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Abstract

It is now plausible to dock libraries of 10 million molecules against targets over several days or 

weeks. When the molecules screened are commercially available, they may be rapidly tested to 

find new leads. Although docking retains important liabilities (it cannot calculate affinities 

accurately nor even reliably rank order high-scoring molecules), it can often can distinguish likely 

from unlikely ligands, often with hit rates above 10%. Here we summarize the improvements in 

libraries, target quality, and methods that have supported these advances, and the open access 

resources that make docking accessible. Recent docking screens for new ligands are sketched, as 

are the binding, crystallographic, and in vivo assays that support them. Like any technique, 

controls are crucial, and key experimental ones are reviewed. With such controls, docking 

campaigns can find ligands with new chemotypes, often revealing the new biology that may be 

docking’s greatest impact over the next few years.
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STRUCTURE-BASED LIGAND DISCOVERY

Beginning in the 1970s, simulations of protein structures were promoted for structure-based 

or “rational” drug design.1,2 The techniques struggled to meet their initial promise, and early 

discovery continues to be dominated by empirical methods. Still, in the past decade, drugs 

for which structure and computation were genuinely pivotal have begun to appear; close to 

20 drugs, with clear links to structure-based discovery or design, are now in clinical use.3–7 

As few as they are, they may exceed those deriving from another widely heralded approach, 

high-throughput screening (HTS).8

DOCKING AND ITS DISCONTENTS

A central technique in structure-based discovery is molecular docking.9 In docking screens, 

libraries of about 107 molecules can be interrogated for those that complement a protein 

structure (Figure 1). For each molecule in the library, hundreds to thousands of orientations 

may be sampled in the protein site, and for every orientation there are hundreds of 

conformations; increasingly, alternative protein conformations are also considered. Overall, 

1012–1013 ligand complexes may be calculated in a large library screen, each ranked using 

scoring functions that consider several polar, nonpolar, and solvent-dependent scoring terms, 

all approximate.

There are several first-principle reasons why docking screens might never work. Among 

them, docking’s emphasis on throughput ensures that it undersamples states, principally 

protein conformations and ordered water networks. Even for ligand conformations, which 

are heavily sampled, the energy weighting among them is poorly treated or ignored. 

Docking complexes are rarely fully relaxed, leading to what amounts to irreversible work. 

Ligand and protein desolvation energies are at best approximate and are often entangled with 

docking interaction energy scores. These scores ignore important terms (among others: 

cation-π interactions and polarizability), and even the terms that are included are rarely well-

parametrized for the diverse molecules in docking screening decks. The docking scoring 

energies are calculated all-at-once rather than via small perturbations that are central to 

techniques, such as free energy perturbation and alchemical thermodynamic integration, that 

can at least pretend to the calculation of relative and absolute affinities of binding. Over a 

calculation that samples 107 candidate ligands in 1013 configurations, any one of these terms 

could ensure the failure of a docking screen for plausible ligands.

PRAGMATIC SUCCESS: DOCKING AS A SCREENING TECHNIQUE

Despite what would seem to be eviscerating weaknesses, docking screens have been 

successfully prosecuted, discovering new ligands (Table 1)10–65 that are increasingly 

confirmed with detailed biophysics, from concentration–response curves to Ki and Kd values 

of binding, to the comparison of subsequent crystal structures to the docking predictions 

(Figure 2). In blind, prospective comparisons with HTS against enzymes like HSP90,66 

PTP-1B,67 β-lactamase,68,48 and cruzain,50,69 the docking “hit rates” (actives/tested) were 

2–3 orders of magnitude better than for the empirical screen, and while HTS found docking 

false negatives, docking in its turn found false negatives from HTS.
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How can these successes be reconciled with the weaknesses of the approach? Like other 

large-scale screens, docking seeks new observations, in its case new ligands, unanticipated 

from previous series, with the hope of conferring new biology. It emphasizes throughput and 

the polling of many possibilities and tolerates both false positives and false negatives as long 

as enough experimentally confirmed positives are found. Whereas docking can fail for any 

of the reasons sketched above, it happens that, crude as they are, the docking scores 

successfully reduce the many millions of molecules screened to a relatively small number of 

plausible candidates. As these candidates are available commercially or, for industrial users, 

from an in-house library, the cost of failure is cheap. Even a 10% success rate is often more 

than sufficient to justify the enterprise.

Here we describe practical strategies for successful docking campaigns and the resources 

that allow for their prosecution by a wide community, not just specialists. Because the 

enterprise depends on a close integration of the docking screen and the experimental testing 

of a few candidates, we will consider strategies to pick hits for testing and for the critical 

evaluation of the experimental tests. We will only summarize recent methods developments 

in docking, which have been well reviewed elsewhere.70–74 We will close with a discussion 

of the major contribution of docking to early discovery in medicinal chemistry and chemical 

biology, which is the illumination of genuinely new chemotypes for targets of active 

biological interest.

STEPS IN A DOCKING CAMPAIGN

Docking is increasingly enabled for nonspecialists by Web tools (Table 2) and available 

compound databases (Table 3). Still, the approach integrates disparate methods, and there 

are several places it can go wrong if attention is not paid to maddening details. Among these 

are the protein structures on which docking depends, whether from X-ray crystallography, 

NMR, comparative modeling,75–77 and soon electron microscopy. Binding sites can have 

incomplete, flipped, or ambiguous side chains, and some residues may occupy more than 

one position in the structure. Some binding site metals will lack parameters. Structural 

waters,78 which can play a critical role in recognition, must be treated as part of the site, 

taken out, or treated as displaceable if the method can do so.

