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� Background and Aims Many gymnosperms produce an ovular secretion, the pollination drop, during reproduc-
tion. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including
proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of
Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion
of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm polli-
nation biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been
characterized and an ovular transcriptome for C. sinensis has been assembled.
� Methods Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and
C. koreana. RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts pre-
sent in the ovules of C. sinensis at the time of pollination drop production.
� Key Results About 30 proteins were detected in the pollination drops of both species. Many of these have been
detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pol-
len tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and
callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to oc-
cur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of
gene ontology categories, and some may be involved in drop formation, ovule development and pollen–ovule
interactions.
� Conclusions The proteome of Cephalotaxus pollination drops shares a number of components with those of other
conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such
as b-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops from
Cephalotaxus than expected from studies of other conifers. This is consistent with the observation of nucellar break-
down during drop formation in Cephalotaxus. The transcriptome data provide a framework for understanding multi-
ple metabolic processes that occur within the ovule and the pollination drop just before fertilization. They reveal the
deep conservation of WUSCHEL expression in ovules and raise questions about whether any of the S-locus tran-
scripts in Cephalotaxus ovules might be involved in pollen–ovule recognition.
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INTRODUCTION

In most extant gymnosperms, pollination relies on the wind-me-
diated transfer of pollen to ovulate cones. Many gymnosperm
species produce an ovular secretion, the pollination drop, which
extends beyond the micropyle and forms a liquid surface on
which the pollen lands. Subsequently, the drop withdraws and
transports pollen grains into the ovule where they germinate,
form pollen tubes and ultimately release sperm that fertilize
eggs (Doyle and O’Leary, 1935; Singh, 1978). The sole func-
tion of the pollination drop was once thought to be transport of
pollen into the ovule. These ovular secretions, however, contain
a suite of organic and inorganic compounds including sugars,
amino acids, organic acids, proteins and calcium (Ziegler,
1959; Seridi-Benkaddour and Chesnoy, 1988; Carafa et al.,

1992). The nature of the proteins in the drops suggests that in
addition to nourishing the developing pollen, they play diverse
roles in pollination (Gelbart and von Aderkas, 2002; Nepi
et al., 2009; Coulter et al., 2012).

Studies of pollination drops using immunological methods
detected arabinogalactans in Taxus � media (O’Leary et al.,
2004), while chemical methods detected acid phosphatase in
Welwitschia mirabilis (Carafa et al., 1992). Studies using prote-
omic methods have focused on the conifers Pseudotsuga men-
ziesii (Poulis et al., 2005), Taxus � media (O’Leary et al.,
2007), Juniperus communis, Juniperus oxycedrus and
Chamaecyparis lawsoniana; and on the gnetophytes,
Welwitschia mirabilis (Carafa et al., 1992; Wagner et al., 2007)
and several species of Ephedra (von Aderkas et al., 2015).
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These studies detected thaumatin-like proteins, chitinases, in-
vertase, galactosidase, peroxidase and subtilisin-like protease,
among others (Table 1). Putative functions of the proteins in-
clude the conversion of sugars, cleavage of polysaccharides, de-
fence against pathogens, and the expansion and growth of
pollen tubes (Table 1) (Gelbart and von Aderkas, 2002; Poulis
et al., 2005; Wagner et al., 2007). Chitinases in Pseudotsuga
menziesii have antifungal activity (Coulter et al., 2012). Some
of the proteins in Table 1 are conserved among taxa, such as
chitinase and glucosidase, while others, such as galactosidase,
have so far been observed in fewer species.

Developmental studies suggest that pollen selection conceiv-
ably could occur within pollination drops. In the ovules of sev-
eral species of Pinaceae, differences in pollen germination and
pollen tube growth and development were observed, depending
on whether the pollen was conspecific, heterospecific
(McWilliam, 1959; Fernando et al., 2005) or heterogeneric
(von Aderkas et al., 2012) with respect to the ovule. The under-
lying mechanisms controlling these differential responses of
pollen and pollen tubes are unknown, however. It is possible
that nutritional requirements of male gametophytes are species
specific, leading some to thrive in certain pollination drops
while others languish or die (Gelbart and von Aderkas, 2002).
Alternatively, protein–protein interactions may occur between
the pollen and the ovule, beginning with pollen recognition and
culminating in the destruction or inhibition of the growth of cer-
tain pollen types. Protein–protein interactions between pollen
and/or pollen tubes and ovules have been well documented in
angiosperms, including those of the incompatibility reactions of
S-locus proteins. Self-incompatibility (SI) systems are found in
at least 100 angiosperm families (Igic et al., 2008), and com-
prise diverse molecular mechanisms, the most well character-
ized of which are the sporophytic self-incompatibilty (SSI)
system found in members of the Brassicaceae, and the gameto-
pythic self-incompatibilty (GSI) systems found in the
Papaveraceae, Solanaceae, Plantaginaceae and Rosaceae (for

reviews, see Takayama and Isogai, 2005; Franklin-Tong, 2008;
Iwano and Takayama, 2012; Gibbs, 2014).

