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Abstract

The influence of Gaussian diffusion on the magnetic resonance signal is determined by the 

apparent diffusion coefficient (ADC) and tensor (ADT) of the diffusing fluid as well as the 

gradient waveform applied to sensitize the signal to diffusion. Estimations of ADC and ADT from 

diffusion-weighted acquisitions necessitate computations of, respectively, the b-value and b-matrix 

associated with the employed pulse sequence. We establish the relationship between these 

quantities and the gradient waveform by expressing the problem as a path integral and explicitly 

evaluating it. Further, we show that these important quantities can be conveniently computed for 

any gradient waveform using a simple algorithm that requires a few lines of code. With this 

representation, our technique complements the multiple correlation function (MCF) method 

commonly used to compute the effects of restricted diffusion, and provides a consistent and 

convenient framework for studies that aim to infer the microstructural features of the specimen.
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1 Introduction

Diffusion-induced attenuation of the MR signal leads to unique image contrasts, which have 

been of great value in both clinical and basic science applications of MR. Such contrast 

emerges from variations in the diffusion decay rate, referred to as apparent diffusion 

coefficient (ADC) [1] when diffusion is measured along one orientation, and apparent 

diffusion tensor (ADT) [2] for the case of anisotropic diffusion. The amount of signal 

attenuation is controlled by the b-value [3] and b-matrix [4], respectively. Accurate 

estimations of ADC and ADT are possible only when all parameters of the pulse sequence 
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(gradient waveform) are taken into account in b-factor estimations [5]. The dependence of 

the b-matrix on the gradient waveform can be exploited to devise novel diffusion 

sensitization schemes that lead to b-matrices with desired characteristics [6].

The b-factors enable one to fully characterize the effect of Gaussian diffusion on the MR 

signal. To address the same problem for restricted diffusion, the multiple correlation 

function (MCF) framework [7] has been developed in recent years following a number of 

important theoretical developments [8, 9, 10, 11]. Since its inception that featured the 

solutions for simple geometries of slabs, cylinders, and spheres, the MCF method has been 

formulated for layered structures [12, 13], capped cylinders [14], and triangular pores [15]. 

Other advances include the incorporation of surface relaxation [16], structure-specific 

susceptibility gradients [17], and most relevant for this work is the technique’s 

generalization to account for variations in the direction of the gradients [18] akin to the 

transition from b-value to b-matrix in the case of Gaussian diffusion.

Diffusion-weighted acquisitions have been employed widely to infer microstructural 

descriptors of the specimen under examination. In thin and long geometries like long 

cylindrical fibers, diffusion perpendicular to the long axis of the pore is restricted while 

diffusion is Gaussian along the axis. When the gradients are neither parallel nor 

perpendicular to the long axis, the solutions for restricted and free diffusion should be 

employed simultaneously. Within the brain, the presence of a Gaussian diffusion component 

and the benefits of eliminating it from the signal profile have been recognized [19, 20]. 

Moreover, multi-compartment descriptions of tissue microstructure have been proposed [21, 

22] wherein diffusion within the cells is modeled as restricted and diffusion in the interstitial 

space is assumed to be Gaussian. In recent years, this approach has been employed to model 

the signal obtained using relatively complicated pulse sequences [23, 24, 25]. Common to all 

these problems and applications is the need for modeling Gaussian diffusion simultaneously 

with restricted diffusion. Therefore, a method that yields the free diffusion response using 

the stepwise gradient scheme employed by the MCF technique would yield a consistent 

framework that could be used to address these important problems.

In this work, we provide alternative approaches for characterizing signal decay due to 

Gaussian diffusion. After introducing the most essential concepts and relationships in the 

next section, we provide a detailed proof of the analytical expression for the b-factors in 

Section 3. In our proof, we employ a path integral approach, which provides a more intuitive 

description compared to earlier derivations. In Section 4, we demonstrate that the b-values 

and b-matrices necessary to quantify the attenuation due to Gaussian diffusion can be 

computed very conveniently and efficiently for all pulse sequences using a few lines of a 

computer program without the need to employ analytical derivations specific to a given 

pulse sequence [26, 27] or a symbolic mathematics software package [28] such as Maple or 

