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Abstract

Genome architecture varies considerably among eukaryotes in terms of both size and structure 

(e.g. distribution of sequences within the genome, elimination of DNA during formation of 

somatic nuclei). The diversity in eukaryotic genome architectures and the dynamic processes that 

they undergo are only possible due to the well-developed nature of an epigenetic toolkit, which 

likely existed in the Last Eukaryotic Common Ancestor (LECA). This toolkit may have arisen as a 

means of navigating the genomic conflict that arose from the expansion of transposable elements 

within the ancestral eukaryotic genome. This toolkit has been coopted to support the dynamic 

nature of genomes in lineages across the eukaryotic tree of life. Here we highlight how the 

changes in genome architecture in diverse eukaryotes are regulated by epigenetic processes by 

focusing on DNA elimination, genome rearrangements, and adaptive changes to genome 

architecture. The ability to epigenetically modify and regulate genomes has contributed greatly to 

the diversity of eukaryotes observed today.

Epigenetic mechanisms regulate gene expression, modify genome structures, silence mobile 

genetic elements, and are widespread among eukaryotes, suggesting that at least some were 

present in the last eukaryotic common ancestor [LECA; 1,2–4]. For example, the RNAi 

pathway that is involved in the post-transcriptional regulation of transposable elements 

(TEs) also plays a role in guiding large-scale chromatin remodeling processes such as de 
novo DNA methylation in plants [5,6] and diatoms [7], as well as in modifying histones 

[8,9]. Evidence for transgenerational epigenetic inheritance, a concept the emerged from 

Barbara McClintock’s discovery of the impact of transposable elements (TEs) on 

phenotypes in corn, is now well established in plants and animals where it often involves 

chromatin modifications [10]. While less is known about microeukaryotic lineages, there is a 

growing body of literature suggesting that epigenetic processes underlie the structure and 

function of genomes in diverse lineages.
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One hypothesis for the proliferation of epigenetic mechanisms in eukaryotes is that they 

evolved first to manage genome conflict that resulted from the expansion of TEs and then 

became coopted for other uses [11]. Silencing of TEs can be done post-transcriptionally or 

through heterochromatin formation targeting mobile elements [12,13], and both require 

epigenetic mechanisms that are now deployed more generally throughout the genome. As 

described below, several eukaryotic lineages have managed to reduce the negative impact of 

TEs through developmentally regulated genome rearrangements, which include the loss of 

‘germline-specific’ genome sequences during the generation of somatic nuclei [14]. Other 

lineages have coopted epigenetic mechanisms to regulate gene expression and nuclear 

architecture [15,16].

Here we describe the links between epigenetic mechanisms and the diversity of genome 

architectures in lineages from across the eukaryotic tree of life. Available data are most 

abundant for plants, animals and fungi, and we discuss only select data from these 

multicellular lineages as reviews exist to cover many topics within these clades [17–19]. 

Data from the rest of the eukaryotic tree of life are patchy, and come largely from model 

lineages (e.g. ciliates), and parasites and pathogens (e.g. Entamoeba, Plasmodium, 
Phytophthora). We are confident that examples of the roles of epigenetic processes in 

shaping genomes will only expand as poorly-sampled lineages receive greater scrutiny. We 

also believe that the value of this review includes highlighting the exceptions to biological 

principles (e.g. the concept of a static genome within species) that emerge from studies of 

diverse eukaryotic lineages.

Diversity of eukaryotic genome contents

Understanding the impact of epigenetic processes in eukaryotes requires an appreciation of 

the tremendous variation in size and content of eukaryotic genomes [11]. This is perhaps 

best exemplified by the C-value paradox whereby genome size is highly variable and does 

not obviously correlate with any measure of complexity, particularly in eukaryotes 

[11,20,21]. Among eukaryotes, size variation can be extreme with genomes ranging from 

only 2.3 Mbp in the microsporidian fungus Encephalitozoon intestinalis (Opisthokonta; 

Fungi) [22], 3 Gbp in Homo sapiens (Opisthokonta; Metazoa) [23], to over 20 Gbp in the 

gymnosperm Pinus taeda (Loblolly pine; Plantae [24]) and an estimated 670 Gbp in the 

Amoeba dubia (Amoebozoa) [25]. Variation in the number of TEs is one factor that 

contributes to variation in genome sizes, with the proportion of transposable elements 

comprising more than 50% of the genome content in some lineages [11]. Transposable 

elements are rare in other lineages including the ancient-asexual Bdelloid rotifers 

(Opisthokonta; Metazoa) [26] and the somatic macronuclei of ciliates (SAR) [27] where 

they comprise less than 10% of the genome.