We find it useful to conduct retrospective sanity checks before undertaking a new, 

prospective docking campaign. When possible, annotated ligands may be gathered as 

positive controls, including any ligand-bound crystal structures if available. Large ligand sets 

may often be found in ChEMBL, and if so, they are likely also to be in ZINC, where they 

exist in a ready-to-dock form (Table 3). These sanity check calculations work best if the 

ligands are combined with property-matched decoys, which physically resemble the ligands 

but are topologically dissimilar.79,80 We typically use about 30–50 decoy molecules for each 

ligand in these sanity-check screens, asking if the calculation can enrich the ligands at the 

top of the docking-ranked list, in sensible poses, compared to the decoys. Parameters may be 

modified to improve ligand enrichment, but overfitting will bias the ultimate prospective 

screens toward precedented chemotypes, defeating the purpose. Decoys can be calculated 

readily using DUD-E81 (Table 2).
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In prospective screens, large libraries of molecules are docked for those that complement the 

binding site. A focus on commercially available molecules (Table 3), for academic 

laboratories or on in-house libraries, for pharmaceutical research organizations, ensures that 

the molecules may be readily acquired and tested, which is crucial for the success of an 

enterprise that anticipates a 90% failure rate. ZINC incorporates many of these, amounting 

to over 100 million commercially available “druglike” compounds represented in 

precalculated, ready-to-dock formats. ZINC is easily subdivided by physical properties 

corresponding to current opinion in the field, such as “fragment-like”82 and “lead-like”83 

subsets. Especially for those programs optimized for the parallel execution that docking 

allows and not limited by seat licenses, a full screen may be completed in a week or two of 

wall time on a typical academic cluster. What emerges at the end of the calculation is a list 

of molecules, rank-ordered by complementarity to the binding site by the docking scoring 

function in one or more high-scoring configurations in the binding site. These may be 

visualized individually and prioritized for purchasing and testing.

HIT PICKING PARTIES

Docking ignores or approximates key energy terms and over a screen of 107 compounds 

simply misrepresents molecules; strained conformations of ligands may be docked, pKa 

values may be miscalculated or high-energy tautomers sampled, among other potential 

problems. Even if these errors affect only a small percentage of the docked library, the scum 

often rises to the top (for instance, high-energy ligand conformations and mischarged 

molecules can make interactions that low-energy states cannot, resulting in artificially 

favorable scores). Like other high-throughput methods, rapid filters for artifacts are crucial, 

as are chemoinformatic controls for similarity to known chemotypes. Since the purpose of a 

docking screen is often the discovery of new chemical matter, complementing a binding site 

but dissimilar to molecules that could be found by QSAR, for instance, it is sensible to 

eliminate those docking hits that would have been found by topological similarity alone (this 

control is insisted on by some journals, including this one).

In addition to automated, typically postdocking filters, visual evaluation of docked, high-

ranking candidates can bring an integrated knowledge of the system and of physical 

chemistry. As an evaluation of HTS campaigns,84 “hit-picking parties”, involving two to 

eight scientists from a broader team, can help select a final set of high-ranking molecules to 

acquire and physically test; these molecules, though always from the very top scoring 

molecules from a screen, are rarely the top ranked by raw docking score. Rather, the 

molecules may be selected for diversity and for favored interactions, for instance, the 

prioritization of a key hydrogen bond. More important than prioritizing favored interactions, 

which after all can bias the ligands toward known chemotypes, is the deprioritization of 

ligands that have unfavorable features for which the docking scoring function does not 

properly penalize. As mentioned above, common examples include ligand conformational 

strain, improper tautomerization, and improper protonation of ionizable groups. Each of 

these can be a challenging problem in molecular representation, requiring relatively high 

level calculations for any given molecule,85 and it is little surprise that in over 10 million 

molecules, errors are made. Sometimes errors that slip through the automated library 

creation pipeline can be caught by an experienced medicinal chemist or biophysicist and 
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deprioritized. Thus, it is often the case that a molecule that is ranked below 250th will be 

prioritized over a molecule that is ranked better than 10th. These hit-picking parties have a 

secondary benefit of training a wider team in molecular interactions, medicinal chemistry, 

and target biology.

With docking’s current accuracy, we often find that acquiring and testing 25–50 new 

molecules is sufficient to find two to five new ligand families. Sourcing this many 

compounds from commercial vendors is typically economically feasible even for academic 

laboratories (many more may be considered by pharmaceutical research organizations), and 

this number of compounds is often suited to the low throughput, careful assays in which 

docking hits are tested. For targets with better binding sites, like aminergic G protein 

coupled receptors (GPCRs), the number of compounds to acquire might be lower, while for 

targets with more solvent accessible sites, like proteases or β-lactamase, the number of 

compounds to acquire will be higher because the success rate will be lower. Improvements 

in docking methods, compound accessibility, and ease of testing will change these numbers, 

but the logic of testing enough molecules to ensure a sufficient number of plausible new lead 

chemotypes, given an expected hit rate, will remain valid.

CRITICAL EVALUATION OF EXPERIMENTAL RESULTS

Whereas there remain docking campaigns where no molecules86–118 are tested whatsoever, 

the most interesting are those that lead to experiments. To the delight (and sometimes the 

surprise) of the dockers, they often reveal “hits”, molecules that are active in a binding or 

functional assay. As with other screening techniques, these initial experimental hits must 

initially be viewed with suspicion, as they can be pock-marked with artifact.

