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Abstract

We consider the problem of jointly estimating a collection of graphical models for discrete data, 

corresponding to several categories that share some common structure. An example for such a 

setting is voting records of legislators on different issues, such as defense, energy, and healthcare. 

We develop a Markov graphical model to characterize the heterogeneous dependence structures 

arising from such data. The model is fitted via a joint estimation method that preserves the 

underlying common graph structure, but also allows for differences between the networks. The 

method employs a group penalty that targets the common zero interaction effects across all the 

networks. We apply the method to describe the internal networks of the U.S. Senate on several 

important issues. Our analysis reveals individual structure for each issue, distinct from the 

underlying well-known bipartisan structure common to all categories which we are able to extract 

separately. We also establish consistency of the proposed method both for parameter estimation 

and model selection, and evaluate its numerical performance on a number of simulated examples.
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1. Introduction

The analysis of roll call data of legislative bodies has attracted a lot of attention both in the 

political science and statistical literature. For political scientists, such data allow to study 

broad issues such as party cohesion as well as more specific ones such as coalition 

formation; see, for example, the books by Enelow and Hinich (1984), Matthews and Stimson 
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(1975), Morton (1999), Poole and Rosenthal (1997). A popular tool in political science is the 

ideal point model [Clinton, Jackman and Rivers (2004)] that posits a one-dimensional latent 

political space along which legislators and bills they vote for are aligned. A legislator’s 

position corresponds to an ideal point, where bills coinciding with that position maximize 

his/her utility. These ideal points reveal legislators’ preferences and it is of interest to infer 

them from roll call data. An extension of this model that incorporates information about the 

text of the bills being voted upon is discussed in Gerrish (2011), while the impact of 

absenteeism is examined in Han (2007).

A statistical challenge is how to best model and present the roll call data in a way that makes 

interesting patterns apparent and facilitates subsequent analyses. A number of techniques 

have been employed including principal components analysis (PCA) [de Leeuw (2006)], 

multidimensional scaling (MDS) [Diaconis, Goel and Holmes (2008)], Bayesian spatial 

voting models [Clinton, Jackman and Rivers (2004)], and graphical models for binary data 

[Banerjee, El Ghaoui and d’Aspremont (2008)].

Dimension reduction techniques such as PCA and MDS aim at constructing a “map,” with 

the members of the legislative body positioned relative to their peers according to their 

voting pattern. A typical example of such a map of the U.S. Senate members in the 109th 

Congress (2005–2006) using multidimensional scaling for selected votes is shown in Figure 

1; for a detailed description of the data see Section 4. A clear separation between members 

of the two parties is seen (Republicans to the left of the map and Democrats to the right), 

together with some members exhibiting a voting pattern deviating from their party, for 

example, Nelson (Democrat of Nebraska), and Collins and Snow (Republicans of Maine), 

while the independent Jeffords (shown in purple) votes like a Democrat. More interestingly, 

the voting patterns within both parties form distinct subclusters. While the nature of this 

division is impossible to infer from an MDS or a PCA representation such as the one shown 

in Figure 1, our subsequent analysis will show that this difference is driven by votes on 

defense/security and healthcare issues.

This finding suggests that treating all votes as homogeneous, that is, assuming that they 

represent the same underlying relationship between senators, may mask more subtle patterns 

which depend on the issues being voted upon. Therefore, treating votes as heterogeneous is 

more accurate and can provide further insight into the voting behavior of different groups of 

senators on different issues. In this paper, we focus on voting records on three types of bills: 

defense and national security, environment and energy, and healthcare issues. Voting on the 

latter category is typically more partisan than voting on defense and national security and, 

thus, we expect to see different connections in different categories.

The voting records of the U.S. Senate from the 109th Congress covering the period 2005–

2006 were obtained directly from the Senate’s website (www.senate.gov). We chose the 

109th Congress because its voting patterns have been previously analyzed in the literature 

[see, e.g., Banerjee, El Ghaoui and d’Aspremont (2008)], but as we have discovered, the 

version of the data previously analyzed was contaminated with voting records from the 

1990s (when the set of senators would have been different). Thus, we collected the data 

ourselves, on all the 645 votes that the Senate deliberated and voted on during that period, 
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which include bills, resolutions, motions, debates and roll call votes. To study the potential 

heterogeneity in the voting patterns, we focused on the three largest meaningful (i.e., 

excluding purely procedural votes) categories of votes extracted from bills, resolutions and 

motions: (1) defense and security issues; (2) environment and energy issues; (3) health and 

medical care issues. The categories were extracted by a combination of text analysis of bill 

names and manual labeling. A complete analysis of this data set will be presented in Section 

4.

