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Key points

� Acid-sensing ion channels (ASICs) act as neurotransmitter receptors by responding to synaptic
cleft acidification.

� We investigated how ASIC1a homomers and ASIC1a/2a heteromers respond to brief stimuli,
jumping from pH 8.0 to 5.0, approximating the time course of neurotransmitter in the cleft.

� We find that ASICs deactivate surprisingly fast in response to such brief stimuli from pH 8.0
to 5.0, whereas they desensitize comparatively slowly to prolonged activation.

� The combination of unusually fast deactivation with slow desensitzation enables recombinant
ASIC1a homomers and ASIC1a/2a heteromers, as well as native ASICs of sensory neurons, to
follow trains of such brief pH 8.0 to 5.0 stimuli at high frequencies.

� This capacity for high-frequency signalling persists under a physiological pH of 7.4 with
ASIC1a/2a heteromers, suggesting that they may sustain postsynaptic responses when other
receptors desensitize.

Abstract The neurotransmitter-gated ion channels that underlie rapid synaptic transmission
are often subjected to bursts of very brief neurotransmitter release at high frequencies. When
challenged with such short duration high-frequency stimuli, neurotransmitter-gated ion channels
generally exhibit the common response of desensitization. Recently, acid-sensing ion channels
(ASICs) were shown to act as neurotransmitter-gated ion channels because postsynaptic ASICs can
be activated by the transient acidification of the synaptic cleft accompanying neurotransmission.
In the present study, we examined the responses of recombinant ASIC1a homomers, ASIC1a/2a
heteromers and native ASICs from sensory neurons to 1 ms acidification stimuli, switching
from pH 8.0 to 5.0, as either single pulses or trains of pulses at physiologically relevant
frequencies. We found that ASIC deactivation is extremely fast and, in contrast to most other
neurotransmitter-gated ion channels, ASICs show no desensitization during high-frequency
stimulus trains under these conditions. We also found that accelerating ASIC desensitization
by anion substitution can induce depression during high-frequency trains. When using a baseline
physiological pH of 7.4, the ASIC1a responses were too small to reliably measure, presumably as a
result of steady-state desensitization. However, ASIC1a/2 heteromers gave robust responses when
using a baseline pH of 7.4 and were also able to sustain these responses during high-frequency
stimulus trains. In conclusion, we report that the slow desensitization and fast deactivation of
ASIC1a/2a heteromers enables them to sustain postsynaptic responses to bursts at high frequencies
at a physiological pH that may desensitize other receptors.
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Introduction

Acid-sensing ion channels (ASICs) are cation-selective
pH-gated ion channels belonging to the
degenerin/epithelial Na+ channel family (Waldmann &
Lazdunski, 1998). Of the six ASIC subunits identified,
ASIC1a, ASIC2a and ASIC2b show widespread expression
throughout the central and peripheral nervous systems,
whereas ASIC1b and ASIC3 are largely restricted to
the peripheral nervous system (Wemmie et al. 2006;
Kellenberger & Schild, 2015). Consistent with their
wide distribution, ASICs are implicated in a variety of
pathological conditions, such as neurotoxicity following
ischaemia, anxiety and pain (Xiong et al. 2004; Wemmie
et al. 2006; Baron & Lingueglia, 2015; Deval & Lingueglia,
2015; Kellenberger & Schild, 2015; Lin et al. 2015).

ASICs are also heavily clustered at postsynaptic densities
(Wemmie et al. 2004) where they interact with the post-
synaptic scaffolding proteins PSD-95 (Zha et al. 2009)
and PICK1 (Baron et al. 2002a) and affect synaptic spine
morphology (Zha et al. 2006). In addition, ASICs are
important for long-term potentiation (LTP) in both the
amygdala (Chiang et al. 2015) and the hippocampus
(Wemmie et al. 2002; but see also Wu et al., 2013).
These findings suggest that ASICs represent more than
an extracellular ‘acid alarm’ for noxious stimuli and
may also impact neuronal signalling under physiological
conditions. In particular, ASICs have been proposed to
respond to the transient acidification of the synaptic
cleft that accompanies neurotransmission (Krishtal et al.
1987; Waldmann et al. 1997; Wemmie et al., 2002, 2008).
This acidification, arising from the release of protons
stored in synaptic vesicles, can reduce the cleft sufficiently
to activate postsynaptic ASICs (Miesenbock et al. 1998;
Palmer et al. 2003; Wemmie et al. 2008; Grunder &
Pusch, 2015). Recently, two studies have confirmed that
ASICs do respond to the brief synaptic cleft acidification
during neurotransmission and contribute to excitatory
postsynaptic currents in both the lateral amygdala (Du
et al. 2014) and nucleus accumbens core (Kreple et al.
2014). Thus, protons can act as neurotransmitters and
their cognate receptor is the ASIC. These seminal studies
shed light on the synaptic roles of ASICs and open new
avenues of inquiry in fear memory and drug addiction
research.

The evidence that ASICs contribute to synaptic
responses also prompts new biophysical investigations.
Almost all previous studies of ASICs have used
comparatively long acidic applications, generally �1–5 s.
However, if the clearance of protons in the cleft is
comparable to that of other neurotransmitters, synaptic
ASICs would only experience acidification for �1 ms
(Clements et al. 1992; Jones & Westbrook, 1995, 1996;
Beato, 2008; Wemmie et al. 2008). To date, no study
has investigated the responses of ASICs to such rapid