DNA elimination in establishing somatic genomes

One example of epigenetic control of eukaryotic genome structure can be seen in the 

purging of portions of the genome during the development of somatic nuclei. This 

distinction between germline and somatic nuclei defines both animals and ciliates, and is 

also found in a subset of foraminifera (Figure 1) [28].
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Distinct germline and somatic genomes in animals

Beyond simply differing between haploid and diploid, multiple non-sister animal lineages 

generate somatic genomes with distinct contents that often includes reduced levels of TEs 

and other repetitive elements (Figure 1)[14]. During early animal development, the germline 

genome is physically sequestered into specialized tissues where it often remains heavily 

heterochromatinized for much of the life cycle [29,30]. The loss of germline-specific DNA, 

also described as chromatin diminution, has been documented in a diversity of non-

monophyletic animal lineages [14] and molecular details have been worked out in ascarid 

worms [31], copepods [32], and in early-diverging vertebrates (i.e. hagfish and lampreys) 

[33–35]. In copepods, for example, the zygotic genome expands through successive rounds 

of endoreplication and/or TE proliferation [32,36,37], which is then followed by large-scale 

elimination of germline-limited sequences [37]. In Cyclops kolensis (Opisthokonta), the 

genome is amplified from ~ 1 Gbp up to ~75 Gbp [37]. Recently, Sun et al. [36] sequenced 

portions of both the somatic and germline genomes of Mesocyclops edax (Opisthokotna) 

revealing that TEs are rare in the somatic genome, and younger (i.e. less degenerate) TEs 

appear to be more effectively eliminated (absent) from the somatic genome [36]. Given the 

broad distribution of examples of DNA elimination during the formation of somatic nuclei in 

lineages across the animal tree of life [14], we suspect that this process may be even more 

widespread and may have evolved as a means of managing the genome conflict introduced 

by the invasion of TEs.

Distinct germline and somatic genomes in ciliates

Ciliates are marked by the presence of distinct germline and somatic genomes within a 

shared cytoplasm. Because of mechanistic similarities in some elements of chromosome 

processing, Klobutcher and Herrick [38] argued that nuclear dualism in ciliates arose as a 

means of eliminating TEs from the somatic genome (Figure 1; SAR). The somatic 

macronucleus harbors gene-rich chromosomes that are the result from developmentally 

regulated genome processing following conjugation (i.e. sex). These processes include DNA 

elimination, genome rearrangements and genome amplification [39,40]. In contrast, the 

germline micronucleus is enriched in repetitive regions that interrupt gene-coding regions 

[27,39]. Many of these repetitive regions harbor signatures of TEs, suggesting that an 

ancient proliferation of TEs was counterbalanced by the evolution/cooption of mechanisms 

for DNA elimination of germline-limited sequences during somatic development [38,41]. 

For example, a domesticated PiggyBac transposase (i.e. PiggyMAC) is responsible for 

excision of germline-limited DNA, effectively deleting TEs from the somatic genome.

The molecular mechanisms behind genome reduction have been worked out in some ciliate 

lineages and involve a suite of epigenetic players [42–44]. In the model ciliate Tetrahymena 
thermophila (SAR), which only eliminates ~30% of its germline genome, small RNAs are 

enriched in germline specific sequences and are believed to serve as scan RNAs during the 

development of the somatic nucleus [45]. In contrast, the ciliate Stylonychia lemnae (SAR), 

which eliminates >90% of its germline genome, small RNAs appear to target somatic 

sequences to be kept [46]. These same small RNAs also contribute to heterochromatin 

formation, by guiding repressive histone modifications [44] and DNA methylation [47] in 

regions to be eliminated.
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Transposable elements, epigenetics, and the potential for adaptation

The idea that epigenetic mechanisms evolved at least in part as a means of silencing 

transposable elements is well-established and has been reviewed elsewhere [19,48,49]. Some 

well documented examples of epigenetic silencing of transposable elements include: RNA-

directed de novo DNA methylation in plants and diatoms [50,51], repeat-induced point 

mutations in fungi [52], and small RNA guided transposon silencing in animals [53]. 

Despite the ability of diverse eukaryotes to effectively ‘purge’ or silence TEs throughout 

development, TEs and their associated processing/silencing in genomes can also play an 

adaptive role [10,11,54] and perhaps even influence patterns of speciation [55]. For example, 

cell-to-cell heterogeneity and life stage specific control of gene expression – both of which 

are categorized as stochastic developmental variation –are underlain by epigenetic 

modifications to chromatin and have been argued to be adaptive in lineages as diverse as 

bacteria, yeast, animals, plants, apicomplexa, ciliates, green algae, slime molds, and 

choanoflagellates [56–59]. The broad distribution of stochastic developmental variation 

among lineages of bacteria, archaea and eukaryotes suggests that this phenomenon may have 

been present in the last universal common ancestor [LUCA; 58].

