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Abstract

The solute carrier, human organic anion transporting polypeptide 1A2 (OATP1A2, OATP-A, 

OATP1 and OATP) is highly expressed in the intestine, kidney, cholangiocytes and the blood–

brain barrier. This localization suggests that OATP1A2 may be vitally important in the absorption, 

distribution and excretion of a broad array of clinically important drugs. Several nonsynonymous 

polymorphisms have been identified in the gene encoding OATP1A2, SLCO1A2 (SLC21A3), with 

some of these variants demonstrating functional changes in the transport of OATP1A2 substrates.
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Human organic anion transporting polypeptide 1A2 (OATP1A2)

In humans the solute carrier (SLC) family of membrane transport proteins is comprised of 

approximately 300 individual proteins and is organized into 43 families [1,101]. The SLC 

families encode proteins for passive transporters, ion-coupled transporters and exchangers. 

The genes found in the SLCO family (previously called SLC21) encode the organic anion 

transporting polypeptides (OATPs) [2]. OATPs mediate the transport of a wide range of 

amphipathic organic compounds in a sodium- independent manner, including bile salts, 

anionic oliopepties, steroid conjugates and thyroid hormones, in addition to several 

xenobiotics and pharmaceuticals [3]. OATPs have 12 transmembrane domains, with a large, 

highly conserved extracellular loop between the 9th and 10th transmembrane domains 

(Figure 1). N-glycosylation sites in extracellular loops 2 and 5 are consistent among the 

various members of the OATP family [4]. The SLCO1A2 gene is comprised of 16 exons and 

15 introns and is located on chromosome 12p12. The gene encodes OATP1A2 (OATP, 

OATP1 and OATP-A), a 670 amino acid glycoprotein that shares between 67–73% amino 
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acid sequence with its rodent orthologs, rOatp1a1, rOatp1a4, rOatp1a5 [5]. Similar to other 

OATPs, OATP1A2 is primarily involved in the uptake of substrates into the cell.

OATP1A2 has been shown to transport a broad spectrum of substrates, including both 

endogenous compounds and clinically relevant pharmaceuticals (Table 1). As with the other 

human OATP transporters, OATP1A2 transports more amphipathic substrates, including bile 

salts, thyroid hormones, steroid conjugates, organic dyes and anionic oligopepties, as well as 

several pharmaceuticals and xenobiotics [5-19]. There is a wide variety of inhibitors for 

OATP1A2-mediated uptake, including some compounds that are also classified as substrates 

for the transporter [9-11,13,14,19-23]. Similar to other OATP transporters, the tissue 

distribution of OATP1A2 appears ubiquitous, although there is some discrepancy between 

studies. Using northern blot analysis, OATP1A2 has been localized to the liver, intestine, 

kidney, lung and testes, with the highest expression being found in the brain [9,10].

Western blots of human brain tissue confirmed the presence of OATP1A2 in the frontal 

cortex of the brain, with immunoflourescence localizing the transporter to human brain 

microvessels and brain capillary endothelial cells [11,16,24]. The abundance of OATP1A2 at 

the blood–brain barrier suggests a strong role of this transporter on brain penetration of 

therapeutic drugs. In the kidney OATP1A2 is localized to the apical domains of the distal 

tubule, where it is most likely involved in the reabsorption of compounds [16]. While studies 

have found expression of SLCO1A2 in the liver, the localization of the transporter within 

this organ is controversial. Earlier studies have hypothesized that since the transporter was 

cloned from human liver banks it would be found on the basolateral membrane of 

hepatocytes, implying a role in the hepatic uptake of compounds from the blood [9]. 

However, immunohistochemical staining of proteins did not find any OATP1A2 transporters 

in the hepatocytes, but rather in the cholangiocytes of the liver [16]. There are also 

conflicting studies on the presence of OATP1A2 in the intestine. When using real-time PCR 

to detect the presence of SLCO1A2 mRNA in the intestine, it was found that, based on their 

criteria, there was no detectable levels in any of the intestinal regions tested [25,26]. Again, 

however, the use of immunohistochemical staining for proteins found abundant expression 

of OATP1A2 in the duodenum of the intestine, co-localized with the efflux transporter 

ABCB1 at the apical membrane of the intestinal villi [20]. The presence of OATP1A2 

protein in the intestine suggests that the transporter may be important for the oral absorption 

of drugs that are substrates for the transporter. It is important to note that the expression of 

SLOC1A2 mRNA may not directly reflect the amount of OATP1A2 protein or functional 

activity.

