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Abstract

Although there are established graphics that accompany the most common functional data 

analyses, generating these graphics for each dataset and analysis can be cumbersome and time 

consuming. Often, the barriers to visualization inhibit useful exploratory data analyses and prevent 

the development of intuition for a method and its application to a particular dataset. The 

refund.shiny package was developed to address these issues for several of the most common 

functional data analyses. After conducting an analysis, the plot shiny() function is used to 

generate an interactive visualization environment that contains several distinct graphics, many of 

which are updated in response to user input. These visualizations reduce the burden of exploratory 

analyses and can serve as a useful tool for the communication of results to non-statisticians.
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1 Introduction

Functional data analysis (FDA) has become a popular and useful framework for applications 

in which the unit of measurement is a function, curve or image. Conceptually, FDA 

leverages the underlying data structure, often temporal or spatial, to improve understanding 

of patterns and variation. A wide array of tools have been developed for the functional data 

setting, for example, functional principal component analysis (FPCA) and regression models 

using functional responses (Ramsay and Silverman, 2005; Morris, 2015; Sørensen et al., 

2013). The basic unit of observation is the curve Yi(t) for subjects i ∈ …, I in the cross-

sectional setting and Yij(t) for subject i at visit j ∈ …, Ji for the multilevel or longitudinal 

structure. Methods for functional data are typically presented in terms of continuous 

functions, but in practice data are observed on a discrete grid that may be sparse or dense at 

the subject level and that may be the same across subjects or irregular.

Many methods for FDA have standard visualization approaches that clarify the results of 

analyses; examples include scree plots for FPCA and coefficient function plots for function 

on scalar regression. Clear visualizations aid in exploratory analysis and help to 
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communicate results to non-statistical collaborators. However, creating useful plots is often 

time consuming and must be repeated each time a model is changed, and no software 

currently exists to facilitate this process.

The refund.shiny package (Goldsmith and Wrobel, 2015) creates interactive 

visualizations for functional data analyses, allowing researchers to create common graphics 

for standard analyses with just a few lines of code. Currently, refund.shiny builds plots 

for functional principal component analysis (FPCA), multilevel FPCA (MFPCA), time-

varying FPCA (TV-FPCA), and function-on-scalar regression (FoSR). The workflow 

separates analysis and visualization steps: analyses are performed by functions in the 

refund package (Crainiceanu et al., 2015) and interactive visualizations are generated by 

the plot shiny() function in the refund.shiny package. Changes to the analysis – 

increasing the number of retained principal components, for example, or augmenting a 

regression model with new predictors – are easily incorporated into the graphical interface. 

User interaction with the displayed graphics facilitates comparisons and streamlines 

navigation between visualizations.

We illustrate the tools in refund.shiny using a single dataset, which we describe briefly 

here. The diffusion tensor imaging ( DTI) dataset available in the refund package includes 

cerebral white matter tracts for multiple sclerosis patients and healthy controls. White matter 

tracts are collections of axons, the projections of neurons that transmit electrical signals that 

are coated by a fatty substance called myelin (Greven et al., 2010; Goldsmith et al., 2011; 

Staicu et al., 2012). DTI is a magnetic resonance imaging modality that measures diffusion 

of water in the brain; because water movement is restricted in white matter fibers, DTI 

allows the quantification of white matter tract integrity. The DTI dataset contains tract 

profiles – continuous summaries of tract properties along their major axis – for 142 subjects 

across multiple visits, with a median of 4 scans per subject. The dataset includes tract 

profiles for several tracts, the PASAT score (a continuous variable that indicates brain 

reactivity and attention span), subject sex, subject ID, visit number, and time of visit (Strauss 

et al., 2006). Because we observe tract profiles for each subject over time, the DTI dataset is 

a functional dataset with longitudinal structure; in order to use the same dataset across 

examples we sometimes neglect this structure or subset the data. The following code can be 

used to install refund and refund.shiny and load the DTI data:

> install.packages(“refund.shiny”)

> library(refund.shiny)

> library(refund)

> data(DTI)

Sections 2, 3, 4, and 5 each provide a brief methodological overview of an analysis 

technique for FDA and describe the corresponding interactive visualization tools in the 

refund.shiny package. Section 6 details the structure of the refund.shiny package. We 

close in section 7 with a discussion.
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2 Functional Principal Component Analysis

We start with FPCA, one of the most common exploratory tools for functional datasets.