Epigenetic mechanisms and expansive TE burden in plants

The prevalence of TEs in plants led to the concept that a diverse epigenetic toolkit evolved 

for genome defense from TEs and viruses [60], and that this toolkit has become part of an 

adaptive, TE-mediated response to stress [61,62]. The diverse suite of epigenetic 

mechanisms in plants can been attributed to the large portion of genomes comprised of both 

functional TEs and repetitive elements (i.e. degraded TEs; >80% in some plants such as Zea 
mays; Plantae [63]). Silencing of TEs in plants occurs through RNA-directed DNA 

methylation, where transcribed TEs are processed into the small RNAs that guide their own 

de novo methylation [64,65]. During non-stressed growth, epigenetic proteins ensure the 

maintenance of heterochromatin and genomic stability in the vast TE rich chromosomal 

regions [66,67].

Evidence for the adaptive impact of TEs in adaptive responses in plants has emerged in 

recent decades. Upon abiotic stress in Arabidopsis (Plantae), TE activity increases 

measurably, leading to distinct changes in genome organization through both homologous 

recombination and copy number variation of TEs and protein coding genes [62,68]. 

Interestingly, these effects are heritable through multiple generations of progeny, suggesting 

the possibility that this response is adaptive [62,68,69]. For example, increased rates of 

homologous recombination are heritable in Nicotiana tabacum (tobacco; Plantae), where 

stress induces global changes in hypermethylation of DNA and loci-specific 

hypomethylation that allows for recombination [70]. It is possible that the impacts of 

genome rearrangement are adaptive to some individuals due to beneficial changes in gene 

regulation or even gene copy number (Figure 1).

Epigenetic modifications of genome structures in eukaryotic parasites

We focus on the role of epigenetics in parasites to exemplify processes in eukaryotic 

microbes, largely due to the lack of data in non-parasitic lineages; we do recognize that data 
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are beginning to emerge from lineages such as dinoflagellates, stramenopiles and other 

marine algae [71–73]. Epigenetic mechanisms play a role in phenotypic plasticity and in the 

ability of parasites to modify host physiology and behavior [74–77]. Moreover, mechanisms 

like pathogen-induced chromatin modifications also play a role in bacterial disease [74], 

suggesting that they may be very ancient.

The apicomplexan parasite Plasmodium falciparum (Figure 1; SAR), the causative agent of 

malaria, relies on epigenetic mechanisms to regulate the transcription of genes necessary for 

its varying life cycle stages [56,74,78–80]. Transitions between life cycle stages in 

Plasmodium is in part driven by post-translational modifications of histones [56] and in part 

by large scale reorganization of nuclear architecture [79]. Plasmodium falciparum also 

differentially modifies the expression of the var genes that underlie antigenic variation 

through epigenetic modification of histones in small chromatin domains; the var genes are 

located in subtelomeric regions and their expression is regulated both by localized 

modification of chromatin and position within the nucleus [56]. Epigenetic mechanisms in 

the apicomplexan Toxoplasma gondii (Figure 1; SAR) have evolved to alter the behavior of 

one of their hosts, the rat, to make it less fearful of cats, which are the final hosts for the 

parasite [77].

Life cycle variation is also epigenetically regulated in the parasite Giardia intestinalis 
(Figure 1; Excavata) [81]. Changes in histone acetylation correspond to transition from free-

living to encysted states [81]. Another interesting feature about the structure of the G. 
intestinalis genome is the restriction of active retrotransposons to subtelomeric regions [82]. 

The variation in the number of retrotransposons (and their recombination) may contribute to 

the variable karyotypes observed among strains of Giardia [82–84]. These homologous 

regions could allow for recombination in the absence of traditional meiosis, providing 

Giardia with an alternative means to generate genomic diversity after the fusion of its two 

nuclei [84,85].