The origins of these experimental artifacts have been119–122 extensively reviewed: they can 

be broadly divided into molecules with pan assay interference (PAINS) chemotypes, which 

are promiscuous hitters,120 covalent acting molecules123 (but see below), molecules that 

interfere with assay spectroscopy,124–126 and molecules that form colloidal 

aggregates127–129 (Figure 3). Hits with PAINS chemotypes130–133 are not always 

pathological (over 60 FDA-approved and worldwide drugs contain PAINS chemotypes) but 

often are and should be flagged for detailed follow-up if not simply discarded. Many PAINS 

chemotypes can be rapidly identified using publicly available filters (e.g., http://

zinc15.docking.org/patterns/home, Appendix 1). Sharing no single mechanism, they fall to 

no single set of controls but can be interrogated for classical dose–response curves, lack of 

incubation effects, imperviousness to mild reductants, and specificity versus 

counterscreening enzymes (all favorable features, arguing against artifactual activity). 

Covalent and spectroscopic interference molecules do have specific physical mechanisms for 

which they can be controlled (Appendix 1). By far the most common artifact from virtual 

and high-throughput screening campaigns is colloidal aggregation. Between 1% and 3% of 

the molecules in most screening libraries will aggregate at relevant concentrations, and the 

colloids that they form sequester and artifactually inhibit,68,69,129 and occasionally 

activate,134 proteins. Fortunately, this mechanism is readily controlled (Appendix 1). Studies 

that omit controls for these experimental artifacts may waste person years of effort as 

hopeless compounds are progressed.135–138,133,139
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Detailed biophysical testing of new inhibitors for mechanism is always illuminating, 

irrespective of whether one suspects artifacts. There is an understandable tendency to fall in 

love with early hits, but hard experience127 suggests that doing so can obscure well-behaved, 

optimizable molecules that one would find if not distracted by the false positives. 

Measuring, and publishing, full concentration–response curves is a simple but crucial step 

toward this; much can be learned from the steepness of the curve and how well it is sampled 

(we recommend sampling every half-log in concentration and low and high enough in 

concentration to establish upper and lower baselines). A step further is to measure the full 

binding constant, through enzymological Ki, radioligand displacement or by reporter-free 

methods such as isothermal titration calorimetry, surface plasmon resonance, or related 

techniques. Here too, full curves should be measured and reported.

IMPROVEMENTS IN DOCKING

Investigators have long sought fundamental breakthroughs that would address docking’s 

core liabilities. Perhaps because of its entangled approximations, docking has resisted 

dramatic improvements and has had to be content with incremental progress. Still, over time, 

these have made noticeable improvements. Methods have added new polar interaction terms, 

flexible waters,78,146–151 metal coordination,152,153 protein preparation tools,154 

parallelization,155–157 combinatorial library docking,158 new sampling methods, and 

treatments ordered waters, often using a version of inhomogeneous solvation theory.159–161 

Just as important as these improvements to docking itself have been improvements in the 

quality and extent of the chemical libraries. Among the most widely used is the ZINC 

database, which has grown from about 750 000 commercially available molecules a decade 

ago162 to over 100 million for which three-dimensional, parametrized, dockable structures 

are now available.163 The quality of the molecules represented has also improved, drawing 

on improved treatments of molecular protonation and tautomerization,164,165 as well as 

conformational libraries that are more likely to sample the experimentally observed form.166 

Finally, the druggability of docking targets has improved. Over 60% of drugs act on 

membrane proteins, but 10 years ago the structures of few pharmacologically relevant 

membrane proteins had been determined, something that has changed dramatically in the 

past decade. These receptors, with their well-formed ligand binding sites, are often well-

suited to complementarity-based approaches like docking and have afforded hit rates that are 

almost a log-order better than those experienced with the more open sites typical of soluble 

proteins, and hits that can be 2–3 log-orders better in affinity. As unglamorous as it seems, 

incremental improvements in docking methods, libraries, and target selection will continue 

to be central to progress in the field over the next few years.

What would a big breakthrough in docking look like? If one could accurately calculate 

binding free energies or even accurately rank-order among the top 0.1% of docking-

prioritized hit-list (about 10 000 molecules), the impact would be enormous and would 

justify substantial investment. In principle, the biophysical bases for calculating accurate 

binding constants are in hand via alchemical methods and thermodynamic integration,167,168 

though these methods are only beginning to be tested prospectively.169,170 Even with recent 

advances in long molecular dynamics simulations,171–173 however, these approaches remain 

far too slow to be practical on the scale of a large library screen. Calculating the Kd values of 
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a 10 million molecule, diverse library would take decades, even with the increases in 

computer power likely in the next several years. Meanwhile, lack of proper parametrization 

of the library molecules ensures large errors, even for these high-end methods. Where the 

more accurate biophysical methods may have impact on a large scale screen, in the next few 

years, is in rescoring a top tranche of a docking hit-list, helping to prioritize the final few 

that will get tested. They can also improve the accuracy of docked geometries, which is 

crucial for the enterprise and is where docking can add the most once campaigns have 

progressed from initial discovery to optimization. Such goals for the high-end biophysical 

methods may seem modest, but if successful, they would have great impact.

FRAGMENT AND COVALENT DOCKING

Fragment-based discovery addresses the chemical space problem by screening molecules 

typically smaller than ~17 non-hydrogen atoms (about 250 amu). Just as chemotype 

possibilities combinatorially explode as molecules grow in size, they collapse as they shrink, 

and fragment screens span a far greater percentage of chemotypes than screens of the 

druglike (up to 500 amu) or even leadlike (up to 350 amu) molecules. As powerful as 

fragment screens have been for chemotype discovery, empirical fragment libraries are rarely 

more than 10 000 molecules, owing to the low throughput of the biophysical methods used 

to assay them. This is less than needed to cover even known biorelevant chemotypes,174 and 

the empirical libraries are dwarfed by the 2.4 million fragments that are simply 

commercially available. Screening the commercially available fragments is beyond 

biophysical screening methods used in fragment-based discovery but would take a few days 

on a decent academic cluster by docking.