Mathematica. Both of these alternatives could be tedious and impractical for complicated 

waveforms like those employed in rapid imaging sequences. The input structure of our 

method is consistent with the MCF framework, thus making the technique suitable to be 

employed in studies where solutions for free and restricted diffusion are needed.
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2 Basic concepts

The signal attenuation for Gaussian diffusion in one-dimension can be expressed as

(1)

where D0 is the diffusion coefficient and b is the b-value. Karlicek and Lowe [29] showed 

that for a general gradient waveform characterized by the function G(t), the b-value is given 

by

(2)

where γ denotes the gyromagnetic ratio of the diffusing nuclei and T is the duration of the 

pulse sequence. Here, G(t) is assumed to be the “effective” waveform with appropriate sign 

reversals necessary to incorporate the effects of the 180° radiofrequency (RF) pulses.

For the more general case of three-dimensional diffusion characterized by the diffusion 

tensor D0, these equations are [4]

(3)

(4)

Note that Eqs. 1–2 can be obtained from Eqs. 3–4 through the simple substitutions

(5)

(6)

where δij is the Kronecker delta, which is unity when i = j and vanishes otherwise. 

Consequently, we henceforth focus on the three-dimensional problem, and employ the above 

substitutions in the end to obtain the solution for the one-dimensional problem.

3 The path integral approach for general gradient waveforms

In this section we shall introduce a new derivation of Eqs. 2 and 4. In earlier derivations [29, 

30], the authors solved the Bloch-Torrey equation [31], which is a differential equation that 

describes the evolution of local magnetization. We instead employ only probabilistic 

concepts, express the signal as a path integral and subsequently evaluate it. The reader is 

referred to Ref. [32] for a recent discussion on the relations between the Bloch-Torrey 

equation and probabilistic concepts.
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In Figure 1a, we illustrate a general gradient waveform G(t). This waveform is represented 

by a train of impulses indicated by vertical arrrows. This discretization or “time slicing” is 

performed by dividing the waveform into N equal intervals, each of duration τ [33]. The 

duration of the entire waveform is thus T = Nτ. The nth interval is centered at . 

At this point in time, an impulse is assumed to be applied in lieu of the G(t) within the 

interval. The strength of the impulse is determined by the following useful quantity having 

dimension of inverse length:

(7)

Note that in order for maximum detectable signal to form, the integral of G(t) during the 

course of the waveform should vanish, which results in the condition:

(8)

Next, we shall consider the movement of a single spin. As shown in Figure 1b, the particle 

resides at a different location at each of the time points tn. Depending on the position of the 

particle, it acquires a phase shift given by ϕn = 2πqn · rn. Thus, the phase of the particle at 

time T is . The MR signal is given by the sum of magnetic moments of each 

spin in the specimen, i.e.,

(9)

Here, t1 < t2 <…< tN and P(r1, r2, …, rN; t1, t2, …, tN) denotes the probability density for 

the particle to be located at r1, r2, …, rN at times t1, t2, …, tN, respectively. The sequence of 

positions r1, r2, …, rN defines a particular trajectory in the limit τ → 0, i.e., N → ∞ while 

Nτ = T. Thus, P(r1, r2, …, rN; t1, t2, …, tN) indicates the likelihood for a particular 

trajectory during the experiment. Expressions such as the one above are commonly referred 

to as “path integrals” as the integration is performed over the space of all possible paths. In 

summary, Eq. 9 symbolizes the fact that the particle collects different phases at different 

time points depending on its trajectory. Its resulting phase at t = T is determined by the 

gradient waveform G(t) as well as the path the particle travels r(t). The signal is just the sum 

of magnetic moment vectors (represented by the exponential factor) resulting from all 

possible trajectories.

We are now in a position to evaluate the path integral for Gaussian diffusion. To this end, we 

first exploit the fact that Gaussian diffusion is Markovian, i.e., the particle’s motion is not 

influenced by its motional history. For such processes, the following relationship holds:

(10)
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where P(r1, t1) is the density of particles at t1, and P (rn, tn|rn−1, tn−1) denotes the 

conditional probability for a particle to move from rn−1 to rn during the time interval [tn−1, 

tn]. The latter is called the propagator. For Gaussian diffusion, it is given by*

(11)

where |D0| denotes the determinant of the diffusion tensor.