2.1 FPCA Model

FPCA characterizes modes of variability by decomposing functional observations into 

population level basis functions and subject-specific scores (Ramsay and Silverman, 2005). 

The basis functions have a clear interpretation, analogous to that of PCA: the first basis 

function explains the largest direction of variation, and each subsequent basis function 

describes less. The FPCA model is typically written

(1)

where μ(t) is the population mean, ψk(t) are a set of orthonormal population-level basis 

functions, cik are subject-specific scores with mean zero and variance λk, and εi(t) are 

residual curves. Estimated basis functions ψ̂
1 (t), ψ̂

2 (t), …, ψ̂
K (t) and corresponding 

variances λ̂
1 > λ̂

2 ≥ … ≥ λ̂
k are obtained from a truncated Karhunen-Loève decomposition of 

the sample covariance . In practice, the covariance Σ̂(s, t) is often 

smoothed using a bivariate smoother that omits entries on the main diagonal to avoid a 

“nugget effect” attributable to measurement error, and scores are estimated in a mixed model 

framework (Yao et al., 2005; Goldsmith et al., 2013). The truncation lag K is often chosen so 

that the resulting approximation accounts for at least 95% of observed variance.

2.2 Graphics for FPCA

Our example uses the fpca.sc() function from the refund package. Several other 

implementations of FPCA are available in refund, including fpca.face(), 

fpca.ssvd(), and fpca2s(), all of which are compatible with refund.shiny. The 

number of functional principal components (FPCs) is chosen by percent variance explained, 

with the default set to 0.99. See ? plot_shiny for examples. Graphics for FPCA are 

implemented by the code below:

> fit.fpca = fpca.sc(Y = DTI$cca)

> plot_shiny(obj = fit.fpca)

Executing this code produces a user interface with five tabs. The first tab shows 

, and includes a drop-down menu through which the user can select k (an 

example for a similar tab, based on multilevel data, is shown if Section 3). The second tab 

presents static scree plots of the eigenvalues λ̂
k and the percent variance explained by each 

eigenvalue. The third tab shows , and includes slider bars through which 

the values of ck can be set; adjusting the sliders allows the user to see a fitted curve for a 
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hypothetical subject with the selected combination of scores. The fourth tab allows users to 

assess quality-of-fit by plotting fitted and observed values for any subject in the dataset.

The fifth tab for the interactive graphic produced by the code above is shown as a static plot 

in Figure 1. A scatterplot of estimated FPC loadings ĉik against ĉik′ is shown in the upper 

plot, and k and k′ are selected using drop-down menus at the left. The lower plot shows 

fitted curves for all subjects. In the scatterplot, a subset of FPC loadings can be selected by 

clicking-and-dragging to create a blue box; blue curves in the plot of fitted values 

correspond to selected subjects in upper plot. In Figure 1 the first and second FPCs are 

selected for the x and y axes of the score plot, respectively, and several subjects that have 

negative values for FPC 1 are highlighted. Fitted values for these subjects are clustered at the 

top of the y-axis, indicating that the first FPC largely represents a vertical shift from the 

mean. A working example of refund.shiny for FPCA on a different dataset is available at 

https://jeff-goldsmith.shinyapps.io/FPCA.

3 Multilevel Functional Principal Components Analysis

Multilevel functional principal component analysis (MFPCA) extends the ideas of FPCA to 

functional data with a multilevel structure.

3.1 MFPCA Model

Multilevel functional data are increasingly common in practice; in the case of our DTI 

example, this structure arises from multiple clinical visits made by each subject. MFPCA 

models the within-subject correlation induced by repeated measures as well as the between-

subject correlation modeled by classic FPCA. This leads to a two-level FPC decomposition, 

where level 1 concerns subject-specific effects and level 2 concerns visit-specific effects. 