The concern in fragment docking has been that the methods have been optimized for larger 

molecules, and docking would lead to promiscuous prediction of fragment poses. This worry 

has merit, as newly discovered docked fragments often have less fidelity to X-ray structures 

than do those of larger molecules; many in the field believe that fragment docking remains 

risky. Still, many predicted fragment geometries are fairly accurate, and the hit-rates in 

fragment docking can be a log-order better than leadlike or druglike screens.51,52 With all 

their potential liabilities, fragment docking can fill chemotype holes in empirical libraries, 

sometimes leading to hits with much higher affinity and ligand efficiency than empirical 

screens alone.174

The gap in our libraries for covalent probes is more compelling still. From bitter experience 

with false positives, most empirical screening libraries have been scrubbed clean of hot 

electrophiles, making it hard to intentionally screen a large library for covalent ligands. 

Conversely, electrophiles remain common among commercial libraries; among leadlike 

molecules in ZINC, over 600 000 can act covalently as Michael acceptors, epoxides, boronic 

acids, nitriles, and other war-heads175 (http://covalent.docking.org). Recently, several 

methods have been introduced to intentionally screen such libraries for covalent 

ligands175–181 typically by modifying an existing noncovalent scoring function to sample the 

close bond approaches and to discount the van der Waals clashes implied by the formation of 

the covalent adduct. In favorable circumstances, these methods predict poses with high 

fidelity to subsequent crystal structures and have prospective hit rates substantially higher 
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than experienced with noncovalent docking, while retaining decent specificity against off-

targets.175 This is an area where new tools are rapidly being introduced175–177,182–185 and in 

which there is widespread98,186–188 interest.

EXPANSION TO COMPARATIVE MODELS

With all the errors in docking, targeting homology models might seem risky. On the other 

hand, the number of targets with experimental structures is outstripped by several log-orders 

by those for which plausible comparative models may be calculated. Modeling from 

templates with sufficient sequence identity and, where possible, fortified by other 

constraints,77,189 the technique can provide useful structures for ligand discovery.190,191 

Indeed, in a prospective, head-to-head study of docking against a comparative model and 

then, subsequently, a crystal structure of the same receptor, about the same hit rate (20–23%) 

and hit affinity (0.2–3 µM) was returned for both structures. Multiple docking screens 

against homology models have been reported for ligand, substrate,192–194 and 

deorphanization studies,188 and indeed for one of the approved drugs where structure-based 

design played a pivotal role, aliskiren, homology modeling of lead complexes long predated 

crystal structures.195 Even with all the errors in docking and protein structure modeling, 

targeting comparative models can greatly expand dockable targets.

NEW CHEMOTYPES FROM DOCKING

What structure-based screens can reliably return are novel chemotypes unrelated to 

previously known ligands for a target. There are multiple ways a protein structure can 

recognize any given ligand chemotype,196 and a particular binding site can recognize 

multiple, unrelated scaffolds. Even for well-precedented targets, structure-based screens can 

find new ligands without antecedents in previous medicinal chemistry. Though there is no 

strong logic for why new ligand chemistry should lead to new biology, it often does. This 

ability to break out of medicinal chemistry boxes and to discover new chemotypes is where 

docking screens may find some of their most important contributions over the next few 

years. This may be illustrated by example.

New β-Lactamase Inhibitors That Do Not Up-Regulate Enzyme Expression

Class C β-lactamases are bacterial enzymes that are the major source of resistance to β-

lactam antibiotics like penicillins and cephalosporins in the clinic. Whereas β-lactam-based 

inhibitors, such as clavulanate, are well-known, they have grave liabilities for the class C 

enzymes: their IC50 values are modest, and worse still they up-regulate the expression of the 

very enzyme that they are meant to inhibit, actually increasing resistance. A docking screen 

for new inhibitors of the class C β-lactamase, AmpC, discovered a family of thiophene-

carboxylate sulfonamides. These inhibitors were dissimilar to the known β-lactams, 

including clavulanate, but they were found by crystallography to bind in the same site47 and 

to inhibit the enzyme with about 1 µM potency.197 Unlike clavulanate, the new inhibitors 

simply inhibited the enzyme in bacterial cell culture; they did not up-regulate its expression. 

Thus, they, unlike classic β-lactamase inhibitors, were synergistic, not antagonistic, with 

primary β-lactam antibiotics such as ceftazidime and piperacillin (Figure 5a).
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Receptor Deorphanization

Tm0936 was an orphan enzyme from Thermatoga maritime whose structure had been 

determined as part of a structural genomics initiative. Whereas by sequence and structure 

Tm0936 could be readily assigned to the amidohyrolase superfamily, its function was 

unknown and automated assignment misannotated it as a cytosine deaminase. A docking 

screen of 14 000 metabolites, represented as high-energy intermediates, against the 

enzyme’s structure revealed several analogs of adenosine as top-ranked hits, suggesting that 

they went through a deamination reaction on the purine ring (revealed by the high-energy 

intermediate form docked). Among these was S-adenosyl homocysteine, which on testing 

was found to be an excellent substrate for Tm0936, with a second order rate constant of 105 

mol−1 s−1. Subsequent crystallography confirmed the product of the predicted deamination, 

S-inosyl homocysteine, to superpose well with the docked pose (Figure 2I). The conversion 

of S-adenosine homocysteine to the inosyl derivative suggested a previously unknown S-

adenosyl homocysteine degradation pathway in bacteria.198

A similar strategy has recently illuminated the function of the orphan GPR68 (also known as 

OGR1) in learning and memory.256 This GPCR was screened in general function assays 

against a small drug library, and the benzodiazepine lorazepam was found to be a positive 

allosteric modulator (PAM) of it. Because of its binding to its therapeutic target, the GABA 

ion channel, lorazepam itself was not useful as a biological probe for GPR68’s function. 