synaptic-like pH changes. In the present study, we explored
the kinetic properties of recombinant and native ASICs
to such brief 1 ms stimuli in outside-out patches. This
approach avoids complicating factors such as presynaptic
adaptions (Zucker & Regehr, 2002; Cho & Askwith, 2008),
the geometry of and clearance from the synaptic cleft
(Clements et al. 1992; Franks et al. 2003; Graydon et al.
2014) or metabotropic/cell signalling influences (Gao et al.
2005; Smith et al. 2007; Kellenberger & Schild, 2015)
and allowed us to measure the fundamental biophysical
capabilities of ASIC1a and ASIC1a/2a in responses to
well-defined stimuli. In addition, because synaptic trans-
mission often occurs in rapid bursts of high-frequency
firing (Gray & McCormick, 1996; Cooper, 2002; Saviane
& Silver, 2006), we examined the response of both
native and recombinant ASICs to trains of 1 ms pH
jumps from pH 8.0 to 5.0 at high frequencies (up to
50 Hz). We report that, under these conditions, ASICs
exhibit extremely fast deactivation kinetics, approaching
the limit of rapid solution exchange. Moreover, we find
that this rapid deactivation, when paired with the slow
desensitization of ASICs, allows these channels to follow
high-frequency trains of stimuli with great fidelity and
no desensitization. Importantly, this capacity to follow
stimulus trains persisted at physiological pH 7.4 for
ASIC1a/2a, whereas ASIC1a responses were too small
to reliably measure under these same conditions. The
capacity of the heteromeric ASIC for sustained synaptic
transmission may contribute to its roles in learning, fear
memory and drug addiction.

Methods

Ethical approval

The present study was performed in strict accordance with
the recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
Mice were housed, handled and killed in accordance with
approved institutional animal care and use committee
(IACUC) protocols at the University of Texas Health
Science centre in Houston. Mice were killed using an over-
dose of isoflurane followed by decapitation.

Cell culture, mutagenesis and transfection

Chinese hamster ovary (CHO) cells were maintained in
Ham’s F-12 Nutrient Mix (Invitrogen/Life Technologies,
Carlsbad, CA, USA), supplemented with 10% fetal
bovine serum (Sigma-Aldrich, St Louis, MO, USA) and
penicillin/streptomycin (Invitrogen/Life Technologies).
Cells were passaged upon reaching �90% confluence,
every 2–3 days. Each construct was confirmed by
sequencing (Genewiz, Inc., South Plainfield, NJ,
USA). For transfections, CHO cells were plated in
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poly-D-lysine-coated 35 mm dishes and transfected
24–48 h later. Cells were transfected with rat ASIC1a
and enhanced GFP (GFPS65T) at a ratio of 8:1 μg of
cDNA/10 ml of media for the ASIC1a experiments. For
heteromeric experiments, rat ASIC1a, rat ASIC2a and
enhanced green fluorescent protein (eGFP) were trans-
fected at a ratio of 2:6:1 μg of cDNA/10 ml of media. In
GluA2 experiments, a plasmid bearing the Q version of
rat GluA2-flip followed by an internal ribosome entry
site and eGFP (provided by Dr. Mark L Mayer, NIH,
Bethesda, MD, USA) was transfected at a concentration
of 7.5 μg of cDNA/10 ml of media. Transfections were
performed using Lipofectamine 2000 (Invitrogen/Life
Technologies) in accordance with the manufacturer’s
instructions with the media changed after 6–12 h. Electro-
physiology experiments began 48–72 h after the start of
transfection.

Neuronal cultures

Dorsal root ganglion (DRG) was dissected from the strain
of Cbl/Blk 6 mice (>3 months of age) as described by Malin
et al. (2007). Briefly, following an overdose of isoflurane
and decapitation, the spinal column was removed and the
thoracic DRG was exposed and extracted. The DRG was
dissociated with papain followed by collagenase/dispase,
plated on poly-D-lysine plated coverslips and stored at
37°C in F-12 media supplemented with nerve growth
factor. Experiments were performed 18–36 h after
plating.

Electrophysiology

Outside-out patches were excised from eGFP-expressing
CHO cells, or DRG neurons, using thick-walled
borosilicate glass pipettes of 3–5 M� resistance. Pipettes
were coated in bees wax, fire polished and filled with
internal solution containing (in mM): 135 CsF, 33 CsOH,
11 EGTA, 10 Hepes, 2 MgCl2 and 1 CaCl2 (pH 7.4).
External solutions were composed of (in mM): 150 NaCl,
20 Hepes, 1 CaCl2, 1 MgCl2 and pH 8.0 (NaOH) unless
otherwise stated. For pH values more acidic than 7.0,
Hepes was replaced with Mes. In anion substitution
experiments, NaCl was replaced with either NaI or
NaMeSO3 as indicated. All recordings were performed
at room temperature with a hold potential of −80 mV
using an Axopatch 200B (Molecular Devices, Sunnyvale,
CA, USA). Data were acquired at 50 or 100 kHz and
filtered at 10 kHz under the control of Clampex, version
10.2 (Molecular Devices). Series resistance was routinely
compensated by > 90% where the amplitude exceeded
100 pA. Rapid application was performed using home
built theta-barrel application pipettes, manufactured as
described by MacLean (2015). Translation of application
pipettes was achieved using a LZ150M piezo translator

(Burleigh Instruments, Victor, NY, USA) with voltage
commands low-pass filtered (eight-pole Bessel; Frequency
Devices, Ottawa, IL, USA) at 180–200 Hz. At higher
frequencies of piezo movement (ie. > 50 Hz), mechanical
oscillations of the application pipettes gave rise to solution
exchange artefacts, including systematic variations in
jump duration and undesired ‘double jumps’. We therefore
limited our stimulus frequency to 50 Hz, which also
allowed for an exact comparison with previous work
(Papke et al. 2011). Solution exchange was routinely
measured at the end of each patch recording using
open tip potentials, which ranged from 80 to 250 μs
(10–90% rise time). In some deactivation experiments,
in particular with ASIC1a/2a heteromers and ASICs from
DRG neurons, the measured kinetics either approach
or are at the limit of our solution exchange speed and
therefore probably underestimate the true deactivation
kinetics. The times between the end of one stimulation
or stimulus train and the start of a subsequent stimulation
or stimulus train for each receptor type were: GluA2:
4–5 s, ASIC1a, ASIC1a/2a and native ASICs: 10 s (1 or
300 ms pulse), 15 s (trains) or 30 s (5 s pulse), except
for the ASIC1a/2a 5 s pulses, which had a waiting time
of �20 s.