Our goal in this paper is to develop a statistical model for studying dependence patterns in 

such situations: there is some overall structure present (party affiliation, which affects 

everything) and there are also distinct categories with their own individual structures. Since 

we are dealing with voting data, we use Markov network models to capture the dependence 

structure of binary or categorical random variables. Similar to Gaussian graphical models, 

nodes in a Markov network correspond to (categorical) variables, while edges represent 

dependence between nodes conditional on all other variables. Graphical models are an 

exploratory data analysis tool used in a number of application areas to explore the 

dependence structure between variables, including bioinformatics [Airoldi (2007)], natural 

language processing [Jung et al. (1996)] and image analysis [Li (2001)]. In the case of 

Gaussian graphical models, which assumes the variables are jointly normally distributed, the 

structure of the underlying graph can be fully determined from the corresponding inverse 

covariance (precision) matrix, the off-diagonal elements of which are proportional to partial 

correlations between the variables. A number of methods have been recently proposed in the 

literature to fit sparse Gaussian graphical models [see, e.g., Banerjee, El Ghaoui and 

d’Aspremont (2008), Meinshausen and Bühlmann (2006), Peng, Zhou and Zhu (2009), 

Rothman et al. (2008), Yuan and Lin (2007), Ravikumar et al. (2011) and references 

therein]. Sparse Markov networks for binary data (Ising models) have been studied by Guo 

et al. (2009), Höfling and Tibshirani (2009), Ravikumar, Wainwright and Lafferty (2010), 

Anandkumar et al. (2012), Xue, Zou and Cai (2012). These methods do not allow for 

different categories within the data.

To allow for heterogeneity, we develop a framework for fitting different Markov models for 

each category that are nevertheless linked, sharing nodes and some common edges across all 

categories, while other edges are uniquely associated with a particular category. This will 

allow us to borrow strength across categories instead of fitting them completely separately. 

For the Gaussian case, this type of joint graphical model was first studied by Guo et al. 

(2011), who proposed a joint likelihood based estimation method that borrowed strength 

across categories. Several other papers have proposed alternative algorithms for the Gaussian 

case [Danaher, Wang and Witten (2011), Hara and Washio (2013), Yang et al. (2012)]. We 

note that a context-specific graphical model was proposed for count data in the form of 

contingency tables by Højsgaard (2004), but contingency tables are not suitable for high-

dimensional data and the context-specific model is not sparse.

The advantage of using a Markov graphical model in this context is that it quantifies the 

degree of conditional dependence between the senators based on their voting record, and 

hence the obtained network, and is directly interpretable. Techniques like multidimensional 

scaling and principal components analysis represent relative similarities between senators’ 
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voting records on the map and, hence, the distance between any two senators can be 

interpreted as a quantitative measure of similarity between their voting records. However, 

unlike in a Markov network, these distances are not interpretable in the context of a 

generative probability model.

The remainder of the paper is organized as follows. Section 2 introduces the Markov 

network and addresses algorithmic issues, and Section 3 briefly illustrates the performance 

of the joint estimation method on simulated data. A detailed analysis of the U.S. Senate’s 

voting record from the 109th Congress is presented in Section 4. Some concluding remarks 

are drawn in Section 5, and the Appendix presents results on the asymptotic properties of the 

method. The electronic supplementary material contains a detailed investigation of missing 

data imputation methods for the Senate vote data.

2. Model and estimation algorithm

In this section we present the Markov model for heterogeneous data, focusing on the special 

case of binary variables (also known as the Ising model). The extension to general 

categorical variables is briefly discussed in Section 5. We start by discussing estimation of 

separate models for each category and then develop a method for joint estimation.

The main technical challenge when estimating the likelihood of Markov graphical models is 

its computational intractability due to the normalizing constant. To overcome this difficulty, 

different methods employing computationally tractable approximations to the likelihood 

have been proposed in the literature; these include methods based on surrogate likelihood 

[Banerjee, El Ghaoui and d’Aspremont (2008), Kolar and Xing (2008)] and pseudo-

likelihood [Guo et al. (2010), Höfling and Tibshirani (2009), Ravikumar, Wainwright and 

Lafferty (2010)]. Höfling and Tibshirani (2009) also proposed an iterative algorithm that 

successively approximates the original likelihood through a series of pseudo-likelihoods, 

while Ravikumar, Wainwright and Lafferty (2010) and Guo et al. (2010) established 

asymptotic consistency of their respective methods.

2.1. Problem setup and separate estimation

We start from setting up notation and reviewing previous work on estimating a single Ising 

model, which can be used to estimate the graph for each category separately. Suppose that 

data have been collected on p binary variables in K categories, with nk observations in the 

kth category, k = 1, …, K. Let  denote a p-dimensional row vector 

containing the data for the ith observation in the kth category and assume that it is drawn 

independently from an exponential family with the probability mass function

(2.1)

The partition function  ensures that the 

probabilities in (2.1) add up to one. The parameters , 1 ≤ j ≤ p correspond to the main 
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effect for variable Xj in the kth category, and  is the interaction effect between variables 

Xj and Xj′, 1 ≤ j < j′ ≤ p. The underlying network associated with the kth category is 

determined by the symmetric matrix . Specifically, if , then Xj and Xj′ 

are conditionally independent in the kth category given all the remaining variables and, 

hence, their corresponding nodes are not connected. For each category, (2.1) is referred to as 

the Markov network in the machine learning literature and as the log-linear model in the 

statistics literature, where  is also interpreted as the conditional log odds ratio between Xj 

and Xj′ given the other variables. Although general Markov networks allow higher order 

interactions (3-way, 4-way, etc.), Ravikumar, Wainwright and Lafferty (2010) pointed out 

that in principle one can consider only the pairwise interaction effects without loss of 

generality, since higher order interactions can be converted to pairwise ones by introducing 

additional variables [Wainwright and Jordan (2008)]. For the rest of this paper, we only 

consider models with pairwise interactions of the original binary variables.

