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Overview
As genetic sequencing throughput continues to accelerate, so does the accumulation of variants
of unknown clinical significance. The great majority of these variants cause amino acid substi-
tutions (cSNVs) in protein sequence. The need to interpret these variants continues to motivate
development of better in silico bioinformatic methods. Despite the development of dozens of
such methods over the past 15 years, clinically relevant prediction accuracy remains elusive.
Here, we present some recent progress and shortcomings in the development of bioinformatics
missense variant classifiers, and we argue for the increased use of endophenotypes. Endophe-
notypes are quantitative measurements that are correlated with phenotypes via shared genetic
causes (e.g., enzyme catalytic activity, serum cholesterol or glucose level, volumetric lung
capacity). In many cases, endophenotypes are more directly influenced by genetic variation,
increasing their power to detect genotype-endophenotype associations relative to genotype-
phenotype associations. The data required to train and benchmark bioinformatic methods to
predict endophenotype from cSNVs and other variant types is increasingly available and could
be made widely available by concerted community effort to enhance locus-specific and disease
variant databases. We highlight some currently available data and present results from pub-
lished bioinformatics studies that use endophenotypes.

Introduction
The 21st century has thus far been marked by a heroic effort in genomic science and technol-
ogy. If not yet upon us, the age of personalized genomic medicine appears imminent. Deriving
medically relevant insight from these advances requires the ability to interpret the genetic vari-
ation and similarity observed in the population. One approach for interpreting genetic varia-
tion is the use of bioinformatics methods; simply put, these approaches are unified by a
reliance on molecular/biological information (DNA, RNA, and protein sequence and annota-
tion, protein structure, etc.) [1–4]. Many bioinformatics classifiers, primarily focused on amino
acid substitution variants (cSNVs), have been and continue to be developed, typically achieving
classification accuracies much better than random and thus supporting the use of molecular
information [5–9]. These methods appear, however, to have reached a performance bottleneck;
currently realized limits in performance all but forbid the consultation of bioinformatics cSNV
classifiers in clinical settings. This bottleneck might be, in part, the result of simplifying
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assumptions inherent to the prediction of qualitative, dichotomous, or categorical phenotypes
from individual missense variants.

A complementary and beneficial strategy could be greater use of endophenotypes, quantita-
tive measurements that are related to phenotypes via shared underlying genetics [10,11]. Endo-
phenotypes can include phenomena at diverse biological scales; some examples include protein
catalytic rate or melting temperature (stability), cell growth rate, and blood pressure. In this
perspective we make a case for the increased use of endophenotypes, beginning with a brief
overview of in silico bioinformatics methods for assessing phenotypic impact of cSNVs and the
performance reported in recently published comparative studies. We compare the utility of
endophenotypes and phenotypes in the context of CFTR cSNVs in cystic fibrosis, and of LDLR
cSNV impact on cardiovascular-related diseases such as familial hypercholesterolemia. We
also provide examples of bioinformatics methods that have been used to predict endopheno-
types from cSNVs.

Bioinformatics Classifiers of Phenotype: Background and
Performance
Bioinformatics methods to predict the pathogenicity of cSNVs typically utilize gene/protein
sequence, protein structure, annotation, or some combination of the three [1–4]. Table 1
shows 13 methods tested in up to five independent large-scale studies, one from each of the
past five years [5–9]. Each of the five independent studies used large sets of putatively neutral
and pathogenic variants, and three of these studies considered two such datasets; Olatubosun
et al. used the Protein Mutant Database (PMD) twice, the second time using only a subset of
variants defined as being reliably predicted by their own PON-P method. Criteria for inclusion
in this table was that an independent group directly compared the method with other methods;
for the fairest comparison, if an author included an assessment of their own method, that
assessment is not shown in Table 1. Each of the five studies included the statistical sensitivity,
specificity, and accuracy, or included the relevant contingency table; therefore, we present
these three performance metrics for each of the tested method-dataset combinations (Table 1).
While these performance metrics alone cannot provide a truly comprehensive estimate of clas-
sifier performance, they do facilitate a reasonable comparison of methods and a general assess-
ment of method utility.