Statistical analysis

Data were analysed using Origin, version 8.6 (OriginLab
Cop., Northampton, MA, USA) and Clampfit, version 10.2
(Molecular Devices). Desensitization and deactivation
kinetics were fit with either single- or double-exponential
functions. Both desensitization and deactivation of AMPA
receptors were fit with double-exponential functions. In
general ASIC desensitization decays were well fit with
double exponentials. ASIC deactivation kinetics were
well fit by single exponentials in some patches and
double exponentials in others. For simplicity, we report
the weighted time constants from these fits. For the
measurement of pH 6/5 peak response ratios, 300 ms
jumps were used because these limit desensitization and
tachyphlaxis (Chen & Grunder, 2007; Li et al. 2012).
During the recovery from desensitization experiments, we
used a paired pulse design with a 5 s pH 5.0 application
to induce desensitization, followed by a pH 5.0 test
pulse for 100 ms at a variable interpulse interval. Where
possible, a recovery experiment was conducted three times
in each patch. Peak responses to each test pulse were
normalized to the average of the preceding and sub-
sequent desensitizing pulse peaks. Normalized test pulse
responses from each patch were then fit to single- and
double-exponential functions and the parameters from
each patch averaged to produce the mean ± SE reported
in the present study. The single-exponential function gave
visibly poor fits. For all statistical tests, n was considered
as a single patch. For example traces, one trace was used
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for desensitization experiments and between three and
10 individual traces from a single patch were averaged for
the other experiments. To assess statistical significance,
independent sample two-tailed t test (or paired t tests
in the case of 50 Hz trains and anion substitution
experiments) were used with P < 0.05 being considered
statistically significant. Multiple comparisons within a
single condition, as in the anion substitution experiments,
were Bonferroni corrected. All summary plots show the
mean ± SEM.

Results

Desensitization and deactivation kinetics

Because ASIC1a homomers and ASIC1a/2a heteromers are
the only populations reported to contribute to synaptic
responses to date (Du et al. 2014; Kreple et al. 2014),
we limited our recombinant experiments to these sub-
types. To measure the response kinetics of ASIC1a homo-
mers and ASIC 1a/2 heteromers to both long applications
of acidic solution (ie. desensitization) and brief 1 ms

applications (i.e. deactivation), outside-out patches were
excised from transfected CHO cells expressing each
construct. As a control, this experiment was also carried
out with the rapidly deactivating and desensitizing GluA2
AMPA subunit. As seen in Fig. 1, GluA2 responses to
prolonged application of 10 mM glutamate were rapidly
activating (10–90% rise time: 290 ± 70 μs, n = 8)
(Fig. 1A, left and C, left) and desensitized with a weighted
time constant of 5.1 ± 0.2 ms (n = 8, Fig. 1A, left, and B),
which is consistent with previous studies (Robert et al.
2005; Carbone & Plested, 2012; MacLean et al. 2014).
GluA2 deactivation kinetics were also quite rapid with
a time constant of 0.70 ± 0.07 ms (n = 8) (Fig. 1C, left,
and D), similar to previous studies (Carbone & Plested,
2012). This concordance with earlier work on AMPA
receptors with extremely rapid activation and deactivation
highlights the reliability and precision of our experimental
set-up. Furthermore, we routinely estimated the solution
exchange in each patch after the experiment using open-tip
currents with dilute extracellular solution. The upper
traces in Fig. 1C (left) illustrate our solution exchange
as estimated from such an open-tip current.
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Figure 1. ASIC1a homomers and 1a/2a heteromers have slow desensitization and fast deactivation
A, example responses from outside-out patches expressing GluA2 (left), rat ASIC1a (middle) or ASIC1a/2a (right)
to a 5 s agonist exposure. B, summary of weighted time constants of desensitization from each construct.
C, example responses from GluA2 (left), rat ASIC1a (middle) or ASIC1a/2a (right) to a 1 ms (black traces) or 5 s
agonist application (grey traces). Same patches and agonist concentrations as (A). Solution exchange current from
each patch for 1 ms (black traces) or 5 s (grey traces) jumps are shown above. D, summary of deactivation time
constants for each construct tested.
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To measure the activation and desensitization kinetics of
homomeric rat ASIC1a, outside-out patches were jumped
from pH 8.0 (to eliminate steady-state inactivation; Babini
et al. 2002) to pH 5.0 for 5 s (Fig. 1A, middle). ASIC1a
responses showed slower activation compared to AMPA
receptors, with rise times of 22 ± 4 ms (n = 13) (Fig. 1A
and C, middle). As expected from previous experiments
(Kusama et al. 2010), we found that ASIC1a desensitized
rather slowly and almost completely to a pH 5.0 stimulus
with a weighted time constant of 700 ± 60 ms (n = 13)
(Fig. 1A, middle, and B). By contrast to this relatively slow
desensitization decay, the deactivation decay in response
to pH 5.0 exposure for 1 ms was very fast, with a time
constant of 0.69 ± 0.06 ms (n = 13) (Fig. 1C, middle, and
D). Interestingly, we also observed the peak response to
a brief 1 ms application of pH 5.0 was considerably less
than the peak observed from a long pulse of pH 5.0 with
ASIC1a 1 ms jump peak responses being only 30 ± 5%
(n = 13) of long pulse peak responses (Fig. 1C, middle). By
contrast, for GluA2 AMPA receptors, the peak response of
a 1 ms jump into 10 mM glutamate was 100 ± 1% (n = 8)
of the peak response from a long pulse (Fig. 1C, left). This
incomplete activation arises as the protons are removed
within 1 ms, whereas full activation requires several milli-
seconds.