We would like to employ the last two equations in evaluating the path integral in Eq. 9. Let’s 

introduce a family of functions through the expression:

(12)

Here, {K1, K2, …, KM } denotes any sequence of M vectors, where M can take any 

nonnegative integer value. For M = 0, the definition is simply f(R2, k, {}) = e−i2πk·R2.

Next, we define an operator that we shall denote as ℒR2 (R1, q). Here, the subscript is to 

indicate that the operator will act on functions of variable R2. When applied on the family of 

functions introduced above, it yields

(13)

The integral above can be evaluated analytically. To this end, the integral is expressed in a 

frame of reference in which D0 is diagonal. Noting that dot products, quadratic forms, and 

determinant of a matrix are invariant under rotations, the integral is decomposed into the 

product of three independent integrals, each of which being along one dimension in the new 

reference frame. The details of this scheme are provided in the Appendix. Following this 

approach, one obtains the result

(14)

The utility of this finding becomes clear when one realizes that the path integral in Eq. 9 can 

be written in terms of the operator ℒ and the function f:

(15)

Now we can employ Eq. 14 iteratively, and obtain

*A pedagogical account of relevant concepts and derivations leading to the Gaussian propagator can be found in Ref. [34].
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(16)

(17)

(18)

where we employed Eq. 8 in the second argument of f in the last expression. With this result, 

Eq. 15 reads

(19)

Here, the first two exponentials cancel out, and the remaining exponential factor is 

independent of r1, so it comes out of the integral. The remaining integral is just unity due to 

the normalization of the probability density.

Now we shall define a function F as the integral of the gradient waveform, i.e.,

(20)

Note that the following expression holds:

(21)

Eq. 19 becomes

(22)

Using the definition of the Riemann integral, we obtain

(23)

which is just a restatement of Eqs. 3 and 4, thus concluding our derivation.

4 A convenient computational scheme

In this section we shall introduce a numerical scheme for computing the b-factors to 

characterize the effect of Gaussian diffusion. As pointed out in Introduction, our goal is to 

come up with a convenient scheme, which complements the solutions for restricted diffusion 
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obtained through the MCF framework. As such, our approach differs from that described 

above. Instead, as in the case of MCF, we consider a piecewise function as the gradient 

waveform, and note that an arbitrary waveform can be approximated accurately by a 

piecewise constant function, making the technique applicable to all diffusion encoding 

schemes.

The construction of the piecewise function is the same as in Ref. [18], and illustrated in 

Figure 2. According to this scheme, the gradient waveform is represented as a series of N 
intervals of duration τn, where (n = 1, 2, 3, …, N). The time-independent gradient vector Gn 

is applied during the nth interval, which is between the time points Tn−1 and Tn. Thus, τn = 

Tn−Tn−1. The gradient waveform starts at the time point T0 = 0, and ends at TN = T.

We write the ith component of the gradient waveform as

(24)

with

(25)

The time integral of Gi(t) can be evaluated as

(26)

where

(27)

With these definitions, the components of the b-matrix can be written as

(28)

where

(29)
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After some algebra, these functions are obtained to be

(30)

Plugging Eq. 30 into Eq. 28 provides us with an expression that relates the b-matrix to 

arrays of Gn and τn values†. These arrays are also employed by the MCF technique for 

quantifying the effect of restricted diffusion. Hence, the above formulation can be regarded 

as a consistent extension of the MCF framework complementing it for the case of Gaussian 

diffusion. Moreoever, these results enable the computation of the b-factors, hence the effect 

of Gaussian diffusion, using a few lines of a computer program.

To establish the correctness of the computational scheme and assess its accuracy, we 

computed the b-value for a cosine-modulated waveform shown in Figure 3a. In Figure 3b, 

we plot the percent deviation in our b-value estimates from its theoretical value [35] against 

the number of distinct time intervals (in steps of 10) when all intervals were taken to have 

the same duration. As expected, the errors in the estimates decay rapidly to negligible levels 

as the number of intervals is increased. It should be noted that the instrument’s gradient 

waveform generator typically receives a piecewise constant function as the input. Therefore, 

the b-factors computed using our approach, with the appropriate choice of number of 

intervals, may be more accurate than its theoretical value, which assumes perfectly 

continuous waveforms.