The simplest way to deal with heterogenous data is to estimate K separate Markov models, 

one for each category. If one further assumes sparsity for the kth category, the structure of 

the underlying graph can be estimated by regularizing the log-likelihood using an ℓ1 penalty:

(2.2)

The ℓ1 penalty shrinks some of the interaction effects  to zero and λ controls the degree 

of sparsity. However, estimating (2.2) directly is computationally infeasible due to the nature 

of the partition function. A standard approach in such a situation is to replace the likelihood 

with a pseudo-likelihood [Besag (1986)], which has been shown to work well in a range of 

situations. Here, we use a pseudo-likelihood estimation method for Ising models [Guo et al. 

(2010), Höfling and Tibshirani (2009)], based on

(2.3)

where Θ(k) is restricted to be symmetric. Criterion (2.3) can be efficiently maximized using 

the modified coordinate descent algorithm of Höfling and Tibshirani (2009).

2.2. Joint estimation of heterogeneous networks

The separate estimation methods reviewed in the previous section do not take advantage of 

the shared nodes among the categories and potential common structure. Our goal here is to 

explicitly include this into the estimation procedure. We start by reparameterizing each 

as

(2.4)
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To avoid sign ambiguities between ϕj, j′ and , we restrict ϕj, j′ ≥ 0, 1 ≤ j < j′ ≤ p. To 

preserve the symmetry of Θ(k), we also require ϕj, j′ = ϕj′, j and , for all 1 ≤ j < j′ ≤ 

p and 1 ≤ k ≤ K. Moreover, for identifiability reasons, we restrict the diagonal elements ϕj, j 

= 1 and . Note that ϕj, j′ is a common factor across all K categories that controls the 

occurrence of common links shared across categories, while  is an individual factor 

specific to the kth category. The proposed joint estimation method maximizes the following 

penalized criterion:

(2.5)

where Φ(k) = (ϕj, j′)p×p and . The tuning parameter η1 controls sparsity of the 

common structure across the K networks. Specifically, if ϕj, j′ is shrunk to zero, all 

 are also zero and, hence, there is no link between nodes j and j′ in any of the K 
graphs. Similarly, η2 is a tuning parameter controlling sparsity of links in individual 

categories. Due to the nature of the ℓ1 penalty, some of ’s will be shrunk to zero, 

resulting in a collection of graphs with individual differences. Note that this two-level 

penalty was originally proposed by Zhou and Zhu (2007) for group variable selection in 

linear regression.

The criterion (2.5) achieves the stated goal of estimating common structure and hence 

borrows strength across the K data categories, but requires the selection of two tuning 

parameters. However, there is an equivalent criterion presented next that only involves a 

single tuning parameter, thus simplifying the estimation task

(2.6)

where . The optimization problems given by (2.5) and (2.6) are equivalent in the 

sense that for each pair of (η1, η2) there is a λ that gives the same solution and vice versa. 

Their equivalence can be formalized as follows (here A · B denotes the Schur–Hadamard 

element-wise product of two matrices):

Proposition 1—Let  be a local maximizer of (2.6). Then there exists a local 

maximizer of (2.5), , such that Θ̂(k) = Φ̂ · Γ̂(k), for all 1 ≤ k ≤ K. On the other 
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hand, if  is a local maximizer of (2.5), then there also exists a local maximizer 

of (2.6), , such that Θ̂(k) = Φ̂ · Γ̂(k), for all 1 ≤ k ≤ K.

The proof of this proposition is similar to the proofs of Lemma 1 and Theorem 1 in Zhou 

and Zhu (2007) and is omitted here. Note that even though choosing a single tuning 

parameter λ corresponds to a particular path in the (η1, η2) space, this restriction affects only 

the individual estimates ϕj, j′ and γj, j′, but not their product θj, j′.

2.3. Algorithm and model selection

Criterion (2.6) leads to an efficient estimation algorithm based on the local linear 

approximation. Specifically, letting  denote the estimates from the tth iteration, we 

approximate , when . Thus, 

at the (t + 1)th iteration, problem (2.6) is decomposed into K individual optimization 

problems:

(2.7)

Note that criterion (2.7) is a variant of criterion (2.3) with a weighted ℓ1 penalty and hence 

can be solved by the algorithm of Höfling and Tibshirani (2009). For numerical stability, we 

threshold  at 10−10. The algorithm is summarized as follows:

Step 1. Initialize ’s (1 ≤ j, j′ ≤ p; 1 ≤ k ≤ K) using the estimates from the separate 

estimation method;

Step 2. For each 1 ≤ k ≤ K, update ’s by solving (2.7) using the pseudo-likelihood 

algorithm Guo et al. (2010), Höfling and Tibshirani (2009).

Step 3. Repeat step 2 until convergence.

The tuning parameter λ in (2.6) controls the sparsity of the resulting estimator and can be 

selected using cross-validation. Specifically, for each 1 ≤ k ≤ K, we randomly split the data 

in the kth category into D subsets of similar sizes and denote the index set of the 

observations in the dth subset as , 1 ≤ d ≤ D. Then λ is selected by maximizing
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(2.8)

where  is the cardinality of  and  is the joint estimate of  based on 

all observations except those in , as well as the tuning parameter λ.