Proteomic studies are needed in additional gymnosperms to
better understand pollination drop composition and function in
conifers, cycads, Ginkgo and gnetophytes. Here, we docu-
mented the proteins present in the pollination drops of
Cephalotaxus, for which no data were previously available.
Cephalotaxus, or ‘plum yew’ (Fig. 1), is native to southern and
eastern Asia, and includes 8–11 species (Bassett et al., 2005). It
is the sole genus in the Cephalotaxaceae, although some taxo-
nomic treatments do not recognize Cephalotaxaceae, but con-
sider Cephalotaxus to be a divergent genus within the Taxaceae
(Rai et al., 2008). Regardless, the divergence of Cephalotaxus
from Taxaceae sensu stricto is ancient, having occurred about
150 Ma (Leslie et al., 2012). We focused on Cephalotaxus
sinensis and Cephalotaxus koreana. We also generated RNA-
sequencing (RNA-Seq) data to document the transcripts present
in ovules of C. sinensis at the time of pollination drop produc-
tion and to provide additional insight on ovule metabolic pro-
cesses and pollination drop functions. This is the first
transcriptome assembled from a Cephalotaxus ovule at the time
of pollination drop production, and the first transcriptome of
any gymnosperm ovule.

MATERIALS AND METHODS

Pollination drop and ovule collection

Pollination drops and ovules were collected from species of
Cephalotaxus at the Arnold Arboretum of Harvard University
(Boston, MA, USA). Pollination drops were collected in April
2011 from each of C. sinensis Rehder and Wilson and C. kore-
ana Nakai using a flame-drawn capillary tube. Drops were
pooled to obtain a minimum of 100lL per species and were
stored at –20 �C until analysis.

TABLE 1. Proteins previously identified in the pollination drops of gymnosperms

Chae.
laws.

Jun.
com.

Jun.
oxy.

Pseu.
men.

Tax. �
med.

Wel.
mir.

Eph.
comm.

Eph.
foe.

Eph.
min.

Eph.
tri.

Eph.
lik

Eph.
mon.

Eph.
comp.

b-D-Glucan exohydrolase x
Glucan 1,3-b-glucosidase (or precursor) x x x x
Subtilisin-like proteinase x
Glycosyl hydrolase x
Glucanase-like protein x
Chitinase x x x x
Thaumatin-like protein x x x x
Xylosidase x x x x x x
Galactosidase x x x x x
Peroxidase x x x x x
Invertase x
Aspartyl protease x x x x x
Serine carboxypeptidase (-like) protein x x x x
Arabinogalactan protein x
Malate dehydrogenase x
Peptidase x
Superoxide dismutase x

Plant names are abbreviated as follows: Chae. laws., Chamaecyparis lawsonia; Jun. com., Juniperus communis; Jun. oxy., Juniperus oxycedrus; Pseud.
menz., Pseudotsuga menziesii; Tax. � med., Taxus � media; Wel. mir., Welwitschia mirabilis; Eph. comm., Ephedra communis; Eph. foe., Ephedra foeminea;
Eph. min., Ephedra minuta; Eph. tri., Ephedra trifurca; Eph. lik., Ephedra likiangensis; Eph. mon., Ephedra monosperma; Eph. comp., Ephedra compacta.

Adapted from Coulter et al. (2012) and von Aderkas et al. (2015).
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In April 2012, cones were collected from C. sinensis at the
time of pollination drop production and were frozen immedi-
ately in liquid nitrogen for RNA-Seq analyses.

Protein preparation, electrophoresis, mass spectrometry and
data analysis

Sample preparation, electrophoresis and protein sequencing
followed previous methods (Prior et al., 2013). In brief, 1-D
SDS–PAGE was performed, and gels were stained with
Coomassie blue. Bands were excised from gels, digested with
trypsin, and analysed at the University of Victoria Genome BC
Proteomics Center via high-performance liquid chrtomatogra-
phy–tandem mass spectrometry (HPLC-MS/MS). HPLC was
performed on a RP nano-analytical column Magic C-18AQ
(Michrom BioResources Inc., Auburn, CA, USA). The chroma-
tography system was coupled online with an LTQ Orbitrap
Velos mass spectrometer equipped with a Nanospray II source
(Thermo Fisher Scientific).