We next measured the activation, desensitization
and deactivation kinetics of ASIC1a/2a heteromers. To
determine whether co-transfection of ASIC1a and 2a
(in a 1:3 mass ratio) resulted in faithful expression of
heteromeric ASIC1a/2a receptors, we measured the ratio
of peak responses to pH 5.0 and to pH 6.0 in each
patch. Our purely monomeric ASIC1a patches yielded a
pH 6/5 ratio of 0.82 ± 0.02 (n = 13) (Fig. 2), whereas
a purely monomeric ASIC2a population would produce
negligible responses to either pH 5.0 or 6.0 (Bartoi et al.

2014). By contrast, heteromeric populations respond to
pH 6.0 with �25% of their response to pH 5.0 (Bartoi
et al. 2014); therefore, a pH 6/5 ratio of 0.25 or less
would be expected of heteromeric ASIC1a/2a receptors. In
keeping with faithful expression of ASIC1a/2a heteromers,
all our patches in ASIC1a/2a co-transfected dishes
(18 patches) gave ratios between 0.06 and 0.27 with a
mean of 0.13 ± 0.01 (n = 18) (Fig. 2). This ratio is
expected of heteromers and not homomers of either type.
Therefore, we conclude that our experiments accurately
reflect the behaviour of ASIC1a/2a heteromers. As with
homomeric ASIC1a, heteromeric ASIC1a/2a exhibited
relatively slow activation (rise time: 19 ± 4 ms, n = 18)
and desensitization (weighted time constant: 780 + 50 ms)
(Fig. 1A, right, and B). In 1 ms application experiments,
heteromeric responses deactivated with strikingly fast
kinetics (time constant: 0.32 + 0.02 ms, n = 10) (Fig. 1C,
right, and D). Interestingly, these kinetics were even
faster than homomeric ASIC1a (P < 0.0001). We note
that such kinetics approach the limit of resolution given
our solution exchange. Therefore, ASIC1a/2a heteromers
clearly deactivate faster than ASIC1a homomers, although
we cannot precisely say how much faster. However, this
difference in deactivation and the above use of the pH
6/5 ratio provide two means of distinguishing homo-
meric from heteromeric ASIC populations. These are the
first set of experiments to directly asses ASIC responses
to single brief well-defined acidic stimuli, approximating
the synaptic time course, and they reveal that ASICs
deactivate very rapidly. However, synaptic transmission is
often a barrage of brief stimuli at high frequencies (Gray &
McCormick, 1996; Cooper, 2002; Saviane & Silver, 2006),
and not simply a single pulse. Therefore, we next examined
how ASICs respond to such a train of 1 ms stimuli at high
frequencies.
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Responses to high-frequency trains of 1 ms stimuli

In an elegant study, Papke et al. (2011) compared the
responses of each neurotransmitter-gated ion channel
(NGIC) family to high-frequency stimulation. They found
that representative examples of each neurotransmitter
family (nictonic, GABA, glycine, glutamate and P2X
receptors) desensitized during repetitive 1 ms stimulation
at high frequencies (Papke et al. 2011). The ubiquity
of desensitization at high frequencies suggests that it is
an inbuilt feature of NGICs, possibly highlighting an
important role for desensitization in shaping neuronal
communication (Jones & Westbrook, 1996; Papke et al.
2011). Given that ASICs have just attained the status of

NGICs (Du et al. 2014; Kreple et al. 2014), we investigated
whether they also display desensitization/depression
during high-frequency stimulation. As a control for
these high-frequency experiments, we also appraised this
behaviour in GluA2. In response to 1 ms applications of
10 mM glutamate at 50 Hz, GluA2 receptors desensitized
to 62 ± 0.03% (n = 8) of their initial response within five
pulses (Fig. 3A, upper). Over the course of a 2 s train, this
desensitization continued, with the final pulse of the train
being only 51 ± 0.03% (n = 8) of the initial peak response
(Fig. 3A, lower, and D). As expected, desensitization at high
frequencies is stimulus frequency-dependent (Fig. 3D).
At 1 Hz, essentially no desensitization was observed
(final pulse 0.99 ± 0.03 of first pulse, n = 7) (Fig. 3D,
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blue circles) but, beginning at 10 Hz (cyan circles, final
pulse 0.89 ± 0.03, n = 8) (Fig. 3D), desensitization
was statistically distinguishable (P = 0.035 comparing
1 Hz and 10 Hz) because channels are unable to unbind
ligand and recover completely from desensitization before
the next pulse arrives. Consequently, desensitization
accumulates until an equilibrium is reached between the
rate of entering desensitization and pulse frequency on the
one hand and ligand unbinding and recovery on the other.
This frequency dependence of the extent of desensitization
is also observed in all other NGICs (Papke et al. 2011).

We next addressed how recombinant ASICs respond
to these trains of 1 ms pH 8.0 to 5.0 stimuli at a range
of frequencies up to 50 Hz. As seen in Fig. 3B, ASIC1a
showed no evidence of desensitization during trains of
1 ms stimuli at 50 Hz, with the peak response to the
final pulse being 97 ± 3% of initial peak (n = 9)
(Fig. 3B, middle). This result was quite striking because
other NGICs exhibit desensitization ranging from 50% for
GluA2 (Fig. 3A and D) to 92% for P2X2 receptors (Papke
et al. 2011). Given that no desensitization was evident at
50 Hz, is it unsurprising that lower frequencies also did
not provoke desensitization (Fig. 3E). We next repeated

these experiments with ASIC1a/2a heteromers and found
that these too exhibited no detectable desensitization
to trains of deactivation stimuli at 50 Hz (final pulse
100 ± 2% of initial peak, n = 14) or any lower frequency
(Fig. 3C and F).