5 Discussion

In the preceding sections, we revisited the problem of how Gaussian diffusion influences the 

magnetic resonance signal when arbitrary gradient waveforms are applied. We approached 

the problem from theoretical as well as computational points of view, and presented two 

loosely connected frameworks. Unlike in earlier derivations, our analytical approach was 

based on path integrals, and relied solely on probabilistic concepts. The essential idea in 

path integrals is the time-slicing performed to represent the gradient waveform as a series of 

impulses. As noted in Ref. [36], such slicing, hence an inherent path integration, is 

performed in the multiple propagator technique [37, 38], which is introduced as a numerical 

tool to compute the restricted diffusion signal.

In our computational framework, we employed a slightly different scheme of time-slicing, 

this time representing the waveform as a piecewise constant function. The latter is consistent 

with the multiple correlation function (MCF) method also used to quantify the effect of 

restricted diffusion. As discussed in detail in Ref. [32], the multiple propagator and MCF 

techniques are closely-related. The MCF approach is favored from a computational point of 

†Strictly speaking, the relationship  would have to be employed to write the result solely in terms of the arrays 
of τn and Gn values.
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view when the gradient waveform is already given by a piecewise constant function, which 

is the case in pulsed field gradient (PFG) experiments [32].

In this article, our focus has been on the manipulation of transverse magnetization by 

incorporating general gradient waveforms into spin-echo like sequences [39]. However, the 

approaches described in this work could be extended to other techniques involving the 

temporal evolution of magnetization. For example, by employing repetition times that are 

much shorter than the transverse relaxation rate, one could obtain the steady state free 

precession (SSFP) signal [40]. Such techniques could be advantageous over the more 

conventional ones, e.g., when rapid physiological processes are to be examined [41]. 

Characterizing the effects of diffusion in such sequences is of current interest [42, 43].

The reader is cautioned that the b-factors and the discussion in this work are relevant when 

the signal attenuation originates from truly Gaussian diffusion. When MR measurements are 

concerned, it is tempting to treat non-Gaussian diffusion as “Gaussian” at the low diffusion 

sensitivity (large signal intensity) regime because the identity E ≈ 1−(cγG)2 ≈ e−(cγG)2 is 

expected to hold in this regime. Here, c is some quantity of dimension (length) × (time); its 

exact form is determined by the particular mechanism that leads to non-Gaussianity. As a 

result of the above correspondence, the b-factors are occasionally employed to characterize 

such apparently Gaussian processes [44]. However, the particular dependence of the b-

factors on the timing parameters of the employed sequence may not be adequately captured 

by the expressions for the b-factors when diffusion is non-Gaussian.

To illustrate this point, it is instructive to compare the solutions for Gaussian diffusion above 

with those for restricted diffusion. In Ref. [36], the authors employed a path integral 

representation of the diffusion process, which is based on the time-slicing idea of a gradient 

waveform [37, 38], to derive the expression

(31)

with the definitions  and , where α1n = (n

−1/2)π, and α2n and α3n satisfy the expressions  and , respectively. Eq. 

31 provides the solution valid for a general gradient waveform G(t), for geometries of 

parallel plates (D = 1) with separation 2a, and cylinders (D = 2) and spheres (D = 3) with 

radii a. Therefore, Eq. 31 can be considered analogous to Eqs. 3 and 4.

To exemplify the difference in the signal dependencies for Gaussian and restricted diffusion 

processes, we shall consider the special case of a traditional Stejskal-Tanner (ST) sequence 

[45] featuring gradients of magnitude G, duration δ, and separation Δ. For the case of 

restricted diffusion, the expected signal decay is given by
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(32)

On the other hand, the same expression for Gaussian diffusion is [45]

(33)

Eqs. 32 and 33 clearly exhibit different dependencies on δ and Δ, demonstrating that the b-

factors cannot be used to model the dependence of the signal attenuation due to restricted 

diffusion on the experimental timing parameters even at low levels of signal attenuation.