Recently, the expression of OATP1A2 has been detected in human breast tissue and human 

breast carcinoma [27]. However, the expression of OATP1A2 in normal tissue is 

considerably lower, as compared with other members of the OATP family [28]. The 

expression of OATP1A2 is up to ten-times higher in cancerous breast tissue than it is in 

adjacent normal cells [29]. Furthermore, there is evidence to suggest that the pregnane X 

receptor, a ligand-activated transcription factor, may be involved in the elevated expression 

of OATP1A2 in human breast carcinoma [29]. Considering that OATP1A2 is known to 

uptake hormones into the cell it is interesting to contemplate OATP1A2 playing a significant 

roll in the hormone-induced progression of breast cancer in humans.
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Genetic variants in the SLCO1A2 gene

One major dilemma in treating patients in the clinic is the impact of interindividual 

variability in the pharmacokinetics and therapeutic effect of pharmaceuticals. This inter-

individual variability is the result of complex interactions between morphometric, 

demographic, physiological, genetic and environmental factors [30]. While the vast majority 

of recent studies have focused on the impact of genetic variation in metabolic enzymes and 

efflux transporters on interindividual pharmacokinetic variability, it is only more recently 

that research has begun to address genetic variation in solute carriers [31]. Given its tissue 

distribution and ability to transport xenobiotic substances, it is reasonable to assume that 

genetic variations in the SLCO1A2 gene may also contribute to differences in drug 

disposition and might have critical consequences for the therapeutic effects and toxicity of 

drugs. Within the 5′-flanking regions of the SLCO1A2 gene there have been several SNPs 

identified [32].

Recently, six SNPs in the exonic regions have been identified from a mixed ethnic 

background and the associated variant proteins have been functionally characterized in vitro 
[16]. Functional variants found in this study consist of three SNPs that lead to a decreased 

uptake of substrates. In exon 4, a 404A>T variant results in an asparagine to isoleucine 

amino acid change, that reduces the uptake of estrone sulfate, deltonorphin II and (D-

Pen2,D-Pen5)-enkephalin [DPDPE]). In exon 5, a 516A>C variant causes a glutamic acid to 

aspartic acid amino acid change that also reduced uptake of the three substrates, while a 

559G>A variant causes an alanine to tyrosine amino acid change that decreases the uptake 

of deltonorphin II only. The 516A>C variant had an allele frequency of 5.3% of patients 

with European background and 2.1% with an African or Hispanic background. The 559G>A 

variant had an allele frequency of 0.5% of patients with a Hispanic background. None of the 

ethnic groups appeared to possess the 404A>T variant in the population studied. The 

presence of these functional variants in different ethnic groups strongly suggests that the 

clinical impact of these SLCO1A2 variants on drug pharmacokinetics and therapeutic 

outcome needs to be urgently evaluated in future studies.

A subsequent study identified 11 SNPs in their mixed ethnic population and also 

functionally characterized these SNPs in vitro [33]. This study found that the 38T>C variant 

in exon 1 that causes a isoleucine to threonine amino acid change increased the uptake of 

estrone sulfate and methotrexate. Similar to the previous study, the 516C>T (exon 5) variant 

also demonstrated decreased uptake of estrone sulfate and methotrexate. An additional 

variant in exon 5 (502C>T) that results in an arginine to cysteine amino acid change also 

caused a functional decrease in the uptake of these substrates. One functional variant not 

previously studied is the 833A>– in exon 7 that causes a deletion of the asparagine amino 

acid, which was found to be associated with decreased function. The frequency of these 

variants was also ethnically divergent. The 38T>C variant had an allele frequency of 16.3% 

in European Americans and 2.5% in African–Americans. The 502C>T variant was relatively 

minor with an allele frequency of only 0.6% in European Americans, while the 516A>C 

variant had a frequency of 1.9% in European Americans. Finally, the 833A>– deletion 

variant was only found in African–Americans with a frequency of 0.6%.
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While there is some overlap in the SNPs analyzed by these two studies, their functional 

studies resulted in differences for three of the six SNPs studied by both groups (Table 2) 

[16,33]. The 38T>C variant in exon 1 had no effect on the uptake of estrone sulfate in the 

study by Lee et al. [16], but demonstrated a significant increase in uptake by Badagnani et 
al. [33]. Furthermore, the 449G>A variant demonstrated a significant decrease in the uptake 

of estrone sulfate for Badagnani et al. that was not seen in the previous study. The 404A>T 

variant was found to cause a functional decrease in uptake, but only in the study by Lee et al. 
One possible explanation for these discrepancies is that the in vitro work was performed in 

different cell models. The study by Lee et al. overexpressed the various SLCO1A2 SNPs in 

HeLa cells using transient transfection. However, Badagnani et al., primarily used Xenopous 
laevis oocytes that were injected with the respective variant copy RNAs (cRNAs). However, 

Badagnani et al. also tested the uptake of estrone sulfate in a Human Embryonic Kidney 

(HEK)293 cell model transiently tranfected with the 38T>C variant. They found that the 

functional change in uptake seen in oocytes was also observed in the mammalian cell line. 

While the reasons behind these differences between the two studies are not fully understood, 

both studies demonstrate that several of the known SNPs for SLCO1A2 can lead to 

functional changes in OATP1A2 mediated uptake of substrates.