We also attempted to evaluate the response of ASIC to
high-frequency trains using pH 7.4 as a baseline solution.
As a result of very strong steady-state desensitization, we
were unable to obtain resolvable responses of ASIC1a
at pH 7.4. However, ASIC1a/2a showed essentially no
steady-state desensitization at pH 7.4 and gave robust
responses in outside-out patches. We therefore repeated
the 50 Hz stimulus using either pH 8.0 or 7.4 as the
baseline solution in the same patch (Fig. 4A). As seen
in Fig. 4, altering the baseline pH from 8.0 to 7.4 produced
no statistically detectable effect (final pulse: 102 ± 1% of
initial peak at pH 8.0, 98 ± 3% at pH 7.4, n = 6, paired
t test P = 0.286), indicating that ASIC1a/2a is capable of
following trains at up to 50 Hz at physiological pH. Inter-
estingly, we also observed that the deactivation kinetics of
ASIC1a/2a were slightly slower in pH 7.4 (time constant:
0.42 ± 0.04 ms, n = 7) than pH 8.0 (time constant:
0.30 ± 0.02 ms, n = 7, P = 0.026, paired t test).
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Heteromeric ASIC1a/2a recovery from desensitization
is strongly pH-dependent

The response of a ligand-gated ion channel to high-
frequency stimulus is determined by the deactivation
kinetics, as well as the rates of entry into and exit from
desensitization (Papke et al. 2011). We report the fast
deactivation kinetics of ASIC1a homomers and ASIC1a/2a
heteromers, as well as their desensitization decays, which
have also been described previously (Kusama et al. 2010).
Similarly, the recovery from desensitization for ASIC1a
has been reported previously and ranges from less than 3 s
at pH 8.0 to between 5 and 13 s at pH 7.4 (Sutherland
et al. 2001; Babini et al. 2002; Kusama et al. 2010).
However, to our knowledge, no study has investigated the
recovery from desensitization of ASIC1a/2a. To measure
this property of the heteromeric receptors, we used a
paired pulse protocol with a 5 s pH 5.0 conditioning
pulse to induce desensitization and 100 ms pH 5.0 test
pulse to measure recovery, separated by a variable inter-
val of baseline pH lasting for between 10 ms and 20 s.

Figure 5A illustrates the results of such experiments
using either pH 8.0 (Fig. 5A, upper trace) or pH 7.4
(Fig. 5A, lower trace) as the baseline pH. We found that
the recovery of ASIC1a/2a from desensitization process
was strikingly bi-exponential, as reported for ASIC1a
(Li et al. 2012), and poorly fit by a single-exponential
function (Fig. 5C, dotted black line). Specifically, at pH
8.0, heteromeric ASIC1a/2a receptors recover to �85%
of their initial responses (86 ± 3%, n = 6) with a fast
time constant of 67 ± 5 ms and with the remaining 15%
recovering with a slower time constant of 2700 ± 380 ms
(n = 6) (Fig. 5B and C). Interestingly, at pH 7.4, the
recovery process is considerably slowed and also retains
its bi-exponential nature. At pH 7.4, �40% (42 ± 8%;
n = 6) of the initial response recovers with a time constant
of 320 ± 40 ms, with the remaining 60% recovering with
a time constant of 2200 ± 390 ms (n = 6) (Fig. 5B and
C). Therefore, heteromeric recovery from desensitization
slows at pH 7.4 as a result of a slowing of the fast
component and an increased contribution from the slow
component. Although we cannot exclude the possibility
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Figure 5. Heteromeric ASIC1a/2a recovery
from desensitization is pH-dependent
A, family of responses from patches containing
ASIC1a/2a heteromers to a paired pulse
protocol using either pH 8.0 (upper traces) or
pH 7.4 (lower traces) as the baseline solution
and pH 5.0 as the activating solution. The first
pulses are 5 s in duration to induce
desensitization, followed by a variable
incubation in baseline pH solution before a
second 100 ms test pulse using pH 5.0. B, time
constants for double-exponential fits of the
recovery time course for either pH 8.0 (black
bars) or pH 7.4 (blue bars) baseline solution.
C, summary of recovery time course across
patches for either pH 8.0 (black circles) or pH
7.4 (blue circles) baseline solution. The
continuous lines show double-exponential fits
of the recovery time course for pH 8.0 (black
lines) or pH 7.4 (blue lines). The dotted lines
indicate fits using only a single-exponential
function for each condition.
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these two components arise from distinct heteromeric
populations (ie. 1:2 ASIC1a/2a vs. 2:1 ASIC1a/2a), this is
not probable because their relative contributions change
between pH 8.0 and 7.4. Rather, it is more plausible
that these components stem from discrete steps in the
recovery process. Clearly, additional studies are required
to investigate the determinants and kinetic mechanism
of ASIC recovery from desensitization. However, for the
purposes of the present study, it is clear that, as in
the case of ASIC1a, the mechanism by which ASICs
follow high-frequency trains cannot involve rapid recovery
between pulses in a train because recovery is too slow.

Fast deactivation and slow desensitization set ASICs
apart from other NGICs

Previous work from Papke et al. (2011) surveyed
representative subtypes from each major family of NGICs
and found that, although the extent was variable,
desensitization accumulates during trains at 50 Hz in every
case and often at much lower frequencies. It appears to
be a generally shared property of NGICs. What makes
ASICs an exception? We hypothesized that the unusual