Accordingly, thousands of 3D models of GPR68 were constructed using MOD-

ELLER199,200 and prioritized by their ability to highly rank lorazepam versus the known 

decoy molecules from the initial empirical screen. A subsequent series of docking screens, 

testing, and optimization led to a PAM with about 30-fold improved efficacy over 

lorazepam. Unlike lorazepam, the new molecule had no measurable activity against the 

GABA channel and was specific for GPR68 versus sequence-related orphan receptors, such 

as GPR4 and GPR65. This molecule, dubbed ogerin (for OGR1 ligand), was advanced into 

in vivo functional studies. In a screen of mouse behavioral assays, ogerin reduced fear-

conditioning in a context-based learning assay, consistent with its high expression in the 

hippocampus, which is associated with this modality. Conversely, ogerin had no effect on 

cue-based learning, associated with the amygdala, nor did it have any effect on even context-

based learning in GPR68 knockout mice. A close analog of ogerin that had little effect in 

vitro also had little effect in vivo. These observations support the on-target effect of ogerin 

on GPR68 in vivo and by extension a function of this formally “dark” receptor in learning 

and memory.

Targeting the Serotonin Receptor

Recent studies have suggested that the 5-HT2B GPCR plays a role in the development of 

irritable bowel syndrome and may be a target for new therapeutics. Currently, only a few 

selective antagonists of the receptor have been reported, due to the high degree of homology 

with its closely related protein family members. Huang and co-workers recently used a 

crystal structure of 5-HT2B with an agonist bound to discover novel and selective antagonist 

chemotypes for the receptor.201 They created induced-fit models using antagonists and 

docked an in-house collection of over 100 000 diverse compounds against it. Several new 

compounds emerged including a chemotype that contained a protonated triazine ring instead 
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of the conventional tertiary aliphatic amine. This novel chemotype led to subtype selective 

compounds for the 5-HT2B receptor. Tested in vivo, these selective antagonists substantially 

attenuated visceral hypersensitivity in irritable bowel syndrome rat models. This scaffold 

represents a new avenue for the development of selective 5-HT2B antagonists for the 

treatment of 5-HT2B-related diseases.

Targeting Ras-like Kinases

Ras and related soluble GTP-based kinases are perhaps the proteins most implicated in 

cancer but have long resisted modulation because of their high affinity of GDP and GTP. 

Theodorescu and Meroueh used molecular docking screens to discover inhibitors to 

modulate the GDP-form of the Ras-like kinases RalA and RalB.202 These inhibitors were 

active not only in vitro but also in Ral-mediated cell spreading in murine fibroblasts and 

anchorage-independent growth of human cancer cell lines. Two of the compounds were 

selective for Ral versus Ras or Rho kinases and inhibited tumor growth in a xenograph 

mouse model at a level similar to depletion of Ral by siRNA. These results illustrate the 

ability of a structure-based approach to discover chemotypes that have long eluded purely 

empirical approaches.

FORWARD LOOKING GUIDANCE

In the past decade docking has advanced by incremental improvement, not least in the size 

and quality of docking libraries. A true breakthrough in the rapid calculation of binding 

affinity or the ranking of diverse compounds, even if occurring postdocking, on a list of 

1000–10 000 prioritized molecules would change the field. Even without such a 

breakthrough, steady optimization has brought the field to where it often can find new lead 

matter for biologically relevant targets. A great opportunity for docking is its application to 

the discovery of genuinely new molecules for both precedented and unprecedented targets. 

Whereas there is no strong reason why new chemotypes should lead to new biology, they 

often do, even for well-studied targets. The opportunity to use docking screens for new 

chemotype discovery is increasingly available not only to specialists but to the community, 

via open access tools (Tables 2–4). The size of the chemical libraries routinely used by these 

structure-based screens has, moreover, grown steadily since they were first introduced 20 

years ago, from 55 000 in the early 1990s to 250 000 in the early 2000s, to 750 000 by 2005, 

to now approaching 10 million and with another log-order expansion in sight. They far 

exceed most empirical libraries except perhaps those that are DNA-encoded. These days, a 

conservative “leadlike” docking campaign might screen six million molecules, most 

available from vendors within a couple of weeks. Were one willing to wait a couple of 

months, this number would grow to 60 million leadlike molecules. Naturally, such large 

libraries are interesting only if the structure-based methods can prioritize the tiny percentage 

of plausible ligands from among the vast number of decoys, and there is always a concern 

that adding more library molecules will simply drown the signal in noise. Still, results over 

the past several years, on multiple targets from multiple laboratories, suggest that docking, 

for all its problems, can distinguish plausible from implausible molecules, at least for well-

formed binding sites. It also suggests that larger libraries have led to more novel and often 

more potent chemotypes, though admittedly this has not been investigated in a controlled 
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way. In the next several years, docking’s greatest impact may be in its pragmatic application 

to biomedical problems where new chemical matter can confer new biology.
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APPENDIX 1

CONTROLS FOR ARTIFACTUAL ASSAY ACTIVITY

(a) Irreversible Inhibitors

Some noncovalent docking hits act as covalent artifacts, often via a reactive center present 

on the docked molecule or on an impurity. A rapid counterscreen for irreversible inhibition 

is to incubate the target protein and the hit at 5× their apparent IC50 and then dilute them 10-

fold (other IC50 ratios may of course be chosen). If inhibition is rapidly reversible, the 

inhibition on dilution should drop to about 33% of full inhibition at this ratio. If dilution 

changes the inhibition little, it supports covalent activity. Legitimate, slow off-rate inhibition 

is another alternative, but such molecules are rare among initial screening hits. This 

experiment will only work for soluble proteins, but related experiments to measure off-rate 

may be adapted for membrane proteins.