The raw data files were searched using Thermo Scientific
Proteome Discoverer software version 1.2 (Thermo Fisher
Scientific) with Mascot version 2.2.1 (Matrix Science, Boston,
MA, USA) and PEAKS Studio v. 6 (Bioinformatics Solutions
Inc., Ontario, Canada) against the UniProt-SwissProt and
Uniprot-Trembl databases. Several post-translational modifica-
tions were tested for during searches. These included the fixed
carbamidomethylation of cysteines when iodoacetamide was
used in sample processing, oxidation of methionine and deami-
dation (N, Q). Due to the paucity of gymnosperm data available
in these databases, de novo discovery of peptides was also per-
formed using PEAKS Studio. SPIDER homology searches im-
plemented in PEAKS Studio were also performed to
compensate for sequencing errors and mutations which may
otherwise inhibit the correct identification of peptides (Han
et al., 2005). PEAKS ‘In Chorus’ was used to summarize the
various search results. In both MASCOT and PEAKS, peptides
were accepted as correctly identified if their scores had values

of at least P < 0.01. The false discovery rate, as determined by
a decoy database search, was kept below 1 %. Proteins were
considered as correctly identified if they contained at least one
unique peptide that fulfilled the above criteria. We did not in-
clude ‘uncharacterized protein’ hits in this report.

RNA-Seq

Ovules, including the nucellus and integuments, were dis-
sected from cones on ice and pooled into a single sample. RNA
was extracted using a CTAB–PVP–Tris–HCl extraction buffer
as described previously (Chang et al., 1993). However, we ex-
cluded spermidine from our extraction buffer, used only 100
mM Tris–HCl as opposed to 1 M, and adjusted our centrifugation
speed from 14 000 rpm to 10 000 rpm. Library preparation and
sequencing were performed by the FAS Center for Systems
Biology (Harvard University). In brief, RNA was amplified us-
ing the PrepX SPIA RNA-Seq Library Kit (Nugen), sheared,
and made into 200 bp insert libraries using the PrepX ILM
DNA Library Preparation kit (IntengenX, Pleasanton, CA,
USA). Samples were sequenced on an Illumina HiSeq 2000.

Quality of sequences was assessed using FastQC (Andrews).
Adaptors were removed using CutAdapt (Martin, 2011), and
low quality sequences were trimmed using Sickle (Joshi and
Fass, 2011) and Trimmomatic (Lohse et al., 2012). Trimmed
sequences were assembled using Trinity (Grabherr et al., 2011)
with default parameters. Similarity searches were performed us-
ing BLASTx against the NCBI non-redundant (nr) database
and Uniprot [SwissProt (SP) and TReMBL (TR)] databases.
Transcripts were annotated by using blast2go (Conesa et al.,
2005) against the Gene Ontology (GO) database.

RESULTS

Proteome

Proteins ranged in molecular weight from approx. 7 to 50 kDa.
Six SDS–PAGE gel bands from C. koreana extracts and eight

A B

FIG. 1. Cephalotaxus koreana. (A) Branch with male cones before pollen shedding. (B) Female cones with pollination drops.
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bands from C. sinensis extracts were sequenced (Fig. 2). A total
of 30 proteins from C. sinensis and 32 from C. koreana were
identified (Table 2). Peptides can be found in Supplementary
Data Table S1. Twelve proteins were detected in both samples:
chitinase IV, chitinase I, peroxidase, thaumatin-like protein
(TLP), pollen allergen CJP-38, a-galactosidase, b-galactosi-
dase, a-amylase, cup a 3 protein, pathogenesis-related protein,
PR5 allergen jun r/cup s, and luminal binding protein (BiP)
(Table 2).

Transcriptome

Paired-end sequencing yielded 314 781 368 paired-end reads
from a 200 bp insert library, encompassing 21.8 Gb of data.
After stringent quality filtering, only reads of QV> 20 were ac-
cepted (mean QV¼ 37). Sequences have been deposited in the
NCBI SRA database under the accession number SRP058054.