combination of slow desensitization and fast deactivation
may enable ASICs to follow such stimuli patterns at
the same time as avoiding appreciable desensitization.
In essence, at the stimulus frequencies we probed, the
very brief deactivation may provide minimal opportunity
for the slow desensitization process to occur. In support
of this interpretation, heteromeric ASIC1a/2a is able to
follow high-frequency trains at both pH 8.0 and 7.4
(Fig. 4) despite the latter pH dramatically slowing recovery
from desensitization (Fig. 5). This finding suggests that
appreciable desensitization does not occur during the
50 Hz train. An examination of biophysical properties
for each channel type further supports the hypothesis
that ASICs avoid depression during trains by combining
fast deactivation with slow desensitization. In Fig. 6A, the
weighted desensitization and deactivation time constants
for each NGIC in the study by Papke et al. (2011)
and our own experiments are plotted on the abscissa
and ordinate, respectively (ASIC1a/2a deactivation time
constants are from pH 7.4 experiments, Fig. 4). Although
there is considerable variation, in general, deactivation
is �3- to 100-fold faster than desensitization across all
NGICs except ASICs (Fig. 6), although we note that the
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kinetics of ASIC1a deactivation were obtained using a
background pH of 8.0, whereas all of the others reflect
more physiological circumstances. Indeed, deactivation
and desensitization of all other NGICs (ie. not including
ASICs) shows an approximate linear correlation with
a correlation co-efficient of 0.9 (Fig. 6A, dotted line,
slope of 1.4). Including ASICs in the fit reduces the
correlation co-efficient to 0.35. Indeed, ASICs appear to
be an outlier in another regard because they are insensitive
to desensitization at high frequencies (Figs 3 and 4).
This is also illustrated in Fig. 6A, where each NGIC data
point is colour coded by its extent of desensitization
to 50 Hz stimuli. ASICs are not susceptible (Fig. 6A,
blue circles) and are furthest from the linear correlation.
Figure 6B is another representation of this relationship
where the ratio of desensitization to deactivation time
constants is plotted on the abscissa and the final response
to a 50 Hz train plotted on the ordinate. Again, ASICs
(Fig. 6B, circles) stand apart from other NGICs with a
desensitization to deactivation ratio of 1000 or greater. By
contrast, other NGICs have ratios of between 3 and 170
and show strong train-induced desensitization (Fig. 6B).
If ASICs can follow high-frequency trains as a result of
the mix of fast deactivation and slow desensitization, then
accelerating desensitization should disrupt this capacity.
To test this idea, we set out to experimentally manipulate
desensitization using anion substitutions.

Anion substitutions accelerate desensitization
and can induce depression during high-frequency
stimulation

Structural studies of chicken ASIC1a reveal a well-defined
anion binding site formed by the two α helices of the
thumb domain of one subunit and a Lys residue of an
adjacent subunit (Gonzales et al. 2009). Interestingly,
changing the external anion from Cl− to MeSO3

− or
I− accelerates desensitization of ASIC1a (Kusama et al.
2010). Importantly, anion substitution does not alter the
rates of recovery from desensitization (Kusama et al. 2010)
because this process may impact sustained signalling as
well (Papke et al. 2011). Although there are numerous
mutations that accelerate desensitization (Cushman et al.
2007; Li et al. 2010; Springauf et al. 2011; Frey et al. 2013),
anion exchanges have the added advantage that they can
be performed in the same patch to improve reliability
and statistical power. We therefore used MeSO3

− and I−
substitutions (in both control and low pH solutions) and
measured the desensitization and deactivation kinetics,
as well as responses to high-frequency stimulus trains as
above. In keeping with previous work on mouse ASIC1a
(Kusama et al. 2010), replacing Cl− with MeSO3

− or I−
accelerated the desensitization kinetics of rat ASIC1a from
700 ± 60 ms (n = 13) in Cl− to 340 ± 20 (n = 8)
and 210 ± 30 (n = 8) in MeSO3

− and I−, respectively

(Fig. 7A and B). Importantly, the difference between
desensitization kinetics in MeSO3

− and I− is statistically
significant (P < 0.003). Anion substitution also slowed
deactivation kinetics compared to Cl− in a statistically
detectable fashion (P < 0.0003 for both MeSO3

− and I−),
although the effect was small. Specifically, deactivation
time constants in MeSO3

− were 1.4 ± 0.1 (n = 8) and
1.2 ± 0.1 (n = 8) in I− (Fig. 7B). When challenged with a
train of 1 ms stimuli at 50 Hz, we found that MeSO3

− sub-
stitution showed no evidence of desensitization during
trains (99th pulse 98 ± 2% of first peak, n = 8,
Fig. 7C and E). Interestingly, I− substitution did produce
desensitization during 50 Hz trains (Fig. 7D and E)
with the 99th pulse yielding 84 ± 3% of the first
pulse (n = 8, P < 0.0003). This experiment indicates
that the unusually slow desensitization of ASIC1a is
one component of its ability to follow trains because
accelerating desensitization, at the same time as keeping
other features of gating relatively constant, can induce
depression during high-frequency trains.