3. Simulation study

Before turning our attention to examining the U.S. Senate voting patterns, we evaluate the 

performance of the joint estimation method on three synthetic examples, each with p = 100 

variables and K = 3 categories. The network structure in each example is composed of two 

parts: the common structure across all categories and the individual structure specific to a 

category. The common structures in these examples are a chain graph, a nearest neighbor 

graph and a scale-free graph. These graphs are generated as follows:

Example 1: Chain graph. A chain graph is generated by connecting nodes 1 to p in 

increasing order, as shown in Figure 2(A1).

Example 2: Nearest neighbor graph. The data generating mechanism of the nearest 

neighbor graph is adapted from Li and Gui (2006). Specifically, we generate p points 

randomly on a unit square, calculate all p(p − 1)/2 pairwise distances, and find three 

nearest neighbors of each point in terms of these distances. The nearest neighbor 

network is obtained by linking any two points that are nearest neighbors of each other. 

Figure 2(B1) illustrates a nearest-neighbor graph.

Example 3: Scale-free graph. A scale-free graph has a power-law degree distribution 

and can be simulated by the Barabasi–Albert algorithm [Barabási and Albert (1999)]. A 

realization of a scale-free network is depicted in Figure 2(C1).

In each example, the network for the kth category (k = 1, …, K) is created by randomly 

adding links to the common structure. The individual links in different categories are disjoint 

and have the same degree of sparsity, measured by ρ, the ratio of the number of individual 

links to the number of common links. In particular, ρ = 0 corresponds to identical networks 

for all three categories. In the simulation study, we consider ρ = 0, 1/4 and 1, gradually 

increasing the proportion of individual links (Figure 2). Given the graphs, the symmetric 

parameter matrix Θ(k) is generated as follows. Each  corresponding to an edge 

between nodes j and j′ is uniformly drawn from [−1, −0.5] ∪ [0. 5, 1], whereas all other 

elements are set to zero. Then we generate the data using Gibbs sampling. Specifically, 

suppose the ith iteration sample has been drawn and is denoted as ; 

then, in the (t + 1)th iteration, we draw , 1 ≤ j ≤ p, from the Bernoulli distribution:
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(3.1)

To ensure that the simulated observations are close to i.i.d. samples from the target 

distribution, the first 1,000,000 rounds are discarded (burn-in) and the data are collected 

every 100 iterations from the sampler. In the simulation study, we consider a balanced 

scenario and an unbalanced scenario. The former consists of nk = 300 observations in each 

category, whereas the latter has three unbalanced categories with sample sizes n1 = 200, n2 = 

300 and n3 = 400.

We compared the structure estimation results of the joint estimation method and the separate 

estimation method using ROC curves, which dynamically characterize the sensitivity 

(proportion of correctly identified links) and the specificity (proportion of correctly excluded 

links) by varying the tuning parameter λ. Figure 3 shows the ROC curves averaged over 10 

replications from the three examples in the balanced scenario, where the joint estimation 

method dominates separate estimation when the proportion of individual links is low. As ρ 

increases, the structures become more different, and the joint and separate methods move 

closer together. This is expected, since the joint estimation method is designed to take 

advantage of common structure. The results in the unbalanced scenario exhibit a similar 

pattern (Figure 4).

4. Analysis of the U.S. Senate voting records

We applied the proposed joint estimation method to the voting records of the U.S. Senate 

from the 109th Congress covering the period 2005–2006. The p = 100 variables correspond 

to the senators. The Senate held 645 votes in that period, from which we extracted n = 222 

votes in the three largest categories, namely, defense and security (141), environment and 

energy (34), and healthcare (47). The votes are recorded as “yes” (encoded as “1”) and “no” 

(encoded as “0”). The assumption of our model is that bills within a category are an i.i.d. 

sample from the same underlying Ising model. In reality, the voting process may be more 

complex, with possible temporal factors and further dependencies among bills, possibly 

reflecting backroom deals. Neverthless, this is an improvement on previous analyses of such 

data, which treated all bills in all categories as i.i.d. [Banerjee, El Ghaoui and d’Aspremont 

(2008)], and is a reasonable trade-off for an exploratory data analysis tool.

There were missing observations, as not all senators vote on all bills. The number of bills 

containing at least one missing vote was 98 out of 141 for defense and security, missing a 

total of 2.26% of all votes; 24 out of 34 for environment and energy, missing a total of 

3.23% of votes; and 20 out of 47 for healthcare, missing 2.38% of all votes. While the 

number of bills that are missing at least one Senator’s vote is relatively high, the overall 

proportion of missing observations is quite low and, thus, we do not expect it to create a 

major problem in the analysis. Nevertheless, we have investigated multiple strategies for 

imputing the missing data in the electronic supplement; specifically, we considered replacing 

the missing vote by the party’s majority, by the majority vote of the five most similar 
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Senators and, to test robustness to the imputation method, also by the opposite party’s 

majority and at random. We found that the main conclusions of the analysis are not very 

sensitive to missing data imputation methods. In the subsequent analysis, we replace a 

missing vote for a Senator by his/her party’s majority vote on the bill; for the Independent 

Senator Jeffords, we take the Democratic majority vote. After the imputation, the bills with a 

“yes/no” proportion greater than 90% or less than 10% were excluded from the analysis, as 

these typically correspond to procedural votes. This left 97, 29 and 40 bills in the three 

categories, respectively. Given that two of the sample sizes are fairly small (29 and 40), we 

added an ℓ2 penalty with a small tuning parameter λ2 = 0.01. This approach, known as the 

elastic net, has been shown to help avoid extremely sparse networks in such situations [Zou 

and Hastie (2005)].