(b) PAINS Molecules

The chemotypes represented in these molecules often occur among promiscuous molecules 

that fail to progress. Several tools are available to rapidly detect these chemotypes, including 

at http://zinc15.docking.org/patterns/home. Just because a hit has PAINS functionality does 

not invalidate it, but it does make careful testing for mechanism important. We recommend 

counterscreening the molecule against unrelated targets, determining whether it competes 

with a ligand known for the site and whether its concentration-response curves are well-

behaved (Figure 4a, red curve).

(c) Spectroscopic Interference Compounds

Compounds that are absorb light or that fluoresce in a region used to measure activity can 

look like hits via assay interference,124–126,140 as can molecules that inhibit a reporter 

enzyme, like luciferase.141 Spectroscopic interference should change linearly with 

concentration, following Beer’s law, rather than log-linearly as in a single site isotherm. 

Inhibitors of the reporter may be counterscreened against it.

(d) Active Impurities

Sometimes compounds are not what they pretend to be or contain reactive impurities. Active 

molecules should be tested for purity. Anything below 95% should be further purified. ACS 

journals often request purity of 98% or better.
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(e) Colloidal Aggregation

Perhaps the largest single source of artifacts in early discovery is colloidal aggregation by 

small molecules.68,69,127 These particles, between 50 and 1000 nm in radius, adsorb protein 

without specificity, partially denaturing them. About 1–2% of molecules in a typical 

screening deck will aggregate at relevant concentrations, ensuring hits reflecting colloid-

formation dominate screens, virtual and empirical, that do not control for them. Fortunately, 

this mechanism of inhibition may be readily controlled:

i. If inhibition can be attenuated by small amounts of nonionic detergent, the 

compound is likely an aggregator. We typically use 0.01% v/v freshly prepared 

Triton-X 100 or 0.025% v/v Tween-80142–144 for membrane or cell assays.

ii. Direct observation of particles in the 50–1000 nm size range by dynamic light 

scattering (DLS). Formation of particles does not guarantee promiscuous inhibition, 

but it is a worrying sign.

iii. For cell-based assays, colloidal particles can be precipitated by centrifugation 

before the assay is run, from assay media. If the compound is much more effective 

before spin down than after, it suggests colloidal aggregation.

iv. Noncompetitive inhibition with high Hill slopes. There are classical reasons for 

noncompetitive inhibition and for cooperative binding, but the latter is rare in early 

discovery and the two together suggest aggregation.

v. Attenuation of inhibition by increasing target concentration. Except when the 

receptor concentration to Ki ratio is high,145 increasing receptor concentration 

should not affect inhibition for well-behaved inhibitors, but it will be much reduced 

for colloidal aggregators and increase the steepness of the response curve (Figure 

4b). This experiment is only accessible for soluble proteins.
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ABBREVIATIONS USED

3CLpro SARS-CoV 3-chymotrypsin-like protease

5-HT2B serotonin G protein coupled receptor 2B

ACS American Chemical Society

AR androgen receptor

ChEMBL The EMBL Medicinal Chemistry database

DLS dynamic light scattering

DUD-E A Directory of Useful Decoys—Enhanced

EGFR ED epidermal growth factor receptor extracellular domain

FDA Food and Drug Administration

G4 G-quadruplex

GABA γ-aminobutyric acid

GDP guanosine diphosphate

GLR glucagon receptor

GPCR G protein coupled receptor

GPB glycogen phosphorylase B

GPR4 G protein coupled receptor 4

GPR65 psychosine receptor

GPR68 ovarian cancer G-protein coupled receptor 1

GTP guanosine triphosphate

HTS high-throughput screening

HCoV-OC43 human coronavirus nucleocapsid protein

HisG Mycobacterium tuberculosis ATP phosphoribosyl transferase

HSP90 heat shock protein 90

OGR1 ovarian cancer G-protein coupled receptor 1

MELK maternal embryonic leucine zipper kinase

NRPS nonribosomal peptide synthetase

PAINS pan assay interference

PAM positive allosteric modulator

pgMDD meso-2,6-diaminopimelate dehydrogenase
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PKR1 prokineticin receptor 1

PTP-1B tyrosine-protein phosphatase 1B

PA-Nter influenza virus PA endonuclease

PTPσ protein tyrosine phosphatase σ; RalA, Ras-related protein Ral-Al

RalB Ras-related protein Ral-B

TGT tRNA-guanine transglycosylase

siRNA small interfering RNA

SLC1A5 alanine–serine–cysteine transporter ASCT2

VHZP VHZ phosphatase

ZINC “ZINC is not commercial”, a database of compounds for virtual screening
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Figure 1. 
Docking for new chemotypes from large libraries.
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Figure 2. 
Superposition of docking-predicted and subsequently determined crystal structures. (A) A 9 

nM inverse agonist of the β2 adrenergic receptor discovered by docking (orange) superposed 

on the crystallographic result (green).49 (B) Docking-predicted structure of eticlopride (light 

blue) superposed on the crystallographic result (yellow) in the dopamine D3 receptor. 