Population-level basis functions and subject-specific scores are calculated for both levels (Di 

et al., 2009, 2014). The MFPCA model is:

(2)

where μ(t) is the population mean, ηj(t) is the visit-specific shift from the overall mean, 

 and  are the eigenfunctions for levels 1 and 2, respectively, and  and  are 

the subject-specific and subject-visit-specific scores. Often, visit-specific means ηj(t) are not 

of interest and can be omitted from the model. Estimation for MFPCA extends the approach 

for FPCA: estimated between-and within-covariances  for j 

≠ j′ and  are derived from the observed data, smoothed, and 

decomposed to obtain eigenfunctions and values. Given these objects, scores are estimated 

in a mixed-model framework.
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3.2 Graphics for MFPCA

MFPCA is implemented in the mfpca.sc() function from the refund package. By default, 

mfpca.sc does not calculate visit-means, but they can be calculated by specifying the 

mfpca.sc() argument twoway = TRUE.

Graphics for MFPCA are implemented by the code below:

> Y = DTI$cca

> id = DTI$ID

> fit.mfpca = mfpca.sc(Y = Y, id = id, twoway = FALSE)

> plot_shiny(fit.mfpca)

This code produces an interface with five tabs, which is similar to the interface for FPCA but 

includes features unique to multilevel analyses. Tabs 1, 2, 3, and 5 for MFPCA are 

, static scree plots of the estimated eigenvalues , 

, and scatterplots of FPC scores (similar to Figure 1), respectively. 

These mirror the tabs for FPCA and include inset sub-tabs to toggle between level, L, to 

display results for level 1 or level 2. The fourth tab plots fitted and observed values for any 

user-selected subject in the dataset; the user can display all visits for the selected subject or 

choose a subset of visits. The first tab for the interactive visualization produced by the code 

above is displayed in Figure 2, and shows .

4 Time-varying Functional Principal Component Analysis

Time-varying functional principal component analysis (TV-FPCA) extends the ideas of 

FPCA to model functional data that are observed repeatedly in a longitudinal framework. In 

contrast to MFPCA, TV-FPCA accounts for the actual time of visit Tij at which the 

functional object Yij(·) is recorded; this allows to study the time-varying behavior of the 

underlying true process and make prediction of full trajectory at an unobserved visit time 

(Park and Staicu, 2015). Other modeling methods for longitudinal functional data that 

incorporate the actual visit times Tij include Greven et al. (2010) and Chen and Müller 

(2012).

4.1 TV-FPCA Model

TV-FPCA (Park and Staicu, 2015) model for Yij(t) = Yi(t, Tij) is given as follows:

(3)
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where μ(t, Tij) is the population mean that is assumed to vary smoothly over t and visit time 

Tij, ψk(t) are orthogonal basis functions, cik(Tij) are corresponding loadings that vary over 

Tij with mean zero and variance λk, and εij(t) are residual curves. The time-varying scores 

cik(tij) are uncorrelated over i, but correlated over j. Estimation of the TV-FPCA model 

components entails: 1) estimation of the population mean by using bi-variate smoothing, 2) 

estimation of the marginal covariance Σ(s, t) = ∫ Cov{Yi(s, T), Yi(t, T)}g(T) dT, where g(T) 

is the density of the Tij's using the observed data, smoothing and decomposing it to get the 

eigenfunctions/eigenvalues ψk̂(t) and λ̂
k; 3) estimation of the kth component covariance 

Ĝk(T, T′) = Cov{cik(T)cik(T′)}. The last step is carried out using either linear random 

effects, implying  or FPCA implying cik(T) = bik1ϕk1(T) + …+ bikLkϕkLk 
(T). By modeling these longitudinal dynamics, the time-varying coefficient function cik(·) 

can be used to predict scores at any longitudinal time T and, as a result, to predict the full 

response trajectory Yi(·,T).

4.2 Graphics for TV-FPCA

TV-FPCA is implemented in the fpca.lfda() function in the refund package. In Section 

4.1, we have used t to denote the functional argument for consistency with the rest of the 

paper; however to maintain consistency with the notations used in Park and Staicu (2015), 

plot_shiny() function for TV-FPCA uses s to denote the functional argument and T to 

denote the longitudinal time.