Another disease-causing group of Excavata, the kinetoplastids (e.g. Leishmania and 

Trypanosoma; Figure 1; Excavata), also deploy epigenetic mechanisms in causing disease 

(e.g. Leishmaniasis, African sleeping sickness) and evading host immune systems. The 

genus Trypanosoma relies on epigenetic modification of VSG (variable surface 

glycoprotein) genes to evade host immune systems [75], including inducing homologous 

recombination of VSG genes nestled in subtelomeric regions. Similar to the var genes in 

Plasmodium, changes in nuclear position of the active VSG gene initiate changes in 

chromatin structure (e.g. chromatin condensation) that lead to differential and mono-allelic 

VSG expression [15]. Beyond altering their own genome, the parasite Leishmania donovani 
(the causative agent of leishmaniasis) is able to induce epigenetic modifications in host 

macrophages that allow for the successful invasion by the parasite [76].

Epigenetics may also underlie karyotype variation in the genus Entamoeba (Figure 1; 

Amoebozoa), which includes Entamoeba histolytica, the causative agent of dysentery [86]. 

As in Giardia, karyotype variation may be generated by recombination between transposable 

elements within the genome, and may contribute to the ability of Entamoeba to escape host 

immune systems [86]. Adding a further layer of complexity, differential methylation of TEs 
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in Entamoeba has been linked to varying levels of virulence [75,87]. Together, these data 

indicate the role the epigenetic toolkit plays in virulence of this human pathogen.

Genome architecture also drives patterns of substitutions in the genomes of some eukaryotic 

lineages. Oomycetes and some filamentous fungi (Figure 1; SAR; Stramenopiles and 

Opisthokonta; Fungi respectively) have managed to physically partition their genomes into 

core regions with greater conservation that are interrupted by gene-poor plastic regions[88–

90]. This is most apparent in Phytophthora infestans, the causative agent in the Irish potato 

famine, whose 240 Mbp genome is divided unevenly as the regions of conserved ‘house-

keeping’ genes that comprise about 25% of the total genome size. The gene-poor regions 

that comprise the bulk of the P. infestans genome are rich in mobile and repetitive elements 

and are associated with pathogenicity and epigenetic silencing [89]. This division of 

function within the P. infestans genome behaves almost as two functionally and spatially 

distinct genomes, and is determined by epigenetic mechanisms. RNAi-mediated 

heterochromatin formation not only controls the activity of mobile elements but also has 

major impacts on the transcription of nearby effector genes (more than half of all effector 

genes in P. infestans are within <2kb of a TE) where increasing proximity can alter an 

effector gene’s transcription due to the spreading of heterochromatin from targeted loci 

[91,92]. The combination of complex epigenetic silencing and the evolutionary impacts of 

the repetitive genome on gene evolution (e.g. copy number variation, and recombination) 

contribute to the incredible virulence of the pathogenic oomycetes.

Perspective

Epigenetic mechanisms that regulate transposable elements as part of genome defense have 

been coopted and contribute to the development of diversity across the eukaryotic tree of 

life. Eukaryotes share a core epigenetic toolkit (though individual components vary among 

lineages) comprised of proteins and RNAs that regulate histone and DNA modifications, and 

that enable RNA scanning mechanisms. These epigenetic processes have expanded among 

eukaryotic lineages and have enabled eukaryotes to explore diverse genomic landscapes. The 

resulting epigenetic toolkit provides the basis for the dynamic processes that have 

contributed to the overall diversity and success of eukaryotic lineages.

Glossary

Endoreplication Replication of the genome without any following cell division that 

leads to changes in ploidy

Heterochromatin Tightly packed chromatin that blocks transcription from occurring 

and is associated with histone modifications

Histone 
modification

Post-transcriptional modifications of the histone proteins at 

varying amino acid residues. The most well known are histone 

methylation and acetylation, which are often generalized to be 

repressive and activating modifications, respectively
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Macronucleus Somatic and transcriptionally active nucleus in ciliates. Contains 

streamlined chromosomes that leack centromeric sequences and 

are often gene-rich. In some ciliate lineages, processing of 

germline chromosomes leads to macronuclei with chromosomes 

coding for single-genes and that can be highly amplified

Micronucleus The germline nucleus in ciliates that is heterochromatinized and 

has a more traditional genome architecture (e.g. long 

chromosomes with centromeric sequences). Micronuclear 

genomes also contain transposable element sequences that 

sometimes interrupt protein-coding genes

Stochastic 
developmental 
variation

Seemingly random changes in phenotype such as heterogeneity in 

gene expression among cells. Stochastic developmental variation 

provides populations with genetic diversity that may allow 

exploration of adaptive landscapes

Transposable 
elements

Regions of DNA that are capable of changing their position in the 

genome
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Figure 1. 
Distribution of epigenetic processes across the eukaryotic tree of life. These exemplar 

epigenetically regulated processes are widespread across eukaryotes. Organisms denoted 

with ‘*’ are discussed in this review.
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