SIFT [12] and PolyPhen-2 [13] are two of the most commonly cited and used methods to
predict disease phenotype from cSNVs. Across the five independent tests in Table 1, accuracies
achieved by both methods typically ranged from the mid-60s to mid-70s. Another important
result for these two methods is that the trade off between sensitivity and specificity varies sig-
nificantly among benchmarks. For instance, SIFT and PolyPhen-2 both had high sensitivities
in the Olatubosun et al. benchmark, and SIFT had disproportionately high specificity in both
of the Rapakoulia et al. benchmarks. A similar variability in sensitivity and specificity across
benchmarks, as well as accuracy range, was reported for SNAP [14]. PhD-SNP [15] was tested
in four of the five studies, achieving accuracies comparable to most methods presented in
Table 1, with a reasonable balance between sensitivity and specificity in all tests. Panther [16]
was also tested in four of the studies, achieving accuracies similar to SIFT, PolyPhen-2,
PhD-SNP, and SNAP, but typically realizing better gains in specificity than sensitivity.
SNPs&GO [17] was also skewed toward specificity, realizing a slightly higher accuracy than
SIFT, PolyPhen-2, Panther, and SNAP. MutPred [18] and Mutation Assessor [19] were tested
in three and two of the studies, respectively; these methods achieved relatively high accuracies
and balanced sensitivities and specificities (Table 1).
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Origins and Implications of Variant Classifier Performance
Results for some of the method-benchmark combinations presented in Table 1 are promising.
However, for most methods—in particular, those subject to the greatest scrutiny—reported per-
formance is inconsistent across benchmarks, including highly unbalanced sensitivity and speci-
ficity. Bioinformatics methods are not currently recommended for medical decisions that
require variant interpretation [20]. We believe that these perceived methodological shortcom-
ings might, in part, arise from assumptions inherent in the prediction of qualitative biological
phenomena from individual genetic variants. Genome-wide association studies (GWAS) have
thus far indicated that the vast majority of genetic variation in complex diseases likely impact
gene regulation and have low effect size [21,22]. Similarly, pedigree studies have recovered rela-
tively few high-penetrance genes/variants [23,24]. And recent whole-genome and targeted

Table 1. Five years of independent testing of cSNV variant classifiers.

Thusberg et al. 2011 Olatubosun et al. 2012 Shihab et al. 2013 Rapakoulia et al. 2014 Dong et al. 2015

+ 19,335 SwissProt & LSDBs
- 21,170 dbSNP

+ 902 PMD
- 858 PMD

+ ~23,000 SwissVar
- ~34,000 SwissVar

+ 8,871 SwissProt
- 24,342 dbSNP

+ 120 Curated by author
- 124 CHARGE seq. proj.

+ 3,594 LSDBs
- 3,594 dbSNP

Subset reliable at 0.95 + HumVar 22,196
- HumVar 21,119

+ 6,279 VariBench II
- 13,240 VariBench II

SIFT 68%, 62% (65%)
65%, 62% (64%)

83%, 41% (62%)
83%, 48% (66%)

67%, 82% (74%) 38%, 81% (69%)
37%, 90% (63%)

68%, 75% (71%)
75%, 69% (71%)

PolyPhen-2 73%, 70% (71%)
62%, 69% (66%)

84%, 40% (62%)
81%, 50% (66%)

86%, 61% (73%) 85%, 69% (73%)
87%, 72% (80%)

92%, 59% (78%)
88%, 49% (63%)

Panther 77%, 76% (76%)
52%, 75% (64%)

NA
NA

62%, 75% (68%) 31%, 90% (74%)
31%, 89% (59%)

38%, 94% (66%)
NA

PhD-SNP 63%, 79% (71%)
40%, 79% (60%)

67%, 61% (64%)
69%, 74% (72%)

66%, 74% (70%)
77%, 79% (78%)

NA
NA

70%, 83%, (77%)
NA

SNAP 88%, 56% (72%)
74%, 56% (65%)

73%, 54% (63%)
72%, 65% (68%)

NA NA
NA

53%, 70% (61%)
NA

SNPs&GO 71%, 92% (82%)
73%, 92% (82%)

NA
NA

76%, 89% (82%) NA
NA

55%, 94% (75%)
NA

MutPred 85%, 78% (81%)
71%, 77% (74%)

NA
NA

90%, 90% (90%) NA
NA

74%, 81% (77%)
NA

Mutation Assessor NA
NA

NA
NA

NA 73%, 88% (84%)
77%, 84% (80%)

70%, 80% (74%)
73%, 74% (74%)

nsSNAPAnalyzer 61%, 58% (60%)
58%, 56% (57%)

NA
NA

NA NA
NA

NA
NA

MutationTaster NA
NA

NA
NA

NA NA
NA

94%, 74% (86%)
91%, 49% (64%)

FATHMM NA
NA

NA
NA

NA NA
NA

55%, 91% (75%)
86%, 82% (83%)

CONDEL NA
NA

NA
NA

NA NA
NA

71%, 73% (72%)
71%, 71% (71%)

CADD NA
NA

NA
NA

NA NA
NA

79%, 74% (77%)
75%, 65% (69%)

Selected studies, one from each of the past five years, comparing multiple bioinformatic variant classifiers on large datasets of putatively pathogenic and

benign variants. To avoid any potential bias, tests of an author’s own method, if present, were excluded. For each entry, results are given as sensitivity,

specificity (accuracy). Variants datasets used as the pathogenic or disease-causing class are indicated by a plus sign (+) and the neutral or benign class

with a negative sign (-). Entries with multiple lines indicate that two unique datasets were used for benchmarking. Both datasets used in Olatubosun et al.

