 1:1000), p16 (Millipore, 1:1000), and actin (Sigma, 

1:2000). Protein bands were visualized using enhanced chemiluminescence (Imagequant 

LAS 4000, GE Health Life Sciences) and quantified by densitometry (Imagequant TL, GE 

Health Life Sci).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE

Somatic copy number alterations (SCNAs) are frequent genetic events that promote 

tumor initiation and progression. Characterization of focal SCNAs has led to the 

identification of many cancer genes, yet the identity of potential drivers within broad 

SCNAs remains a critical unanswered question in cancer genetics. We describe an 

analytic strategy for elucidating underlying loci responsible for arm-level SCNA 

phenotypes. Implementing this methodology on the 9p loss event in lower grade glioma 

(LGG) revealed that CDKN2A inactivation is not associated with progression. Instead, 

other 9p loci represent potential drivers of progression and attractive targets for further 

study and therapeutic exploitation. These findings provide insight behind 9p loss in LGG 

and establish a framework for examining other arm-level SCNAs in cancer.
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HIGHLIGHTS

- There exists a wide spectrum of arm-level SCNAs of variable prognostic 

“impact”

- Arm-level dissection via copy number status alone frequently yields false 

positives

- Only a minority of genetic loci influence powerful arm-level SCNA 

phenotypes

- Several 9p loci, but not CDKN2A, are linked to survival outcomes in LGG

Roy et al. present a landscape of arm-level somatic copy number alterations (SCNA) 

across 33 cancer types and assess the relative impact. Using chromosome 9p loss in lower 

grade glioma as an example, they describe an analytic approach for elucidating 

underlying loci responsible for arm-level SCNA phenotypes.
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Figure 1. Prognostic impact of arm-level SCNAs in cancer
(A) Schematic depicting arm-level SCNA dissection workflow to determine underlying 

driver loci.

(B) Three-dimensional (3D; top) and two-dimensional (2D; bottom) representation of 

individual arm-level SCNA across cancer as assessed by 3 parameters: average frequency, 

event index (total cancer types with GISTIC q<0.25), survival index (total cancer types with 

OS log-rank p<0.1). Blue, deletion; Red, amplification.
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(C) 3D (top) and 2D (bottom) representation of frequency, GISTIC significance −log10(q 

value), and log-rank survival significance −log10(p value) for the 9p deletion event by cancer 

type.

SCNA, somatic copy number alteration; OS, overall survival; LGG, lower grade glioma; 

KIRC, kidney renal clear cell carcinoma; UCEC, uterine corpus endometrial carcinoma; Inf, 

infinite. High/Low scale corresponds to values within the 3 parameters individually.

See also Figure S1 and Table S1.
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Figure 2. Characterization of LGG test cohorts
(A) Kaplan-Meier curve showing survival outcome for 9p loss in the TCGA LGG cohort.

(B) Kaplan-Meier curve showing survival outcome in TCGA LGG and GBM cohorts by 

subtype and IDH status, respectively. ****, p<0.0001; ns, not significant.

(C) Clinical and molecular variables in LGG and their association to LGG subtype. Fisher’s 

exact test −log10(q value) (y-axis) and odds ratio (x-axis) for association are shown. Arrows 

indicate increased mRNA expression.
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(D) Kaplan-Meier curves showing survival outcome for 9p loss in both TCGA and 

REMBRANDT LGG cohorts by subtype.

(E) Clinical parameters and molecular events associated with 9p loss in the TCGA LGG 

cohort by subtype. Fisher’s exact test −log10(q value) (y-axis) and odds ratio (x-axis) for 

association are shown.

Mut, mutant; codel, 1p/19q codeletion; LGG, lower grade glioma; WT, wild-type; GBM, 

glioblastoma multiforme; HR, hazard ratio; del, deletion; amp, amplification; CIN, 

chromosomal instability; meth, promoter hypermethylation; HD, homozygous deletion.

See also Figure S2 and Tables S2 and S3.
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Figure 3. Anatomy of the commonly deleted region on 9p in LGG
(A) Segmentation map of somatic copy number alterations (SCNAs) on chromosome 9p in 

the TCGA LGG cohort.

