Skip to main content
. 2001 Dec 1;106(6):983–995. doi: 10.6028/jres.106.050

Table 1.

Conditions for a reduced cella

The cell is specified by three noncoplanar vectors: a, b, c. The cell matrix (a·a b·b·c·c/b·c a·c a·b) is defined by the dot products between these vectors.
A. Positive Reduced form, Type I cell, all angles < 90°
 Main conditions:
  a·ab·bc·c; b·c½b·b; a·c½a·a; a·b ½ a·a
 Special conditions:
  (a) if a·a = b·b then b·ca·c
  (b) if b·b = c·c then a·ca·b
  (c) if b·c = ½ b·b then a·b 2 a·c
  (d) if a·c = ½ a·a then a·b 2 b·c
  (e) if a·b = ½ a·a then a·c 2 b·c
B. Negative reduced form, Type II cell, all angles ≥90°
 Main conditions:
  (a) a·ab·bc·c; |b·c| ½b·b; |a·c| ½a·a; |a·b|½ a·a
  (b) (|b·c| + |a·c| + |a·b|) ½ (a·a + b·b)
 Special conditions:
  (a) if a·a = b·b then |b·c| |a·c|
  (b) if b·b = c·c then |a·c| |a·b|
  (c) if |b·c| = ½ b·b then a·b = 0
  (d) if |a·c| = ½ a·a then a·b = 0
  (e) if |a·b| = ½ a·a then a·c = 0
  (f) if (|b·c| + |a·c| + |a·b|) = ½ (a·a + b·b) then a·a 2 |a·c| + |a·b|
a

To be reduced the cell must be in normal representation (type I or II) and all the main and special conditions for the given cell type must be satisfied. The main conditions are used to establish that a cell is based on the three shortest lattice translations. The special conditions are used to select a unique cell when two or more cells in the lattice have the same numerical values for the cell edges.