2012 were the same, except that variants in the second set were filtered to meet a 95% prediction confidence using their own PON-P method. PMD is the

Protein Mutant Database; NA indicates the method was not tested in the corresponding benchmark.

doi:10.1371/journal.pcbi.1004725.t001
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sequencing efforts are revealing that healthy individuals, on average, harbor tens of so-called
“disease alleles,” including many in the homozygous state [24,25]. Thus, bioinformatics predic-
tors are challenged with predicting disease from individual variants, yet individual variants
appear to rarely carry significant disease liability. This is particularly true of cSNVs, which on
average have a more subtle effect on disease than truncating variants [26]. And because “disease
alleles” used for classifier training and benchmarking may be relatively common among healthy
individuals, expectations about the relevance of subsequent predictions should be tempered.

Fig 1 illustrates some factors that may confound bioinformatic cSNV disease phenotype
prediction, using as an example the impact of LDLR (low-density lipoprotein receptor) cSNVs
on cardiovascular-related diseases. LDLR is a protein localized to the plasma cell membrane
that enables endocytosis of low-density lipids into cells and controls plasma concentration of
low-density lipid cholesterol (LDL-c). Changes in LDLR protein stability and activity, which
are most closely related to cSNVs in LDLR, are likely to be easiest to predict (Fig 1A). The fur-
ther downstream an effect is from LDLR function (a diagnosis of coronary artery disease, for
instance), the more likely additional factors are to influence the effect. These influences can
include other endogenous inputs (e.g., genetic and epigenetic factors) as well as exogenous fac-
tors such as lifestyle and environment (Fig 1B). Thus, a cSNV that perturbs LDLR stability
and/or activity will not necessarily cause disease. This is of practical importance because bioin-
formatics predictors rely heavily on features of protein sequence, structure, and function, but
are typically tasked with predicting disease. Further complicating is the fact that diagnosis of a
particular disease phenotype can result from different diagnostic tests, combination of tests,
and varied interpretation of test results (Fig 1B). In contrast, measured effects in cellular assays
and diagnostics such as high serum LDL cholesterol are closer to the LDLR protein stability
and activity required for normal function, and they are not in theory confounded by subjective
factors implicit to associating cSNVs with disease diagnosis.

Fig 1C shows 12 LDLR cSNVs that were common to multiple studies with published vari-
ant-specific mean patient LDL-c level, cellular assays of LDL uptake, bioinformatics prediction
with SIFT and Polyphen-2, and curation in the Human Gene Mutation Database (HGMD)
[27–29]. Supporting the idea that endophenotypic measurements may be more consistent than
disease phenotype categories, the clinical LDL-c concentration and experimental LDL-uptake
assays from two different laboratories show the expected negative correlation (Pearson correla-
tion = −0.69; p-value = 0.013). (Normal LDLR uptake of LDL lowers plasma LDL-c levels.)
However, the assignment of each cSNV to a disease phenotypic category differs depending on
the selected endophenotype studied and is often in disagreement with HGMD. As in the inde-
pendent benchmarking studies (Table 1), the accuracy and specificity/sensitivity trade-off of
the bioinformatics classifiers depends on which categorization is considered to be the gold
standard.

Using clinical diagnostics, experimental assays, and biomedical literature to derive gold-
standard mutation databases is reasonable and commonplace. But, given that most variants,
and cSNVs in particular, are low effect and incompletely penetrant, the disagreement among
these potential gold standards should be unsurprising. Therefore, it becomes unclear how and
to what extent the disappointing performance of bioinformatics methods should be inter-
preted, given that many cSNVs could reasonably be placed in multiple phenotypic categories.
In contrast, the continuous-valued cellular LDL-uptake and serum LDL-c measurements rely
only on accurate determination, rather than varied and arbitrary thresholds for classification.
These types of endophenotypic measurements represent a practical and useful target for pre-
diction and help circumvent some potentially unreliable presuppositions currently associated
with bioinformatics cSNV prediction.
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Endophenotypes: An Alternative and Complementary Framework
The term “endophenotype” was coined in 1966 to distinguish the observable, external pheno-
type (exophenotype) from internal or microscopic traits [30]. In 1972, Gottesman and Shields
reintroduced the term in the context of schizophrenia to describe internal phenotypes discov-
erable by biochemical assays or microscopic examination [31]. Used infrequently over the next
several decades, the word “endophenotype” experienced quite a renaissance after the publication