Graphics for TV-FPCA are implemented by the code below:

> MS <- subset(DTI, case ==1)

> index.na <- which(is.na(MS$cca)); Y <- MS$cca; Y[index.na] <- fpca.sc(Y)

$Yhat[index.na]

> id <- MS$ID

> visit.index <- MS$visit

> visit.time <- MS$visit.time/max(MS$visit.time)

> fit.tfpca <- fpca.lfda(Y = Y, subject.index = id,

+ visit.index = visit.index, obsT = visit.time,

+ LongiModel.Method = ‘lme’)

> plot_shiny(fit.tfpca)

The code produces an interface with two tabs. Tab 1 shows exploratory plots and includes 

three inset sub-tabs. The first sub-tab, shown in Figure 3, plots the observed curves for any 

user-selected subject, and includes options to display the observed curves of all subjects in 

the background and to display the estimated pointwise mean curve, denoted by m(t). The 
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second sub-tab allows the user to see the longitudinal changes of the observed curves for a 

user-selected subject i; a slider bar animates the subject's visit times and highlights the 

corresponding observed curve in the plot. The last sub-tab shows two plots of the actual visit 

times Tij: the bottom plot presents static histogram of visit times of all subjects, while the 

top plot presents all of observed visit times on a horizontal line to help visualize the sparsity 

of the longitudinal sampling.

Tab 2 shows estimated model components and predictions, and includes 8 inset sub-tabs. 

Sub-tabs 1 and 2 present static images of the estimated mean surface μ̂(t, T) and estimated 

marginal covariance Σ̂(s, t). Sub-tabs 3, 4, and 5 illustrate the first step of estimation, and 

plot estimates of eigenfunctions ψk̂(t), , and static scree plots of the 

estimated eigenvalues λ̂
k, respectively. Sub-tab 6 shows the estimated covariance of the 

time-varying loadings cik(·) for user-specified k. Sub-tab 7 shows the prediction of cik(T) for 

any user-selected subject i and component k; it also has an option of displaying predicted 

values of cik(T) for all subjects in the background. Lastly, sub-tab 8 shows the prediction of 

a full response trajectory Yi(·, T) for user-selected subject i in animation with change of 

values across 21 equi-spaced grid of points of T in the range of observed visit times of all 

subjects.

5 Function-on-Scalar Regression

In many cases, a length p vector of scalar covariates xi = [xi1,…, xip] is observed in addition 

to the function Yi(t). In these situations, it is often of interest to model the conditional 

expectation of the functional response as it depends on the scalar predictors; indeed, this 

problem has been the focus of a large literature (Brumback and Rice, 1998; Guo, 2002; 

Morris et al., 2003; Morris and Carroll, 2006; Reiss et al., 2010; Scheipl et al., 2015; 

Goldsmith and Kitago, 2015; Goldsmith et al., 2015).

5.1 FoSR Model

The most common function-on-scalar regression model is

(4)

where the βk(t) are fixed effects associated with scalar covariates and the εi(t) are residual 

curves. The coefficients βk(t) are interpreted analogously to coefficients in a (non-functional) 

multiple linear regression – as the expected change in response for each one unit change in 

the predictor – with the exception that they, like the outcome, are defined over t. Many 

estimation and inferential strategies are available for model (4); a popular approach is to 

expand coefficients βk(t) using a spline basis, which allows one to recast (4) as a traditional 

linear regression model and focus estimation on a vector of unknown spline coefficients. Our 

example uses the bayes_fosr() function in the refund package, which uses a rich cubic 

B-spline basis and estimates spline coefficients in a Bayesian framework with priors 
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specified to enforce smoothness in the resulting coefficient functions. Both a Gibbs sampler 

and a computationally efficient variational approximation are available in refund.

5.2 Graphics for FoSR

Graphics for FoSR are implemented by the code below:

> DTI = DTI[complete.cases(DTI),]

> fit.fosr = bayes_fosr(cca ∼ pasat + sex, data = DTI)

> plot_shiny(fit.fosr)

This code produces a interface with four tabs, each showing plots associated with model 4. 

The first tab is a plot of the observed data with the option to color curves by a user-selected 

covariate; this builds intuition analogously to scatterplots for non-functional regression. The 

second tab shows , where values of xk can bet set by slider bars for 

continuous covariates or drop-down menus for categorical covariates; adjusting the sliders or 

drop-down menus shows the estimated conditional expectation for a specified predictor 

vector. The third tab, illustrated in Figure 4, shows estimated coefficient functions β̂k(t) with 

pointwise confidence intervals for the covariate xk selected in a drop-down menu. The fourth 

tab is a plot of the residual curves εi(t) and allows for identification of median and outlying 

curves by band depth (Lopez-Pintado and Romo, 2009; Sun and Genton, 2011; Sun et al., 

2012); the user can also choose to ‘rainbowize by depth’, which colors the curves from the 

median outward based on depth.