The main tuning parameter for our method was selected through cross-validation. Following 

Li and Gui (2006), we used a bootstrap procedure for final edge selection, estimating the 

network for 100 bootstrap samples of the same size, and only retained edges that appeared 

more that α percent of the time. This procedure is similar to stability selection [Meinshausen 

and Bühlmann (2010)].

The network representation, depicting both the common and the individual structures with a 

cutoff value for inclusion α = 0.4 and a value of λ = 0.05, is depicted in Figure 5. Note that 

unlike techniques such as principal components analysis and multidimensional scaling that 

directly embed the senators in a two-dimensional map, the proposed method estimates the 

edges and constructs the adjacency matrix of the graph of Senators; subsequently, we 

employed a graph drawing program to visualize this graph. The common network structure 

estimated by the joint estimation method is shown in the top left panel of Figure 5. For the 

individual categories, we only plot the edges associated with the category that is not part of 

the common network, to enhance the readability of the graphs. As expected, members of the 

two political parties are clearly separated. For both tuning parameter values, there are strong 

positive associations between senators of the same party and selected strong negative 

associations between senators of opposite parties. Obviously, at the higher tuning parameter 

value the common dependence structure becomes sparser. Of particular interest is the finding 

that at both tuning values there are many more associations between Democratic senators 

than Republican ones and this pattern holds for both the common and individual structures. 

One possible explanation may be that during that period the Democrats were in the minority 

and thus voting more frequently as a block. Further, the Independent Senator Jeffords is 

associated with the Democrats, while the moderate Republicans Collins, Snowe, Chafee and 

Specter (who switched to the Democratic party in early 2009) are not strongly associated 

with their Republican colleagues, thus confirming results of previous analyses by Clinton, 

Jackman and Rivers (2004) and de Leeuw (2006) (albeit based on data from the 105th 

Congress). The conservative Democrat Nelson (Nebraska) is also not closely associated with 

his party, as well as the very conservative Republican de Mint (South Carolina). Also, the 

analysis suggests that Senator Lieberman had a solid Democratic voting record before 

becoming an Independent in 2008.

Other interesting patterns emerging from the analysis are that the more moderate members 

of the two parties are located closer to the center of their respective “clouds” (e.g., Warner, 
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Frist, Voinovich and Smith on the Republican side, and Levin, Reid, Mikulski and 

Rockefeller on the Democratic side), the cluster of economic conservatives on the 

Republican side (McConnell, Domenici, Crapo, Inhofe), the close ties of the liberal 

Democrats Kennedy, Boxer and Nelson (Florida), the close voting records of senators from 

the same state (Schumer and Clinton from New York, Murkowski and Stevens from Alaska, 

Snowe and Collins from Maine, Cantwell and Murray from Washington). There is also a 

strong dependence between Durbin, Corzine, Lincoln, Harkin and Dodd on the Democratic 

side.

Examining the individual networks for the three categories shown in Figure 5, we note that 

additional positive associations among Democrats emerge, primarily for defense and 

healthcare categories, thus indicating a stronger ideological cohesion on these issues. 

Further, a number of stable negative associations emerge in the environment and healthcare 

categories, indicating a stronger ideological divide between senators.

On defense, some additional strong ties emerge between more liberal leaning Democrats 

(Stabenow, Biden, Leahy, Kerry, Boxer), while a strong cluster on environmental issues 

arises between Republican senators from energy producing states (Murkowski and Stevens 

from Alaska, Thune from South Dakota, Hutchison from Texas, but also Bond from 

Missouri, Chambliss from Georgia, Craig from Idaho and Roberts from Kansas with their 

unwavering support for offshore drilling). On health and medical issues, a number of 

additional strong positive associations emerge among Democratic senators, possibly 

reflecting the fact that the 109th Congress dealt with issues ranging from veterans affairs, to 

medical malpractice to food safety and especially on health savings accounts legislation to 

reduce medical insurance costs.

Different imputation strategies for missing data were also examined and the analysis results 

are given in Figures 1–3 in the Supplement for the same values of the cutoff α and tuning 

parameter λ. It can be seen that similar patterns emerge, although alternative methods of 

imputation may lead to the emergence of a few more associations. Nevertheless, the main 

findings seem to be robust to the examined choices of the imputation mechanism, although 

at very high levels of absenteeism this may not hold [Han (2007)].