Fig 1. How context can influence the impact and inferred impact of LDLR variation on different experimental and clinical parameters. LDLR
variation is likely to have the largest observable and reproducible impact on parameters most directly influenced by the protein (A). For instance, if a
variant produces effects downstream from the protein, then protein structure and function are likely perturbed. Further downstream, cellular LDL uptake
could be modulated, which can increase risk for familial hypercholesterolemia, which might appreciably increase risk for heart disease or heart attack.
Liability for complex cardiovascular diseases is influenced by many endogenous and exogenous factors other than LDLRmutation (B). Furthermore,
diagnoses can result from a varied combination of clinical and laboratory diagnostics, which can result in differential or conflicting diagnoses (B). In C,
cellular studies, pedigree studies, a disease mutation database, and popular bioinformatics methods are used to classify LDLR variants as disease
causing or benign. On the heatmap, black and white indicate a classification of disease causing and benign, respectively, for different classification
methods (gray indicates an intermediate or unclear classification). Mean patient LDL-c concentration from pedigree studies (purple) and cellular LDL
uptake (red) shown with darker colors indicating more severe impact (numbers indicate published values).

doi:10.1371/journal.pcbi.1004725.g001
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of a 2003 review article by Gottesman and Gould [11]. Endophenotypes are most often explicitly
used in the context of psychiatric disorders such as schizophrenia or bipolar disorder, but the
endophenotype concept has been applied in the context of many diseases, including obesity
[32], diabetes [33], osteoporosis [34], heart disease [27–29,35], hypertension [36], phenylketon-
uria [37], and cystic fibrosis [38–40]. Requirements of heritability and co-segregation have been
suggested in order for a quantitative trait to be considered a true endophenotype [10,11,41]. For
this perspective, we use a broad definition of endophenotype; in short: endophenotypes are
quantitative traits that are associated with qualitative traits (phenotypes) via shared genetic
influences. Importantly, endophenotypes include the quantitative risk factors that are often
used to diagnose and define disease (e.g., serummetabolite concentrations, blood pressure,
sweat chloride), as well as molecular-scale phenomena such protein stability or catalytic rates.

By this definition, we believe that there are considerable benefits to bioinformatic
approaches for predicting the genotype-endophenotype relationship, relative to that of the
genotype-phenotype relationship: (1) Endophenotypes are closer to the level of gene action
and protein function than the associated phenotypes, increasing the effect size and power to
detect variant-endophenotype associations relative to that of the variant-phenotype associa-
tions. An example of this benefit is depicted in Fig 1A, where a cSNV in the LDLR protein is
expected to have a more measureable effect on cellular LDL uptake than it would on the dichot-
omous prediction of having a heart attack or not. (2) By virtue of being qualitative, phenotypes
rely on subjective and often arbitrary definitions. Although quantifying phenotypic descrip-
tions is an active area of informatics research [42], the exact defining characteristics of a pheno-
type can change over time and be subject to disagreement among experts. Conversely, by virtue
of being quantitative, endophenotypes should, in principle, rely only on accurate measure-
ments. (3) Endophenotypes facilitate the ranking of biological states (e.g., disease severity)
within the otherwise arbitrarily defined phenotypic categories. (4) The reliance on objective
measurements rather than subjective definitions, along with the disposing of arbitrary thresh-
olds for partitioning phenotypic categories, reduces data contamination and in turn benefits
algorithmic training and benchmarking. (5) Endophenotypes can describe both severity and
molecular mechanism with higher resolution than can phenotypes (Figs 1C and 2).

The Benefit of Using Endophenotypes: An Illustrative Example
Endophenotypes can provide information that supplements phenotypic categories and
increases their clinical utility, by pointing to specific disease severity and mechanism associated
with a variant. This utility is illustrated by three cystic fibrosis transmembrane conductance
regulator (CFTR) cSNVs shown in Fig 2, each having a distinct, clinically defined impact on
cystic fibrosis disease liability (benign, indeterminate, and disease causing) [40].