Reproduced with permission from Nature Chemical Biology (Carlsson, J.; et al. Ligand 

discovery from a dopamine D3 receptor homology model and crystal structure; 2011, 7, 

769–778);213 Copyright 2011 Macmillan Publishers Ltd. (C) A 30 µM inhibitor of β-

lactamase discovered by docking (purple) superposed on its crystallographic structure 

(white).48 (D, E) Two crystal structures (gray carbons, electron density in wire mesh) 

superposed on the docking predicted ligands (yellow carbons) and poses refined by 

postdocking rescoring programs AMBERDOCK (cyan carbons) and PLOP (magenta 

carbons) for the nonpolar T4 lysozyme L99A and L99A/M102Q model cavities. Reproduced 

with permission from Journal of Molecular Biology (Graves, A. P.; et al. Rescoring docking 

hit lists for model cavity sites: predictions and experimental testing; 2008, 377, 914–934);245 

Copyright 2008 Elsevier, Ltd. (F) A docked ligand superposed on the crystallographic result 

from a screen against the model anion cavity in cytochrome c peroxidase W191G/gateless. 

Reproduced with permission from Nature Chemistry (Fischer, M.; et al. Incorporation of 
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protein flexibility and conformational energy penalties in docking screens to improve ligand 

discovery; 2014, 6, 575–583);243 Copyright 2014 Macmillan Publishers Ltd. (G) A 40 nM 

boronic acid inhibitor of AmpC predicted by covalent docking (cyan carbons) superposed on 

its crystal structure with the enzyme.175 (H) A 370 nM inhibitor of RSK2 kinase predicted 

by covalent docking (magenta carbons) superposed on its crystal structure with the enzyme 

(yellow carbons, with Fo – Fc electron density shown in green mesh.175 (I) The docked 

structure (green carbons) of the high-energy intermediate of S-adenosyl homocysteine 

superposed on the crystallographic structure of the product, S-inosyl homocysteine (red 

carbons) in complex with Tm0936. Reproduced with permission from Nature (Hermann, J. 

C.; et al. Structure-based activity prediction for an enzyme of unknown function; 2007, 448, 

775–779);198 Copyright 2007 Macmillan Publishers Ltd. (J) An 8 µM inhibitor of PDK1 

showing the docking pose (yellow carbons) superposed on the subsequently determined 

crystal structure (magenta carbons).234 (K) Modeled binding mode of a 10.6 µM fragment 

(orange carbons) superimposed with the dominant binding mode determined 

crystallographically (green carbon atoms).251
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Figure 3. 
Aggregators (first row) and PAINS120 (second row) identified by docking: (A) 0.5 µM 

inhibitor of β-lactamase;127 (B) 7 µM inhibitor of DHFR;252 (C) 5 µM inhibitor of VEGF 

(and 10 µM IGF-1);253 (D) 14 µM inhibitor of tyrosine phosphatase;131 (E) 30 µM inhibitor 

of PTPRQ;130 (F) 3 µM inhibitor of DHFR.254
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Figure 4. 
Classical and aggregation-based concentration–response curves. (a) The well-behaved, 

competitive inhibitor BZBTH2B (▪, red curve) and the aggregator rottlerin (●, black curve), 

against the enzyme β-lactamase (adapted from ref 255, used with permission). (b) As the 

concentration of β-lactamase is increased, the inhibition curve shifts right and steepens for 

colloidal aggregators like rottlerin.
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Figure 5. 
New functions conferred by new chemotypes discovered by docking. (A) The β-lactam 

inhibitor clavulanic acid up-regulates the expression of β-lactamase in E. cloacae, 

antagonizing the efficacy of the primary β-lactam antibiotics ceftazidime (CAZ) and 

piperacillin (PIP) in a disk diffusion assay (left).47,197 In contrast, the docking-discovered 

inhibitors simply inhibit the enzyme without up-regulating it, synergizing with the same 

primary antibiotics (right). (B) Lorazepam (left) and ogerin (middle) are both modeled to 

bind at the same site on GPR68. Ogerin, however, is more potent and specific than 
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lorazepam. In wild-type mice, ogerin reduces fear conditioning in a contextual freezing 

assay compared to knockout mice, where it has no measurable effect (right). Reproduced 

with permission from Nature (Huang, X. P.; et al. Allosteric ligands for the 

pharmacologically dark receptors GPR68 and GPR65; 2015, 527, 477–483);256 Copyright 

2015 Macmillan Publishers Ltd. (C) Inhibition of visceral hypersensitivity in IBS rat model. 

Therapeutic effects of compound 15 in IBS rats. The pain threshold decreased in response to 

CRD (at score 3 (left) and score 4 (right)).201 (D) Left panel. Xenograft tumor growth of 

human lung cancer cell line H2122, 50 mg kg−1 day−1 RBC8 initiated 24 h after inoculation 

inhibited tumor growth. Typical tumor appearance at 21 days is shown. Right panel. Effect 

of RBC8 on H358 xenograft models. RBC8 treatment (50 mg kg−1 day−1) initiated 24 h 

after inoculation inhibited xenograft tumor growth of human lung cancer cell line H358. 

Data represent the mean ± SEM of six mice. Tumor volume in the treatment group was 

statistically different from controls as determined by the Student’s t test. Reproduced with 

permission from Nature (Yan, C.; et al. Discovery and characterization of small molecules 

that target the GTPase Ral; 2014, 515, 443–447);202 Copyright 2014 Macmillan Publishers 

Ltd.
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Table 1

Selected Examples of Ligand Discovery by Molecular Docking

Target hit rate (actives/tested) best hit (µM)a structure determined? biology investigated?