Responses of native ASICs to high-frequency stimuli

Given the surprising capacity of recombinant ASICs
to follow such high-frequency trains, we investigated
whether this facility was retained in native ASIC
populations. Accordingly, we measured desensitization
and deactivation kinetics in excised patches from DRG
cultures. We used DRGs because they are readily
accessible and give rise to sizeable whole-cell ASIC
currents (�4 nA) (Benson et al. 2002) that enable
resolvable outside-out patch responses. Previous studies
have indicated pH-activated currents from DRGs come
from a mix of ASIC1a, 2a or ASIC3-containing
heteromeric receptors, with ASIC2 showing stronger
expression than ASIC1a or ASIC3 (Benson et al. 2002;
Xie et al. 2002; Kusama et al. 2013). Consistent with a
mixed heteromeric population, pH 5.0 evoked currents
from DRG excised patches showed a wide range of
desensitization kinetics, with some patches showing
ASIC3-like rapid desensitization (Fig. 8A, red trace, and
B) and others showing ASIC1a-like slow desensitization
(Fig. 8A, blue trace, and B). Despite desensitization
kinetics ranging from 84 ms to 1080 ms (Fig. 8A and
B), deactivation kinetics were uniformly rapid, spanning
160 to 660 μs with a mean of 330 ± 40 μs (n = 10)
(Fig. 8B). There was a poor positive correlation between
desensitization and deactivation (correlation coefficient
0.65) (Fig. 8B, dotted line). For each patch, we also
obtained a pH 6/5 ratio and found that faster desensitizing
patches tended to have pH 6/5 ratios nearer to 1, whereas
slower desensitizing patches showed ratios closer to 0.5
(correlation coefficient 0.73) (Fig. 9). Taken together,
these measurements are consistent with a mix of ASIC
heteromers, primarily ASIC2-containing (as judged by the
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rapid deactivation) and ASIC3-containing heteromers in
the faster patches (Fig. 8A, red trace) with more ASIC2-
and ASIC1a-containing heteromers in the slower patches
(Fig. 8a, blue trace). For each patch, we also examined the
responses to 50 Hz trains of 1 ms pH 8.0 to 5.0 jumps
and, in every case, found that the responses showed no
evidence of desensitization (Fig. 8C–E). Fast desensitizing
patches (Fig. 8A, red trace, and C) and slow desensitizing
patches (Fig. 8A, blue trace, and D) were all able to follow
these trains with high fidelity. Indeed, we observed a
surprising facilitation during such high-frequency trains,
with the final response being 110 ± 2% of the initial
peak response (n = 10, P = 0.0004 compared to ASIC1a)
(Fig. 8E). Given this, we conclude that the capacity
to follow high-frequency brief pH 8.0 to 5.0 stimuli,

which approximate the time course of synaptic neuro-
transmission, is conserved in at least some neuronal ASIC
populations.

Discussion

In the present study, we observed that the deactivation
kinetics of ASIC1a homomers and 1a/2a heteromers after
a 1 ms pH jump are strikingly fast, amongst the fastest
reported for any NGIC (Fig. 1). We also find that, unlike
other reported NGICs, ASICs are able to follow trains of
such 1 ms stimuli at frequencies up to 50 Hz (Fig. 3).
Furthermore, heteromeric ASICs are able to follow such
trains at physiological pH (Fig. 4), although ASIC1a
was unable to be evaluated in this regard. Our results
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place ASICs in the unique position of showing very
fast deactivation yet slow desensitization (Figs 1 and 6).
We hypothesized that this combination enables ASICs
to sustain channel activity at high frequencies. To test
this, we experimentally accelerated desensitization using
anion substitutions (Fig. 7) and were able to induce some
desensitization during high-frequency stimuli, supporting
our hypothesis. Importantly, we also find that native ASICs
from DRG neurons share the capacity to follow pH 8.0 to
5.0 stimuli at high frequencies (Fig. 8). These results not
only set ASICs apart from other NGICs described pre-
viously (Papke et al. 2011), but also open up new avenues
of investigation for ASIC signalling in the nervous system.

Synaptic activation of ASICs by pH

In the present study, we rapidly jumped excised patches
containing ASICs from pH 8.0 to 5.0 for 1 ms
(deactivation) or 5 s (desensitization) (for pH 7.4
experiments, see Figs 4 and 5). These experimental
conditions represent a balance between physiological
conditions and experimental feasibility. The deactivation
jump of 1 ms was chosen because it is commonly taken
as the time course of neurotransmitter in the synaptic
cleft (Clements et al. 1992; Jones & Westbrook, 1995,
1996; Beato, 2008). However, comparatively little is known
about the mechanisms of buffering, clearance and the
time course of protons in the cleft (Wemmie et al. 2008).
In the absence of any high temporal resolution data,
we adopted a 1 ms protocol because it at least permits
the direct comparison with other NGICs (Papke et al.
2011). In preliminary experiments with homomers, we
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data.

employed pH 7.4 as a ‘resting pH’ and pH 6.0 or pH
6.5 as an ‘activating pH’ for such 1 ms jumps. Although
pH 6.0 is near saturating for ASIC1a (Fig. 2), it also
represents a 10-fold reduction in agonist concentration
and hence a 10-fold reduction in the first order-rate
constant for agonist binding. Consequently, minimal
activation developed during the 1 ms window of pH 6.0
or pH 6.5 applications, which made peak responses to
these single jumps or stimulus trains difficult to resolve
convincingly. The situation was further exacerbated by
steady-state desensitization at pH 7.4, which reduced the
observed response amplitude. We therefore adopted the
pH 8.0 to 5.0 protocol used in the present study. How
well does this approximate the synaptic waveform of
protons? On the one hand, theoretical and experimental
data indicate the cleft drops to around pH 6.5 (Miesenbock
et al. 1998; Palmer et al. 2003; Du et al. 2014; Grunder &
Pusch, 2015). On the other hand, such ‘mild’ acidification
would produce essentially no activation of the synaptic
ASIC1a/2a heteromers (Bartoi et al. 2014; Kreple et al.
2014). Yet, clearly, ASIC1a/2a heteromers are activated
by acidification accompanying transmission (Du et al.
2014; Kreple et al. 2014). One possibile reconciliation of
these observations is that ASICs may be clustered directly
opposite active zone release sites. This privileged sub-
synaptic location would experience a much higher local
proton concentration during a release event than the rest
of the cleft, enabling strong acidification and transient
activation. However, further work is clearly needed to
determine the precise pH waveform impinging on synaptic
ASICs.