The first endophenotype shown in Fig 2 is the continuous-valued clinical diagnostic of
patient sweat chloride, which increases across the three phenotypic categories. The "sweat test"
is considered the gold standard for diagnosing cystic fibrosis. Healthy individuals have sweat
chloride concentrations of less than 30 to 40 mmol/L and a test reporting 60 mmol/L or greater
most often results in cystic fibrosis diagnosis. As expected, the mean sweat chloride of patients
harboring the benign cSNV S1235R is lower than that of patients harboring the indeterminate
cSNV D614G, and is highest in patients with the disease-causing mutation G551D. The second
endophenotype measures chloride conductance by in vivo cellular assays; transport of chloride
ions through the plasma membrane of epithelial cells is a major function of CFTR. Defects in
chloride conductance result in the mucus build-up associated with cystic fibrosis. Again as
expected, chloride conductance negatively correlates with increasing disease severity. It is high-
est in patients with the benign cSNV, substantially lower in those with the indeterminate
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cSNV, and undetectable in those with disease-causing G551D. Lastly, there is a different and
important trend for the third endophenotype, in vivo measurements of CFTR C-band B-band
ratio or C/(C + B), which measures the fraction of CFTR protein that is fully processed (glyco-
sylated) and trafficked to the cell surface. Correct processing and trafficking is necessary but
not sufficient for normal CFTR function. As expected, CFTR is correctly processed and traf-
ficked for the benign cSNV, and for the indeterminate cSNV the fraction of correctly processed
protein decreases. But surprisingly, for the disease-causing G551D mutation, the fraction of
correctly processed protein is approximately equal to that found with the benign variant; it is
this differential impact of G551D—benign with respect to post-translational processing and
damaging with respect to proper chloride transport function—that facilitates the efficacy of the
landmark, G551D-specific, cystic fibrosis drug Ivacaftor [43]. Importantly, G551D-mutant
CFTR protein is processed and trafficked to the epithelial cell surface, but once there it exhibits
decreased chloride conductance. Ivacaftor potentiates cells harboring the CFTR G551D muta-
tion, restoring chloride conductance. Following clinical trials, Ivacaftor was approved in 2014
to treat patients harboring several other CFTR mutations characterized by high C-band B-
band ratio and low chloride conductance [40,44].

Previously, it has been proposed that multiple phenotypic categories, spanning the range
from the most benign to most pathogenic variants, might alleviate problems with potential sub-
jectivity and over-simplification of disease/benign or disease/indeterminate/benign classifica-
tions [45]. Indeed, the American College of Medical Genetics (ACMG) has recently published
guidelines that include a five-category standard for clinical variant interpretation in genes that

Fig 2. Some advantages of considering endophenotypes, relative to phenotypes, illustrated using three
CFTR variants.Mean sweat chloride from individuals harboring the three variants (S1235R, D614G, and
G551D), and results from two distinct in vivo experiments performed in cells expressing the variants. Increasing
sweat chloride is associated with increasing disease severity, whereas in the two in vivo assays decreasing
values correspond to decreasing protein function or abundance. Endophenotypes were scaled for purposes of
presenting on a single chart, such that three sweat chlorides could be compared with one another, the three
chloride conductance measurements could be compared with one another, etc.

doi:10.1371/journal.pcbi.1004725.g002
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cause Mendelian disorders [20]. The guidelines emphasize the limited clinical utility of the cur-
rent generation of in silico bioinformatic prediction methods, in particular citing low
specificity.

Bioinformatics methods designed to predict endophenotypes might be able to achieve
greater accuracy and reliability than those designed to predict phenotypic categories. The
assessment of such methods is not confounded by subjective choices about the number of phe-
notypic categories or the assignment of a variant to the correct category. In silico interpretation
of a variant in terms of one or more endophenotypes may capture clinically important differ-
ences between variants that are placed in the same phenotypic category. For example, both the
CFTR G551D mutation described above and CFTR N1303K are pathogenic according to
ACMG standards, but the two mutations have different endophenotypic patterns. Unlike
G551D, the N1303K mutation has both low C-band B-band ratio and low chloride conduc-
tance [40], indicating that the mechanism of CFTR dysfunction is different in N1303K. These
differences are relevant to clinical decision-making, since Ivacaftor is indicated for G551D,
while the newer drug Lumacaftor may be effective for mutations that impact post-translational
processing of CFTR [44].

The ability to visualize variants in a multidimensional landscape of several endophenotypes
could be valuable for clinicians. Fig 3 shows a hypothetical landscape of cystic fibrosis severity
along three orthogonal coordinates: post-translational process of CFTR, in vivo chloride con-
ductance, and sweat chloride levels. Each cSNV can be represented as a point in the coordinate
system, enabling clinical assessment of the relationship between the cSNV, disease severity,
and multiple measures of disease mechanism.