(B) Diagram of select genes within the commonly deleted region on 9p ordered by 

chromosomal location. Known oncogenes (red), tumor suppressor genes (blue), and mixed 

role genes (green) are shown, along with uncharacterized loci (black).

(C) Overview of genetic alterations at 72 loci for which copy number data is available 

within the 9p commonly deleted region in the TCGA LGG cohort.

LGG, lower grade glioma; Het, heterozygous deletion; HD, homozygous deletion; Mut, 

mutation; Amp, amplification; Chr, chromosome; LGG, lower grade glioma.

See also Figure S3 and Table S4.
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Figure 4. Copy number and gene expression associations on 9p in LGG
(A) Plot showing mean copy number signal (beta value, black) and mean mRNA/miRNA 

fold change vs. diploid tumor (blue) at 44 loci contained within the 9p deletion in the TCGA 

LGG cohort. Error bars, ± SEM.

(B and C) Linear (green) and logarithmic (red) regression plots of copy number (B) or 

mRNA/miRNA fold change (C) vs. distance from the CDKN2A locus in the entire TCGA 

(left) and REMBRANDT (right) LGG cohorts.

(D) Copy number (black) and mRNA/miRNA expression (blue) −log10(p value) following 

Cox regression test for overall survival at 44 loci within the 9p commonly deleted region in 

the entire TCGA LGG cohort regardless of 9p copy number status. Red line, significance 

threshold (p<0.05).

(E) Heatmap depicting all pair-wise associations between loci in the 9p commonly deleted 

region by copy number loss and mRNA/miRNA status in the TCGA LGG cohort. Mb, 

megabase; Chr, chromosome.

See also Figure S4.
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Figure 5. Genes targeted by 9p loss and their prognostic associations
(A) Scatterplot showing −log10(p value) Cox survival and −log10(p value) expression fold 

change significance (9p+/− vs. 9p+/+) for loci within 9p commonly deleted region in the 

TCGA LGG cohort by subtype. Red dotted line, significance threshold (p<0.05); Green, 9p 

loss-dependent prognostic genes; Orange, 9p loss-independent prognostic genes.

(B) Genes with significantly decreased expression following 9p loss and poor overall 

survival from (A) are shown by LGG subtype.

(C) Schematic representation of the mechanisms underlying the 9p deletion phenotype in 

LGG.

LGG, lower grade glioma; mut, mutant; codel, 1p/19q codeletion.

See also Figure S5 and Table S5.
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Figure 6. Characterization of CDKN2A as a marker of prognosis in LGG
(A and B) Kaplan-Meier curve showing survival outcomes (A) and mRNA fold change (B) 

in the TCGA LGG cohort based on CDKN2A deletion status. Horizontal bars in (B) depict 

median.

(C) Scatterplot showing any clinical and molecular associations with CDKN2A homozygous 

deletion in the TCGA LGG cohort. Fisher’s exact test −log10(q value) (y-axis) and odds 

ratio (x-axis) for association are shown.
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(D and E) Kaplan-Meier curve showing survival outcomes (D) and mRNA fold change (E) 

in TCGA LGG IDHWT tumors according to the CDKN2A deletion status. Horizontal bars 

in (E) depict median.

(F and G) Kaplan-Meier curves showing survival outcome based on CDKN2A mRNA 

expression status in patients without CDKN2A homozygous deletion in the entire TCGA 

LGG cohort (F) and in IDHWT tumors (G).

LGG, lower grade glioma. amp, amplification; del, deletion; mut, mutation; meth, promoter 

hypermethylation; mut, mutant; codel, 1p/19q codeletion; WT, wild-type. **, p<0.01; ***, 

p<0.001; ****, p<0.0001; ns, not significant.

See also Figure S6 and Tables S6 and S7.
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Table 2

Survival associations by gene via Cox proportional hazard regression.