For comparison purposes, separate multidimensional scaling analyses are shown in Figure 6 

for all the votes together and for the three categories separately. MDS (or PCA or factor 

analysis) is one of the commonly taken approaches in social sciences when graphical 

modeling is not considered. Figure 6 suggests that the overall vote clustering in the two 

parties is driven to a large extent by the corresponding clustering in the defense and health 

categories. On the other hand, voting on environmental issues creates a clear separation 

between the two parties, although the moderate Republicans Chafee, Collins and Snowe are 

shown to have a voting record similar to the Democrats, while the Democrats Nelson 

(Nebraska) and Landrieu are closer to the Republicans. At a high level, MDS-based findings 

are similar to ours, which is a satisfactory result, but they do not provide explicit clusters or 

edges, nor do they provide a way to quantify the amount of dependence between individual 

pairs (visualized via edge thickness in Figure 5).
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Another relevant comparison is to fitting a separate graphical model to each of the three 

categories, as could have been done with any of the previously developed methods for fitting 

the Ising model. The results are shown in Figure 7, in the same format as in Figure 5, with 

edges common to all three categories shown under “common structure,” and all other edges 

under their own category. We followed the same tuning procedure as we did for joint 

estimation, bootstrapping the data 100 times for stability selection and selecting the value of 

the tuning parameter on a validation data set. Even with the cutoff set at 1 (we included only 

the edges appearing in all the bootstrap replications), the graphs are dense and difficult to 

interpret. Similar to MDS, they capture party cohesion through strong positive associations 

between members of the same party for all three categories and some negative associations 

between members of opposite parties. However, different voting patterns between categories 

are not clear, although the results suggest a more cohesive voting record for both parties for 

the defense category. Note that since this is exploratory data analysis, it is hard to verify 

which set of results is “better.” Nevertheless, those obtained from the joint estimation 

method are more nuanced and interpretable and therefore provide better insights into voting 

strategies of members of Congress.

5. Concluding remarks

We have proposed a joint estimation method for the analysis of heterogenous Markov 

networks motivated by the need to jointly estimate heterogeneous networks, such as those of 

the Senate voting patterns. The method improves estimation of the networks’ common 

structure by borrowing strength across categories, and allows for individual differences. 

Asymptotic properties of the method have been established. In particular, we show that the 

convergence rate is similar to the rate for Gaussian graphical models in a similar context 

[Guo et al. (2010)]. The proposed method can be extended to deal with general categorical 

data with more than two levels using the strategy described in Ravikumar, Wainwright and 

Lafferty (2010) and Guo et al. (2010). The most interesting feature emerging from the 

analysis of the Senate voting records is the existence of more stable associations for the 

Democrats, both in terms of the common structure and in the healthcare and defense 

categories.

There are other techniques suitable for analyzing roll call data. Dimension reduction 

techniques create maps, where the relative positioning of the senators allows one to infer 

similarity in their voting patterns. They provide a useful visual tool to capture broad patterns 

and relationships. On the other hand, a Markov network model aims directly at estimating 

the associations between the senators and thus provides an alternative view of the voting 

patterns, which together with the thresholding technique employed gives a measure of the 

stability of such associations. Further, the joint estimation method allows one to separately 

study the overall voting patterns and those driven by specific issues. In our view, both sets of 

techniques are useful, with dimension reduction providing a global perspective and the 

Markov model revealing more nuanced patterns.
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APPENDIX

ASYMPTOTIC PROPERTIES

In this section we study the asymptotic properties of the proposed joint estimation method. 

Since the structure of the underlying network only depends on the interaction effects, we 

focus on a variant of the model without main effects. Specifically, we solve

(A.

1)

We will show that the estimator in criterion (A.1) is consistent in terms of both parameter 

estimation and model selection, when p and n go to infinity and the tuning parameter λ goes 

to zero at some appropriate rate. We note that our results are pointwise rather than uniform 

in Θ, as is standard in the literature. Some interesting implications of nonuniform bounds for 

sparse estimators in linear regression have recently been discussed by Leeb and Pötscher 

(2008), Pötscher and Leeb (2009), although their conclusions do not apply to graphical 

models.

Before stating the main results, we introduce necessary notation and regularity conditions. 

For each k = 1, …, K, denote  as a p(p − 1)/2-dimensional 

vector, recording all upper triangular elements in Θ(k). Let θ̅(k) be the true value of θ(k). Let 

Q̅(k) be the population Fisher information matrix of the model in criterion (A.1) (see the 

Appendix for a precise definition) and let  be a matrix with p rows and p(p − 1)/2 

columns, whose (j, j′)th column is composed of zeros except for the j th (j′th) component 

being xi, j′ (xi, j). In addition, we define . To index the zero and nonzero 

elements, let  and , 

and let . The cardinalities of Sk and S∪ are denoted by qk and q, 

respectively. For any matrix W and subsets of row and column indices  and , let W ,

be the matrix consisting of rows  and columns  in W. Finally, let Λmin(·) and Λmax(·) 

denote the smallest and largest eigenvalue of a matrix, respectively.

The asymptotic properties of the joint estimation method rely on the following regularity 

conditions:

A. Nonzero elements bounds: There exist positive constants γmin and γmax such that:

i.
min1≤k≤K ;

ii.
max1≤k≤K .