Bioinformatics Prediction of Endophenotypes
The output of most bioinformatic cSNV classifiers is a raw, continuous-valued score, which is
transformed into the assignment of each cSNV to one of two or more categories. For instance,
SIFT returns the probability that a protein will tolerate a cSNV, while PolyPhen-2 returns the
probability that a cSNV is protein damaging. Although these methods were not developed to
predict endophenotypes, their continuous-valued outputs could be used as informative endo-
phenotypic correlates. This insight was utilized by Wettstein et al. to predict phenylalanine
hydroxylase (PAH) activity and three phenylketonuria (PKU)-related endophenotypes as a
function of PAH cSNVs [37]. In that study, the authors scored up to 834 PAH cSNVs using the
SIFT, Polyphen-2, FoldX [46], and SNPs3D [47] packages. In the case of PAH activity, the
authors found statistically significant correlation between FoldX score and PAH enzymatic
activity, as well as for SNPs3D and PAH activity; neither SIFT or PolyPhen-2 scores were cor-
related with PAH activity. Similarly, the authors compared scores from the four methods with
three PKU-related disorders (PKU, mild PKU, and mild hyperphenylalaninemia), and found
significant association between continuous-valued FoldX, SNPs3D, and PolyPhen-2 scores and
the three disease subtypes; SIFT scores and disease subtype were not significantly associated.
This work shows that existing cSNV classifiers can be repurposed for predicting endophenoty-
pic severity, as well as recovering categorical phenotype without necessarily requiring the use
of arbitrary thresholds for partitioning scores.

The above-cited work of Wennstein et al. demonstrates the potential to repurpose existing
cSNV classifiers; however, these existing methods are limited because they are agnostic to the
endophenotype being predicted. This limitation is important, because different variants in the
same gene can affect disease via distinct mechanisms (Fig 2), or be causal of different diseases
entirely (e.g., NF1mutation can drive cancer or cause neurofibromatosis). We hypothesize that
detecting the subtle biological underpinnings that converge to influence a particular mutation-
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dependent endophenotype will benefit from classifiers that are trained to predict specific endo-
phenotypes, rather than classifiers that are nonspecific or agnostic.

We have recently developed an endophenotype prediction algorithm that trains endophe-
notype-specific cSNV classifiers [39]. The classifiers are, in part, a multiple-sequence alignment
(MSA), the gene composition of which is optimized by iteratively maximizing the coefficient of
determination (R-squared of regressing continuous-valued variables) between an internal
score function and the cSNV-specific endophenotypes from the training set [39,48]. The score
function considers amino acid conservation and the conservation of amino acid biophysical/
biochemical properties, derived from the MSA. The score function can optionally consider 3-D
structural data, as well. We refer to a classifier whose gene composition is optimized to predict
an endophenotype as an endoPhenotype-Optimized Sequence Ensemble (ePOSE), and hence
we call the method the ePOSE algorithm.

Fig 4 shows results from predicting three cystic fibrosis-related endophenotypes from 20
CFTR cSNVs (20 data points on each panel in Fig 4). For each of the three endophenotypes,
individually, the ePOSE algorithm trained using 19 of 20 CFTR cSNVs, and prediction was
made on the remaining cSNV; this process was repeated for each cSNV (leave-one-out cross-
validation). Predictions were typically well correlated with the endophenotype being predicted,

Fig 3. Hypothetical visualization of a multidimensional endophenotypic landscape for cystic fibrosis.
Each cSNV can be represented as a point in a three-dimensional space of three endophenotypic scores
relevant to cystic fibrosis disease: post-translational processing (glycosylation) and trafficking of the CFTR
protein to the epithelial cell plasmamembrane, an in vivo cellular assay of chloride conductance that
measures channel gating, and chloride concentration in a diagnostic sweat test. Each point on the landscape
can be interpreted with respect to disease severity, shown in the color bar to the right of the landscape.

doi:10.1371/journal.pcbi.1004725.g003
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including reasonable separation of three clinically defined phenotypes associated with each
cSNV (denoted by color and shape in Fig 4).