Mechanism of fast deactivation

This is the first study to evaluate the deactivation kinetics
of recombinant ASIC1a homomers, 1a/2a heteromers
and native ASICs from DRGs after 1 ms pH jumps.
The extremely fast deactivation observed, at or near the
limit of rapid solution exchange, was surprising given
that deactivation time courses reflect both the single
channel mean open time, as well as the dissociation of
the agonist. Rat ASIC1a subunits are known to have two
distinct open states or modes, with mean open times of
�37 ms for Mode 1 and 7 ms for Mode 2 (Zhang &
Canessa, 2002), both of which are considerably longer
lived than the 700 μs deactivation observed in the pre-
sent study (Fig. 1). It may be that ASICs progress through
such open states or modes of differing duration during
the activation process and the brief pulse curtails this
progression, revealing a short-lived open state. It may also
be that protons do not need to wait for shut states but
can directly dissociate from the open states. Consistent
with this latter possibility, there are no obvious structures
sterically impeding proton dissociation as there are for
other neurotransmitters. Ionotropic glutamate receptors,
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for example, hold their ligands in place by closure of a
large clam-shell shaped ligand binding domain (Karakas &
Furukawa, 2014; Yelshanskaya et al. 2014), whereas GABA
and nicotinic receptors secure agonists by the ‘C-loop’,
which caps the binding site (Jadey & Auerbach, 2012;
Miller & Aricescu, 2014). Moreover, because protons are
the smallest possible ligand, their dissociation is probably
extremely rapid. Future experiments at the single channel
level, as well as structure–function analysis, will help
unravel how ASICs combine high affinity activation and
relatively long lived open states with extremely rapid
deactivation.

Why can fast desensitizing patches from DRGs
operate at high frequencies?

For most ligand-gated ion channels, the response
amplitude during high-frequency trains reflects both
how quickly channels enter desensitization (or how
long they reside in states leading to desensitization),
as well as how readily they exit desensitization (Papke
et al. 2011). However, we suggest that, for ASIC1a and
ASIC1a/2a, the very brief deactivation provides too small
a ‘window’ for the relatively slow or unfavourable process
of ASIC desensitization to occur. Consequently, minimal
desensitization develops during a train and, hence, even
when recovery is slowed (Fig. 5), there is no depression.
However, when desensitization is accelerated or made
more favourable, depression during trains does occur, as
in the case of I− substitutions (Fig. 7D and E). However, in
patches excised from DRG neurons, we found a number
of fast desensitizing ASIC responses (Fig. 8), some of
which had desensitization decays faster than ASIC1a in
the presence of I− (Fig. 7D and E). Yet patches from
DRG neurons uniformly showed no depression during
high-frequency stimuli (Fig. 8E). As stated above, we
suggest that ASIC3-containing receptors comprise most or
all of the responses from these faster desensitizing patches
based on the strong expression of ASIC3 in murine DRGs
(Kusama et al. 2013), as well as the desensitization kinetics
and the ratio of pH 6.0 to 5.0 matching those reported
from recombinant ASIC3 (Sutherland et al. 2001; Kusama
et al. 2013). So why might these putative ASIC3-containing
patches be resistant to depression during a train, whereas
ASIC1a in I−, desensitizing at a comparable rate, is not?
We speculate that this is a result of the faster recovery
of ASIC3 from desensitization. Although recovery does
not appear to be an important factor in the response of
ASIC1a or ASIC1a/2a to trains, the much faster entry
of ASIC3 into desensitization requires a commensurate
faster recovery if depression during a train is to be
avoided. Supporting this supposition, ASIC3 is known
to recover from desensitization much faster than ASIC1a
or 1a/2a. Specifically, time constants for recovery from

desensitization (pH 7.4) for ASIC3 are in the 500 ms
range (Sutherland et al. 2001), whereas ASIC1a recovers
with a time constant in the range 5–13 s (Sutherland
et al. 2001; Babini et al. 2002) and ASIC1a/2a with
weighted time constants of approximately 1.5 s (Fig. 5).
Heteromers formed from of ASIC2a and 3 may well
recover exhibit even faster recovery from desensitization.
Therefore, we suggest that our faster desensitizing DRG
patches are primarily ASIC3-containing heteromers and
hence their accelerated recovery prevents desensitization
during high-frequency stimulation. It is interesting to
speculate that the faster recovery of ASIC3 may be an
adaption that allows it to retain fast desensitization yet
still follow high-frequency trains.

How might ASICs employ their unique ability?

In the present study, a baseline of pH 8.0 was used for
most experiments to eliminate steady-state inactivation.
Importantly heteromeric ASIC1a/2a did not show any
steady-state inactivation at pH 7.4, enabling us to reveal
that, at physiological pH, ASIC1a/2a also does not
desensitize during high-frequency stimulation (Fig. 4).
Because ASIC1a/2a is one of the main ASIC populations
in the brain (Baron et al. 2002b; Askwith et al. 2004;
Kreple et al. 2014), its capacity to follow such stimulus
patterns at physiological pH is particularly relevant.
High-frequency stimulation is generally associated with
synaptic plasticity and LTP. The strongest evidence linking
ASICs, high-frequency stimulation and plasticity derives
from studies in the amygdala. ASICs are crucial for
establishing fear memories (Wemmie et al. 2003; Wemmie
et al. 2004; Coryell et al. 2008) and are necessary for the
high-frequency stimulus-induced LTP in lateral amygdala
synapses (Du et al. 2014; Chiang et al. 2015). Moreover, the
extent of LTP correlates with the level of ASIC expression
in postsynaptic neurons (Chiang et al. 2015). NMDA
receptor activation is also necessary for these processes.
Given all this, it is interesting to reflect that ASICs are
attuned to respond to the exact stimuli that strongly inhibit
NMDA receptors, namely acidification (Traynelis et al.
1995). The small size of postsynaptic ASIC currents (Du
et al. 2014; Kreple et al. 2014) and their limited calcium
permeability, particular for heteromers (Kellenberger &
Schild, 2015), make it improbable that ASICs ‘take over’
from NMDA receptors under high-frequency conditions.
Rather, they may function to boost excitability or
prolong the window of depolarization when other
postsynaptic receptors, such as AMPA receptors, are
compromised by desensitization. Although the pairing
of the unique high-frequency capacity of ASIC and
associations with LTP are enticing, further experiments
are needed to clarify how ASICs contribute to these
processes.
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