Copy Number mRNA/miRNA expression

Hazard Ratio (95% CI) p value Hazard Ratio (95% CI) p value

ACER2 .343 (.158 – .744) .007 1.486 (1.057 – 2.089) .023

ADAMTSL1 .365 (.158 – .843) .018 1.255 (1.086 – 1.450) .002

BNC2 .357 (.158 – .808) .013 1.167 (.933 – 1.460) .177

C9orf72 .295 (.144 – .604) .001 1.045 (.594 – 1.840) .878

CAAP1 .209 (.107 – .409) .000 .617 (.368 – 1.034) .067

CCDC171 .352 (.157 – .793) .012 1.023 (.690 – 1.517) .910

CDKN2A .144 (.081 – .255) .000 .829 (.706 – .974) .022

CDKN2B .153 (.087 – .270) .000 .784 (.653 – .942) .009

CDKN2BAS1 .156 (.087 – .277) .000 1.095 (.802 – 1.495) .567

CNTLN .343 (.153 – .769) .009 1.250 (.769 – 2.031) .368

DENND4C .314 (.148 – .668) .003 .852 (.499 – 1.457) .559

DMRTA1 .171 (.093 – .314) .000 1.281 (.925 – 1.775) .135

ELAVL2 .170 (.091 – .319) .000 .665 (.573 – .772) .000

FOCAD .185 (.094 – .366) .000 .564 (.348 – .914) .020

FREM1 .384 (.169 – .874) .023 .999 (.845 – 1.182) .993

HAUS6 .371 (.167 – .824) .015 1.218 (.631 – 2.352) .556

IFT74 .210 (.107 – .412) .000 .626 (.353 – 1.111) .110

KLHL9 .148 (.079 – .275) .000 .413 (.296 – .575) .000

LOC389705 .385 (.169 – .875) .023 .795 (.642 – .985) .036

LURAP1L .414 (.180 – .953) .038 .655 (.476 – .902) .009

MIR31 .148 (.080 – .273) .000 1.057 (.914 – 1.222) .453

MIR491 .191 (.097 – .378) .000 .859 (.694 – 1.063) .163

MIR873 .270 (.126 – .578) .001 .931 (.818 – 1.060) .281

MIR876 .270 (.126 – .578) .001 .906 (.762 – 1.077) .263

MLLT3 .209 (.104 – .418) .000 .440 (.301 – .643) .000

MOB3B .265 (.131 – .534) .000 .662 (.502 – .873) .003

MPDZ .392 (.173 – .892) .026 .812 (.521 – 1.266) .359

MTAP .128 (.071 – .231) .000 .390 (.285 – .534) .000

NFIB .385 (.169 – .877) .023 .509 (.326 – .794) .003

PLAA .208 (.107 – .408) .000 .321 (.192 – .534) .000

PLIN2 .343 (.158 – .744) .007 1.525 (1.078 – 2.157) .017

PSIP1 .370 (.164 – .839) .017 .542 (.295 – .995) .048

PTPLAD2 .194 (.099 – .378) .000 1.524 (1.189 – 1.954) .001

PTPRD .348 (.155 – .785) .011 .632 (.492 – .811) .000

RPS6 .340 (.157 – .736) .006 .400 (.262 – .610) .000

RRAGA .376 (.169 – .838) .017 .336 (.176 – .642) .001

SH3GL2 .386 (.170 – .877) .023 .669 (.586 – .762) .000

SLC24A2 .320 (.151 – .682) .003 1.099 (.943 – 1.279) .227
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Copy Number mRNA/miRNA expression

Hazard Ratio (95% CI) p value Hazard Ratio (95% CI) p value

SNAPC3 .383 (.168 – .870) .022 .508 (.274 – .943) .032

TEK .239 (.120 – .476) .000 .970 (.739 – 1.274) .828

TMEM261 .336 (.142 – .796) .013 .320 (.155 – .659) .002

TTC39B .377 (.167 – .852) .019 1.533 (1.208 – 1.946) .000

TUSC1 .209 (.108 – .406) .000 .848 (.667 – 1.080) .181

ZDHHC21 .385 (.169 – .875) .023 .871 (.593 – 1.278) .479

CI, confidence interval
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