In Fig 5, ePOSE predicts differential mechanisms associated with disease severity, including
predictions for a validation set of three additional cSNVs, for which experimental and clinical
data was collected prospectively. In contrast to Figs 3 and 5 is not hypothetical and shows
actual ePOSE scores for each of three endophenotypes. The ePOSE algorithm accurately

Fig 4. Correlation of ePOSE score with three individual endophenotypes.Measured endophenotype versus predicted impact (ePOSE Score) for 20
CFTR variants using classifiers trained with (A) sweat chloride, (B) chloride conductance, or (C) fraction of correctly processed CFTR protein. Each plot is
the result of 20 leave-one-out cross-validation calculations (i.e., one data point for each of the 20 variants). Blue circles, green squares, and red diamonds
denote benign, indeterminate, and disease-causing annotated phenotype, respectively, for each of the 20 variants. Note: increasing sweat chloride is
associated with increasing disease severity, whereas for the two in vivo assays, decreasing values correspond to decreasing protein function or
processing.

doi:10.1371/journal.pcbi.1004725.g004

Fig 5. Interpolation plot of predicted endophenotypes resulting from the separate leave-one-out
cross-validation calculations shown in Fig 4. ePOSE score for the 20CFTR variants from Fig 4 plotted
and interpolated (color shows ePOSE scores resulting from training with sweat chloride data). Using the
resulting classifiers, each endophenotype was predicted for three additional variants (G551S, A561E, and
G1349D) and subsequently validated. A561E was accurately predicted to affect disease via drastically
reduced CFTR processing and channel gating. G551S was accurately predicted to affect cystic fibrosis
primarily via channel gating.

doi:10.1371/journal.pcbi.1004725.g005
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predicted that a significant fraction of the G551S cSNV would be processed and trafficked to
the cell surface, but that chloride conductance would be significantly attenuated in cells
expressing this cSNV. As described above, this same observation led to the development of Iva-
caftor, a drug initially approved to target another G551 variant, G551D. Indeed, Ivacaftor has
some efficacy for potentiating cells expressing the G551S cSNV as well [49].

Many of the existing in silico bioinformatic cSNV classifiers, originally designed to predict
disease phenotypes, could be adapted to predict endophenotypes. Such efforts will require con-
tinued community-wide collection of data for algorithmic training and for independent bench-
marking efforts. Locus-specific databases (LSDBs) already contain variant-specific
endophenotypic information. Table 2 shows examples of training data currently available for
endophenotypes associated with cystic fibrosis (CFTR), Li-Fraumeni and hereditary cancers
(TP53) [50], phenylketonuria (PAH) [51], hypercholesterolemia and cardiovascular disease
susceptibility (LDLR) [52], hereditary breast cancer (BRCA2) [53], and hyperhomocysteinemia
(CBS) [54]. The CFTR2 database [40], which contains variants and endophenotypic data from
~40,000 cystic fibrosis patients, illustrates the potential of our suggested approach. For each
patient, a reported genotype and up to six endophenotypes is provided. A mean value (and
standard error) for an endophenotype of interest can be estimated, using reported values from
patients with the same genotype (e.g., ~1,400 patients have one copy of the G551D allele and
their mean sweat chloride is 104). Mean sweat chloride estimation is currently possible for
~250 unique variants in CFTR2, if a minimum of five patients with measured sweat chloride
and sharing the identical allele is required [39].

Table 2. Six disease-associated genes with sources of variant-specific endophenotypic data.

Protein or gene (number of amino
acids)

Endophenotype (number of unique
mutations)

Disease phenotype(s) References and database
URLs

CFTR (1,480) Sweat [Cl-] (>250) Cystic fibrosis [40]; cftr2.org

FEV%1 (>250)

P.a. Infection (>250)

Pancreas function (>250)

C/ (C + B) (59)

[Cl-] Conductance (59)

TP53 (393) WAF1 transactivation (2,314) Li-Fraumeni and nonhereditary
cancers

[50]; P53.iarc.fr

PAH (452) Catalytic activity % wild type (80) Phenylketonuria [51]; www.pahdb.mcgill.ca

PAH protein % wild type (80)

PAH mRNA % wild type (80)

Serum Phe and BH4 response (>35)

LDLR (860) Cellular LDL uptake (79) Cardiovascular disease [27,52]; umd.be/LDLR/

Expression (79) Hypercholesterolemia ucl.ac.uk/ldlr

Plasma LDL-c (~79)

BRCA2 (3,418) Homologous recombination (140) Hereditary breast cancer [53]

CBS (551) Cell growth (204) Hyperhomocysteinemia [54]

Both locus-specific databases (LSDBs) and published manuscripts contain data to enable development of new in silico bioinformatics methods to predict

variant impact on endophenotypes. For each gene, available endophenotypes, number of unique mutations with endophenotypic values, disease

phenotype(s) and links/references to data sources is provided.

doi:10.1371/journal.pcbi.1004725.t002
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Conclusion
As next-generation sequencing is integrated into routine patient care, in silico bioinformatic
missense cSNV prediction tools have the potential to contribute to clinical practice. As of this
writing, independent assessments of these tools indicate that they do not perform consistently,
and there is considerable skepticism about their clinical utility. We reason that many of the
apparent limitations are the result of a weakly defined paradigm. The tools are tasked with clas-
sifying cSNVs as disease causing, but most cSNVs by themselves do not have a large effect on
whether an individual develops disease. The tools are also expected to assign cSNVs to pheno-
typic classes, although there is disagreement about how many of these classes should be consid-
ered and even which cSNVs belong in each class.