B. Dependency: There exist positive constants τmin and τmax such that for any k = 1, 

…, K,
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(A.2)

C.
Incoherence: There exists a constant  such that for any k 
= 1, …, K,

(A.3)

Condition (A) enforces a lower bound on the magnitudes of all nonzero elements, as well as 

an upper bound on the magnitudes of those nonzero elements associated with individual 

links. Conditions (B) and (C) bound the amount of dependence and the influence that the 

nonneighbors can have on a given node, respectively. Conditions similar to (B) and (C) were 

also assumed by Meinshausen and Bühlmann (2006), Ravikumar, Wainwright and Lafferty 

(2010), Peng, Zhou and Zhu (2009) and Guo et al. (2010). Our conditions are most closely 

related to those of Guo et al. (2010), but here they are extended to the heterogenous data 

setting.

Theorem 1 (Parameter estimation)

Suppose all regularity conditions hold. If the tuning parameter  for some 

constant  and if 

for some constant , then there exists a 

local maximizer of the criterion (A.1), , such that, with probability tending to 1,

(A.4)

for some constant .

Theorem 2 (Structure selection)

Under conditions of Theorem 1, with probability tending to 1, the maximizer  from 
Theorem 1 satisfies

Theorems 1 and 2 establish the consistency in terms of parameter estimation and structure 

selection, respectively.
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The main idea of the proofs is closely related to Guo et al. (2010), and some strategies for 

dealing with the joint estimation are borrowed from Guo et al. (2011). We introduce notation 

first. For the kth category, we define the log-likelihood as

whose first derivative and second derivative are denoted by ∇l(θ(k)) and ∇2l(θ(k)), 

respectively. Note that ∇l(θ(k)) is a p(p −1)/2-dimensional vector and ∇2l(θ(k)) is a p(p 
− 1)/2 × p(p − 1)/2 matrix. Then, the population Fisher information matrix of the model in 

(A.1) at θ̅ can be defined as Q̅(k) =−E[∇2l(θ(̅k))], and its sample counterpart is Q̂(k) =

−∇2l(θ(k)). We also write  for the sample counterpart of Ū(k). 

Let  be the same as θ(k) except that all elements in  are set 

to zero and write δ(k) = θ(k) − θ̅(k) and δ̲(k) = θ̲(k) − θ̅(k). Finally, let  be a subset of the 

index set {1, 2, …, p(p − 1)/2}. For a p(p − 1)/2-dimensional vector β, we define β  as the 

vector consisting of the elements of β associated with .

Next, we introduce a variant of criterion (A.1) by restricting all true zeros in  to be 

estimated as zero. Specifically, the restricted criterion is formulated as follows:

(A.5)

and its maximizer is denoted by . In addition, we consider the sample versions of 

regularity conditions (B) and (C):

(B′) Sample dependency: There exist positive constants τmin and τmax such that for any 

k = 1, …, K,

(A.6)

(C′) Sample incoherence: There exists a constant  such that 

for any k = 1, …, K,

(A.7)

For convenience of the readers, the proof of our main result is divided into two parts: Part I 

presents the main idea of the proof by listing the important propositions and the proofs of 

Theorems 1 and 2, whereas part II contains additional technical details and proofs of 

propositions in part I.
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Part I: Propositions and proof of Theorems 1 and 2

The proof consists of the following steps. Proposition 2 shows that, under sample regularity 

conditions (B′) and (C′), the conclusions of Theorems 1 and 2 hold for the local maximizer 

of the restricted problem (A.5). Next, Proposition 3 proves that the population regularity 

conditions (B) and (C) give rise to their sample counterparts (B′) and (C′) with probability 

tending to one, hence, the conclusions of Proposition 2 also hold with the population 

regularity conditions. Last, we show that the local maximizer of (A.5) is also a local 

maximizer of the original model (A.1). This is established via Proposition 4, which sets out 

the Karush–Kuhn–Tucker (KKT) conditions for the local maximizer of criterion (A.1), and 

Proposition 5, which shows that, with probability tending to one, the local maximizer of (A.

5) satisfies these KKT conditions.

Proposition 2—Suppose condition (A) and the sample conditions (B′) and (C′) hold. If the 

tuning parameter  for some constant  and 

, then with probability tending to one, there exists a local maximizer of 

the restricted criterion, , satisfying:

i.
 for some constant 

;

ii.
For each k = 1, …, K,  for all (j, j′) ∈ Sk and  for all .

Proposition 3—Suppose the regularity conditions (B) and (C) hold, then for any ε > 0, the 
following inequalities hold with probability tending to one for all k = 1, …, K:

i.
;

ii.
;

iii.
, for some 

constant .

Proposition 4—  is a local maximizer of problem (A.1) if and only if the following 
conditions hold for all k = 1, …, K:

(A.8)
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Proposition 5—Under all conditions of Proposition 2, with probability tending to one, we 
have, for each k = 1, …, K,

(A.9)

Proof of Theorems 1 and 2—The condition 

 implies that, for each k = 1, …, K, we have 

 and  when qk is large enough. This 

condition also implies . In addition, by Proposition 3, the sample 

conditions (B′) and (C′) hold with probability tending to one when regularity conditions (B) 

and (C) hold. Therefore, by Proposition 2, with probability tending to one, the solution of 

the restricted problem  satisfies both parameter estimation consistency and 

structure selection consistency. On the other hand, by Proposition 5, with probability tending 

to one,  also satisfies the KKT conditions in Proposition 4, thus, it is a local 

maximizer of criterion (A.1). This proves Theorems 1 and 2.