Future perspective

While little is known regarding the consequences of genetic alterations in SLCO1A2 on 

pharmacokinetics and therapeutic effects of clinically used drugs, there is strong evidence 

suggesting that a better understanding of the effects of these functional variants is needed. 

With better diagnostic tests and clinical studies on the effects of these variants in patients, it 

is anticipated that future studies may be able to link genetic variability in SLCO1A2 with the 

interindividual variability seen with so many drugs that are substrates for the OATP1A2 

transporter. Future directions in this field will be mainly concerned with better 

understanding the known functional SNPs, how they impact the toxicity, pharmacokinetics 

and therapeutic effect of pharmaceuticals, and with the development of genomic and 

proteomic tools for evaluating OATP1A2 function in patients.
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Highlights

▪ The human organic anion transporting polypeptide 1A2 (OATP1A2) is 

involved in the uptake of several endogenous substances, as well as clinically 

used drugs.

▪ The presence of OATP1A2 transporters in several tissues key to drug 

pharmacokinetics suggests an important role in absorption, distribution and 

excretion of drugs.

▪ Many inhibitors of OATP1A2-mediated uptake have been identified and 

suggest a possible mechanism for some drug–drug interactions.

▪ SNPs for the gene encoding OATP1A2, SLCO1A2, have been identified in 

human populations and have ethnically-dependent allelic frequencies.

▪ Cellular in vitro studies have demonstrated that several of these SNPs cause 

functional changes in the uptake of both endogenous compounds and clinical 

pharmaceuticals.

▪ Variants in SLCO1A2 may impact the efficacy of several clinically relevant 

drugs and could be one strategy for predicting systemic exposure to drugs 

that are OATP1A2 substrates.

▪ Future studies are needed to critically evaluate the usefulness of SLCO1A2 
genotyping as a tool to predict treatment outcome.
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Figure 1. Structure of OATP1A2
Includes major functional variants found in the SLCO1A2 gene. Variants expressed as base 

pair changes. Adapted from [16].

Franke et al. Page 8

Pharmacogenomics. Author manuscript; available in PMC 2016 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Franke et al. Page 9

Table 1

Substrates and inhibitors of OATP1A2.

Category Substrate Inhibitor Model Ref.

Bile salts Taurocholate Ursodeoxycholate, tauroursodeoxycholate, 
aurochenodeoxycholate, ursodeoxycholate, 
indocyanine green, glycocholate, cholate, 
chenodeoxycholate

Oocyte [9]

Cholate, glycocholate, TCDCA, TUDCA Oocyte [5,9]

Hormones DHEAS Tauroursodeoxycholate, taurochenodeoxycholate, 
E-3-S, dexamethasone

Oocyte [10]

E217βG Bilirubin Oocyte [5,23]

Unconjugated bilirubin E217βG Oocyte [23]

E-3-S, T4, T3, rT3 Oocyte [7,16,33]

Peptides Deltorphin II Naltrindole, naloxone, Leu-enkephalin, E-3-S, 
DPDPE

Oocyte [11,16]

BQ-123, CRC-220, DPDPE Oocyte [5,11,16]

Organic anions BSP Rifampin, rifamycin SV, oubain, 
tauroursodeoxycholate, ursodeoxycholate, 
taurocholate, taurochenodeoxycholate, 
indocyanine green, glycocholate, cholate, 
chenodeoxycholate

Oocyte [9,22]

Organic cations APD-ajmalinium, N-methylquinine, N-
methylquinidine, rocuronium

Oocyte [15]

Drugs Fexofenadine Grapefruit juice (naringin), orange juice 
(hesperidin), apple juice, verapamil, saquinavir, 
ritonavir, quinidine, PSC-833, nelfinavir, 
lovastatin, ketoconazole, indinavir, erythromycin

HeLa [13,20,21]

Ouabain Taurochenodeoxycholate Oocyte [5,12]

Imatinib Uremic toxins (CMPF) Oocyte [19]

Rocuronium Taurocholate, quinidine, N-methylquinidine, K-
strophantoside, Azidoprocainamide methiodide

Oocyte [14,15]

Chlorambuciltaurocholate, Gd-B 20790, 
erythromycin, levofloxacin, pitavastatin, 
pravastatin, rosuvastatin, saquinavir, D-
penicillamine, bamet-UD2, bamet-R2, 
bromosulfophthalein, unprostone, 
methotrexate

Oocyte [17,33]

Toxins Microcystin Oocyte [6]

Eicosanoids Prostaglandin E2 Oocyte [5]

BSP: Sulfobromophthalein; CMPF: 3-carboxy-4-methyl-5-propyl-2-furan-propanoic acid; CRC-220: 4-methoxy-2,3,6-trimethylphenylsulfonyl-L-
aspartyl-D-4-amidino-phenylalanyl-piperidide; DPDPE: (D-Pen2,D-Pen5)-enkephalin; TCDCA: Taurochenodeoxycholate; TUDCA: 
Tauroursodeoxycholic acid.
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