There are several potentially important, additional considerations regarding the perfor-
mance of phenotypic prediction and what might be reasonably expected from endophenotypic
prediction. First, many methods presented in Table 1 advertise the ability to predict variant
impact on protein native state. While a connection between variant impact on protein native
state and disease is often drawn, it is also acknowledged that these variables are not synony-
mous. Given that classifiers are often tasked with predicting impact on health or benchmarked
using databases of putatively disease-causing variants, rather than assessing protein damage,
methods are developed and challenged using disparate criteria. The Protein Mutant Database
(PMD) employed in the Olatubosun et al. study [6] (Table 1) does record the impact of muta-
tion on protein activity, potentially circumventing some of the above-described limitations.
However, the PMD reduces continuous-valued activities (percent of wild type) to six discrete
categories, and Olatubosun et al. further reduced categorization to either “functional” or “non-
functional”; this clearly results in information loss, similar to that encountered when dichoto-
mizing variants into discrete pathogenic and benign categories. It could be informative to
compare the continuous-valued output from classifiers with the actual, non-stratified continu-
ous-valued protein activities. This approach would be similar to that pursued in the PAH-PKU
example fromWettstein et al. (above) [37]; this endophenotypic approach avoids the poten-
tially dubious dichotomization of both algorithmic output and the experimental protein
activities.

Endophenotype prediction presents new technical challenges, both in data acquisition and
methods development. Although the large-scale development of gene-endophenotype data-
bases will require community-wide effort, we see this as a tractable problem. Given that dis-
eases are defined and diagnosed using quantitative endophenotypic risk factors, screens of
genetic risk factors and association studies could, when possible, catalogue the continuous-val-
ued endophenotypes used to partition the cases and controls. Some examples of this type of
database curation are included in Table 2.

Wettstein et al. showed that some existing methods could potentially be repurposed for
endophenotype prediction [37]. Even though most cSNV classifiers return dichotomous or cat-
egorical predictions, the underlying score functions calculate continuous-valued scores that
could be correlated with measured endophenotypes. Although these existing classifiers suffer
the limitation that they are not endophenotype specific, assessing the correlation of different
endophenotypes and the continuous-valued output of existing methods could be informative.
Also, the individual components of some methods’ score functions might be useful to help
infer mechanism. For instance, SNPeffect combines four scores that each estimate distinct pro-
tein phenomena (amyloid formation, aggregation, stability, and chaperone binding) [55]. Clas-
sifiers that are gene and endophenotype specific—such as those produced by the ePOSE
algorithm—will benefit from learning which variants (or genes) contribute to specific compo-
nents of disease: as an example, CFTR variants that effect processing versus chloride
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conductance, or complex heart disease phenotypes that can result from varying combinations
of LDLR-specific cholesterol plaques [27] or LPA-specific calcium plaques [56]. Undoubtedly,
successful endophenotype prediction will benefit from diverse approaches.

Endophenotype predictors could be a useful complement for predicting complex diseases. A
hallmark of complex disease is the presentation of varied combinations of traits associated with
that disease, in which different traits can be influenced by different genetic risk factors. The
quantitative traits are themselves endophenotypes, and predicting these objective traits, rather
than a clinically defined abstraction of traits (i.e., phenotypes), could provide unique opportu-
nities. For instance, predicting these quantitative traits facilitates the decomposition of complex
disease into simpler, individual risk factors. For endophenotype predictors that are gene spe-
cific, this benefit will largely depend on a priori knowledge regarding causal genes.

In contrast to disease phenotype classes, endophenotypes are quantitative measurements
having shared genetic underpinnings with disease phenotypes of interest. We suggest that in
silico tools can be developed to predict the impact of cSNVs on endophenotypes, yielding
improved accuracy and added value into the study of the mechanism and severity of cSNV
impact on disease. The ePOSE algorithm provides a proof of concept and yields promising
results in predicting three endophenotypes for a small set of cystic fibrosis cSNVs from the
CFTR2 database [39]. The feasibility of such an approach will require community-wide efforts
to augment the information currently available in LSDBs and other mutation databases.
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