Carbonic anhydrase II203 0.0008 yes

H1 histamine GPCR204 73% (19/26) 0.006 yes

β2 adrenergic49,205 24% (6/25) 0.009 yes

A2a adenosine GPCR206 45% (9/20) 0.015

SLC1A5207 50% (7/14) 0.02 cell culture

A2a adenosine GPCR208,209 41% (23/56) 0.032

PTPσ210 4.7% (7/147) 0.1

CD40-TRAF6211 4.5% (7/150) 0.1 mouse

DDX3 helicase212 40% (10/25) 0.2

dopamine D3 GPCR X-ray213 20% (5/25) 0.3 yes

dopamine D3 GPCR model213 23% (6/26) 0.2 yes

LSD1214 7% (9/121) 0.2 cell culture

MELK215 19% (3/16) 0.37

NQO2216 14% (35/250) 0.4 yes mouse

NRPs217 0.2% (56/3000) 0.6 mouse

P38 MAPK218 6% (6/98) 0.7

NEDD8185 37% (3/8) 0.85

PA-Nter219 20% (3/15) 0.94 influenza virus

G4220 16.6% (3/18) 1 cell culture

DYRK1A221 3.5% (6/168) 1.5 cell culture

GLR222 8.5% (2/23) 1.9 cells/functional

Crm1223 8% (33/402) 2

HCoV-OC43224 12% (1/8) 2 yes

HisG225 14% (7/50) 2 Mycobacterium

AR226 11% (1/9) 2.7 cell culture

cruzain227 52% (12/23) 3 trypanosomes

VHZP228 5% (7/142) 3.5

SET7229 5% (7/127) 4.9

GPB230 57% (4/7) 5 yes hepatocytes

DPP-IV231 15% (15/99) 5

11β-HSD1232 10% (4/39) 5.3

RSV233 66% (20/30) 6

PDK1234 20% (3/15) 8 yes

TGT235 50% (3/6) 8.3a yes

EGFR ED236 13% (14/109) 10 cell culture

PKR1237 10% (1/10) 10 mouse

mGlu1238 14% (5/35) 10.2
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Target hit rate (actives/tested) best hit (µM)a structure determined? biology investigated?

3CLpro239 4% (3/74) 11

BRD4(1)240 3.2% (5/153) 13 yes

RSV241 10% (5/50) 20 yes virus

AmpC β-lactamase47 5% (3/5) 26a yes

CDK426 5% (18/382) 0.04 yes

HIVgp41135 1.7% (2/120) 56 cell fusion

CcP W191G cavity242 94%(15/16) 20a yes

CcP W191G/gateless cavity243 60% (9/15) 7a yes

T4 lysozyme L99A cavity244 100% (7/7) 56a yes

L99A/M102Q cavity245 70% (23/33) NDb yes

L99A/M102H cavity53 74% (21/29) 3a yes

DPP-IV246 50% (3/6) 0.72 rat

MOR42-3247 55% (22/40) 100a frog

TLR2248 20% (1/5) 11 cell culture

pgMDD249 36% (4/11) 157a cell culture

RSK kinase (covalent)175 62% (5/8) 0.43 yes cell culture

iNOS250 12.5% (1/8) 2.5 zebrafish

a
Fragment docking.

b
ND = not determined (binding, no Kd values).
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Table 2

Web Resources Widely Used for Docking Screens

Name Web site compounds and cost used for

ChemNavigator http://www.chemnavigator.com 9.2 × 107, commercial Procurement service

ChemSpider http://chemspider.com 3.5 × 107, free Chemical structure database with integrated information

DOCK Blaster http://blaster.docking.org Free Noncovalent docking

Docking Server http://www.dockingserver.com Free and commercial Noncovalent docking

DOCKovalent http://covalent.docking.org Free Covalent docking

DUDE http://dude.docking.org Free Decoy database and builder

eMolecules http://emolecules.com 7 × 107, free/commercial Procurement service

iScreen http://iscreen.cmu.edu.tw Free Noncovalent docking with a TCM focus

Modbase http://salilab.org 3.5 × 107, free Database of comparative models for docking

MolPort http://molport.com 2.6 × 107, free Procurement service

PDB http://www.pdb.org 1.1 × 105, free Database of crystal structures for docking

ZINC http://zinc15.docking.org 1.3 × 108, free Commercially available compounds for docking
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Table 3

Databases Widely Used for Docking Screens

name Web site compounds and cost used for

ACD http://accelrys.com 7 × 106, commercial Screening and building blocks

ChEMBL http://www.ebi.ac.uk/chembldb 1.3 × 106, free The curated medicinal chemistry literature

MDDR http://accelrys.com 2 × 105, commercial Biological active compounds compiled from patents

Open NCI http://cactus.nci.nih.gov 3 × 105, freea Free samples for testing in cancer researcha

TCM@Taiwan http://tcm.cmu.edu.tw 3.7 × 104, free Compounds from Traditional Chinese Medicine

WOMBATZINC http://www.sunsetmolecular.com 3 × 105, commercial Bioactivity databases for lead and drug discovery

ZINC http://zinc15.docking.org 1.3 × 108, free Commercially available compounds for docking

a
Free net of shipping, available for cancer-focused projects only.
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Table 4

Widely Available Docking Software

docking program Web site terms

AutoDock http://autodock.scripps.edu Free

AutoDock Vina http://vina.scripps.edu Free

DiscoveryStudio http://www.accelrys.com Commercial

DOCK http://dock.compbio.ucsf.edu Free to Academics

FlexX http://www.biosolveit.de/FlexX/ Commercial

FRED http://www.eyesopen.com Free to qualified academics

Glide XP/SP http://www.schrodinger.com Commercial

GOLD http://www.ccdc.cam.ac.uk Commercial

ICM-Pro http://www.molsoft.com Commercial

MOE https://www.chemcomp.com Commercial

rDOCK http://rdock.sourceforge.net Free

Surflex-Dock/Sybyl-X http://www.tripos.com/surflex Commercial

CovDOCK http://www.schrodinger.com Commercial
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