6 Conclusion

By explicitly evaluating the relevant path integral, we presented a new derivation leading to 

the link between an impressed gradient waveform and the detected MR signal. The new 

derivation is more intuitive than the earlier ones as it is based solely on probabilistic notions 

rather than the Bloch-Torrey equation. We also presented a simple and convenient method 

for computing the b-value and b-matrix for an arbitrary gradient waveform. This solution 

could be employed to: (i) conveniently incorporate the effects of imaging gradients in 

traditional Stejskal-Tanner sequences, (ii) compute the signal attenuation for more 

sophisticated diffusion encoding schemes (e.g., schemes with oscillating waveforms, and 

multiple pairs of gradients), and (iii) complement the existing solutions for restricted 

diffusion in modeling studies. Finally, we pointed out that the signal for Gaussian and non-

Gaussian diffusion could exhibit different dependencies on the timing parameters of the 

gradient waveform even at low diffusion sensitivity (high signal) regime.
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Appendix

In this Appendix, we shall detail how one evaluates the integral in Eq. 13.

Let U be the orthogonal transformation that diagonalizes the apparent diffusion tensor, i.e.,
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(34)

where Λi denotes the ith eigenvalue of D0, whose determinant can be written as |D0| = 

Λ1Λ2Λ3. Since U is orthogonal, it obeys the relationship U⊤U = UU⊤ = I, where I is the 3×3 

identity matrix. Multiplying both sides of Eq. 34 from left by U⊤ and from right by U, one 

obtains

(35)

By inverting the matrices on both sides of the last two expressions, we note that the same 

relationships hold for the inverses of these matrices, i.e.,

(36a)

(36b)

Next, we consider the effect of the same transformation on a vector. We shall adopt the 

convention that the matrix U transforms an arbitrary vector v into v′. Then the following 

relationships hold:

(37a)

(37b)

(37c)

(37d)

These expressions are instrumental in proving that the quadratic forms and dot products are 

invariant under orthogonal transformations. Take, for example,

(38)

Similarly,
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(39)

Now, we shall write down the integral in Eq. 13 explicitly by inserting the definition of f(.) 
into Eq. 12. We obtain

(40)

where

(41)

To evaluate the above integral, we perform a change of variables via the transformation U, 

i.e., . Since the determinant of an orthogonal matrix is ±1, the Jacobian of this 

transformation is unity. We shall define the components of all relevant vectors as follows:

(42a)

(42b)

(42c)

(42d)

(42e)

(42f)

(42g)

(42h)

Using Eq. 38 for the inverse of the diffusion tensor and with v = R2−R1, the exponential in 

the numerator becomes
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(43)

Similarly, using Eq. 39, one obtains the following expression for the second exponential in 

the integral (41):

(44)

The above two exponentials can be written as the product of three exponentials, each of 

which contains the parameters for only one principal orientation of the diffusion tensor. Such 

decomposition can be utilized to write J(R1, q, k) as

(45)

with

(46a)

(46b)

(46c)

where we employed also the fact that the Jacobian of the coordinate transformation is unity. 

The above integrals conform to the following Gaussian integral

(47)

Using this expression with appropriate values for c and d, we obtain

(48a)

(48b)
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(48c)

Note that we need the product of these three expressions, which can be written as

(49)

Using Eqs. 38 and 39, we obtain

(50)

Inserting this result into Eq. 40, we get

(51)

With the observation that the right hand side of the expression conforms to the definition of 

f(.) given in Eq. 12, we obtain the desired result

(52)
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Figure 1. 
(a) An arbitrary gradient waveform and its representation via a series of impulses. (b) The 

particle undergoes a random walk during the course of the waveform.
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Figure 2. 
A piecewise-constant gradient waveform. When the gradient waveform is piecewise-

constant, our computational scheme yields exact estimates for the b-factors.
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Figure 3. 
Assessment of the error in discretizing continuous waveforms. (a) Continuous gradient 

waveform (continuous line) is approximated by a piecewise constant function (dotted line). 

(b) Percent error in the b-value estimates plotted against the number of intervals.
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