6 Code Structure of the refund.shiny Package

We now briefly describe the code infrastructure used to create the refund.shiny package.

As indicated in the introduction, the workflow separates visualization from analysis in the 

following way. First, one analyzes a dataset using a function in the refund package. The 

functions in refund take discretely observed functional data as input, perform an analysis, 

and return an object whose class corresponds to the method used. For example, the fpca.sc 

function return as object of class fpca and the bayes.fosr function returns an object of 

class fosr. The primary function in refund.shiny, plot shiny, is a generic function 

whose behavior depends on the class of the object passed as an argument. Because of this 

structure, the user experience is uniform across a variety of analyses; this also suggests a 

development strategy for the addition of interactive graphics as new analysis techniques 

become available. Lastly, by separating the analysis and visualization steps, it is possible for 

analysis functions developed outside of the refund package to return objects of a defined 

class and thereby take advantage of the plotting capabilities we describe.

The interactive graphics in the refund.shiny are built on RStudio's R package shiny 

(RStudio Inc., 2015), which significantly reduces the barriers to producing webpage-style 

representations of analysis results in R. Other examples of interactive graphics that utilize 

the shiny framework are shinymethyl (Fortin et al., 2014) for visualization of high-
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dimensional genomic data and shinystan (Stan Development Team, 2015) for exploring 

Bayesian models fit using Markov Chain Monte Carlo. In refund.shiny the plots within 

tabs are produced using ggplot2 (Wickham and Chang, 2015); it is possible to export each 

plot as a PDF or to save the corresponding ggplot object to the user's R workspace for 

further manipulation.

7 Concluding Remarks

Visualization has long been acknowledged as a central tool in data analysis. For functional 

datasets, the need for useful graphics is compounded: data are inherently complex, high-

dimensional and structured. Although a robust literature for functional data exists and many 

methods have standard graphical representations, the creation of these graphics is often time 

consuming. The refund.shiny package was developed to ease this process by producing a 

visualization framework for several common functional data analyses. By leveraging new 

tools for interactivity, refund.shiny responds to user input and actions and, in so doing, 

can build intuition for analyses in both statisticians and practitioners. The interfaces 

produced by refund.shiny using the shiny framework are web applications, rendered 

locally by a web browser. These applications can be hosted publicly and may, in the spirit of 

“visuanimations” (Genton et al., 2015), be included as important parts of scientific papers 

and reports.

We use an analytic workflow that separates modeling from visualization. Doing so allows 

several methods and implementations to take advantage of the same visualization software; 

as an example, fpca.sc(), fpca.face(), fpca.ssvd(), and fpca2s() implement 

different methods for FPCA but are all compatible with plot shiny(). This produces an 

intuitive user experience and leaves open the possibility for future approaches to FPCA or 

FoSR to use the refund.shiny package for visualization with minimal effort. Similarly, 

this workflow is amenable to the development of interactive visualizations for additional 

functional data analyses in future iterations of the package.
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Figure 1. 
Screenshot showing tab 5 of the interactive graphics for FPCA. A scatterplot of FPC 

loadings ĉik against ĉik′ is shown in the upper plot, and k and k′ are selected using drop-

down menus at the left. The lower plot shows fitted curves for all subjects. In the scatterplot, 

a subset of estimated loadings can be selected by clicking-and-dragging to create a blue box; 

blue curves in the plot of fitted values correspond to selected points in upper plot.
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Figure 2. 
Screenshot showing tab 1 of the interactive graphic for MFPCA. The plot at right shows 

; kL is chosen by the drop-down menu in at left, and the user can 

switch between level L by clicking Level 1 or Level 2 inset tabs at the top left.
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Figure 3. 
Screenshot showing Tab 1 of the interactive graphic for TV-FPCA. The plot shows observed 

data of the selected subject.
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Figure 4. 
Screenshot showing tab 3 of the interactive graphic for FoSR. The plot shows the estimated 

coefficient function βk̂(t) for the selected covariate xk with pointwise confidence intervals.
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