Part II: Proofs of propositions

Before proving the propositions, we state a few lemmas which will be used in the proofs. 

These lemmas are variants of Lemmas 1, 2 and 5 in Guo et al. (2010), adapted to the settings 

of the heterogenous model and, thus, the proofs are omitted here. Likewise, the proof of 

Proposition 3 is very similar to the proof of Propositions 3 and 4 in Guo et al. (2010) and is 

omitted.

Lemma 1—For each k = 1, …, K, with probability tending to 1, we have 

 for some constant C∇ > 4.

Lemma 2—If the sample dependency condition (B′) holds and  then for 
any αk ∈ [0, 1], k = 1, …, K, the following inequality holds with probability tending to 1:

(A.10)

Lemma 3—Suppose the sample dependency condition (B) holds. For any αk ∈ [0, 1], k = 

1, …, K, the following inequality holds with probability tending to one:
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(A.11)

Proof of Proposition 2—The main idea of the proof was first introduced in this context 

in Rothman et al. (2008) and has since been used by many authors. Define

(A.

12)

It can be seen from (A.5) that  minimizes  and . Thus, 

we must have . If we take a closed set  which contains  and show 

that G is strictly positive everywhere on the boundary ∂ , then it implies that G has a local 

minimum inside , since G is continuous and . Specifically, we define 

, with boundary 

, for some constant 

 and . For any 

, the Taylor series expansion gives  where

(A.13)

Since , we have . By Lemma 1,

(A.14)

In addition, by condition , Lemma 2 holds and, thus,

(A.15)
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Finally, by the triangular inequality and regularity condition (A),

(A.

16)

Then we have

(A.17)

The last inequality uses the condition . 

Therefore, with probability tending to 1, we have , 

and consequently claim (i) in Proposition 2 holds.

On the other hand, by the definition of , we have  for all . By regularity 

condition (A) and Proposition 2(i), for any (j, j′) ∈ Sk, k = 1, …, K, we have 

, when n is large enough.

Proof of Proposition 5—By Proposition 2, with probability tending to one, we have 

 for all (j, j′) ∈ Sk. Since  is a local maximizer of the restricted problem (A.

5), with probability tending to one, , for all (j, j′) 
∈ Sk.

To show the second claim, we apply the mean value theorem and write 

, where . After 

some simplifications, we have

(A.

18)

and, thus,
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(A.19)

On the other hand,  when . Otherwise, if (j, j′) ∈ S∪\Sk, 

then

Thus, for any , we have

(A.

20)
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Fig. 1. 
Multidimensional scaling projection of roll call data of the U.S. Senate for the period 2005–

2006 (Republicans shown in red and Democrats in blue).
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Fig. 2. 
The networks used in three simulated examples. The black lines represent the common 

structure, whereas the red, blue and green lines represent the individual links in the three 

categories. ρ is the ratio of the number of individual links to the number of common links.
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Fig. 3. 
Results for the balanced scenario (n1 = n2 = n3 = 300) and dimension p = 100. Black solid 

curve: joint estimation; red dashed curve: separate estimation. The ROC curves are averaged 

over 10 replications. ρ is the ratio between the number of individual links and the number of 

common links.
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Fig. 4. 
Results for the unbalanced scenario (n1 = 200, n2 = 300, n3 = 400) and dimension p = 100. 

Black solid curve: joint estimation; red dashed curve: separate estimation. The ROC curves 

are averaged over 10 replications. ρ is the ratio between the number of individual links and 

the number of common links.
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Fig. 5. 
The estimated graphical models for the three categories in the Senate voting data with an 

inclusion cutoff value of 0.4 and tuning parameter value of 0.5. Edges common to all three 

categories are shown under the heading “common structure”; all other edges are shown on 

category-specific graphs. The nodes represent the 100 senators, with red, blue and purple 

node colors corresponding to Republican, Democrat or Independent (Senator Jeffords), 

respectively. A solid line corresponds to a positive interaction effect and a dashed line to a 
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negative interaction effect. The width of a link is proportional to the magnitude of the 

corresponding overall interaction effect.
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Fig. 6. 
Multidimensional scaling analysis for all the votes together, and the three individual 

categories. The nodes represent the 100 senators, with red, blue and purple node colors 

corresponding to Republican, Democrat or Independent (Senator Jeffords), respectively.

Guo et al. Page 29

Ann Appl Stat. Author manuscript; available in PMC 2016 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
The estimated graphical models for the three categories in the Senate voting data fitted via 

separate estimation. Edges common to all three categories are shown under the heading 

“common structure”; all other edges are shown on category-specific graphs. The cutoff value 

is 1 (only edges appearing in all bootstrap replications are included). The nodes represent the 

100 senators, with red, blue and purple node colors corresponding to Republican, Democrat 

or Independent (Senator Jeffords), respectively. A solid line corresponds to a positive 
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interaction effect and a dashed line to a negative interaction effect. The width of a link is 

proportional to the magnitude of the corresponding overall interaction effect.
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