Using the Trinity de novo assembly program, 402 215 tran-
scripts were assembled with N50 ¼ 390, with 56 370 transcripts
above 500 bp and 17 201 transcripts above 1000 bp (Fig. 3).
Searches against the NCBI nr database and the combined SP
and TR Uniprot databases, using BLASTx and an e-value cut-
off of 10–5, yielded 49 277 transcripts with significant matches
against the nr database, 27 837 against SP and 47,558 against
TR (Supplementary Data Table S2). In total, 49 769 transcripts
were matched to putative homologues using this approach.

BLAST searches will not find matches for all sequences be-
cause short reads are rarely matched to known genes. For exam-
ple, only 7�8 % of all transcripts <500 bp in length had blast
hits against the nr database, but 36�0 % of transcripts sized
�500 bp had hits. The paucity of gymnosperm data available in
the databases further limits the total number of BLAST hits.

Transcripts with BLAST matches against the nr database
were annotated using Gene Ontology (GO) terms to predict
their possible functions. A total of 9644 transcripts were anno-
tated (Supplemetnary Data Table S3). GO annotations classify
the function of transcripts into three categories: biological pro-
cesses, cellular components and molecular functions. Within
these categories, the greatest numbers of transcripts were as-
signed to the sub-categories ‘binding’ and ‘catalytic’ (molecular
processes), ‘cellular process’ and ‘metabolic process’

(biological processes), and ‘cell’ and ‘cell part’ (cellular com-
ponent) (Fig. 4).

DISCUSSION

Proteome of the pollination drops of C. koreana and C. sinensis

The pollination drops of C. koreana and C. sinensis harbored at
least 30 proteins (Table 2). Their potential roles include defence
of nutrient-rich pollination drops from microbial pathogens,
promotion and support of pollen tube growth, metabolism dur-
ing drop production, and response to stress. It is likely that
some of these proteins are actively secreted into the pollination
drop (O’Leary et al., 2007), while others may enter the drop as
a result of nucellar breakdown (von Aderkas et al., 2015). As
pollination drops form in Cephalotaxus (C. Pirone-Davies,
unpubl. res.) and in some other gymnosperms, the most micro-
pylar cells of the nucellus break down (O’Leary et al., 2004).

Several of the proteins we detected in Cephalotaxus are
found in the pollination drops of other gymnosperms, while
others are reported here for the first time (Table 2). Defensive,
or pathogenesis-related proteins (PR proteins), are conserved
across all species examined to date. PR proteins are classified
into diverse families, including chitinases (PR-3), TLPs (PR-5)
and peroxidases (PR-9) (van Loon et al., 2006). Chitinases
have been detected previously in two species of Juniperus,
Ephedra foeminea, E. trifurca and Welwitschia mirabilis
(Wagner et al., 2007), TLPs have been detected in species of
Juniperus, E. minuta and Taxus � media (O’Leary et al.,
2007), peroxidase in Pseudotsuga menziesii, E. compacta,
E. likiangensis and E. trifurca, and galactosidase in E. minuta,
E. compacta, E. trifurca and P. menziesii (Poulis et al., 2005).
Three of the six proteins shared by both species of
Cephalotaxus are PR proteins, i.e. they are induced in the pres-
ence of a pathogen. The mechanisms by which the defence-
related proteins function in defence are diverse. Chitin is the
primary component of fungal cell walls, and thus chitinases,
which break down various polymers including chitin (Grover,
2012), often function as antifungals, as has been shown in the
pollination drops of Pseudotsuga menziesii (Coulter et al.,
2012). TLPs may affect fungal growth via b-glucanase activ-
ity, or the hydrolysis of b-1,3-glucan in fungal cell walls

175
80
58
48

30
25

17

7
kDa

C. sinensis C. koreana

FIG. 2. SDS–PAGE of pollination drops from C. koreana and C. sinensis and others. Lanes 1 and 6, protein marker; lanes 2–4 and 7, samples not discussed in this pa-
per; lane 5, C. sinensis; lane 8, C. koreana.
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(Grenier et al., 1999), and they may also exhibit a-amylase ac-
tivity that hinders the digestion of plant starches and proteins in
the insect gut, thus deterring insect predation (Franco et al.,
2002). All of these proteins, however, have other known roles
in plants. Chitinases are involved in various growth and devel-
opmental processes (Grover, 2012). TLPs accumulate in tissue
in response to some environmental stresses and developmental
cues (Liu et al., 2010), and some TLPs can inhibit the forma-
tion of ice crystals (Hon et al., 1995). Peroxidases are involved
in auxin metabolism, lignin and suberin formation, and the link-
ing of cell wall components (Passardi et al., 2005).
Nonetheless, in Cephalotaxus, other conifers and gnetophytes,
it is likely that the function of one or more of these proteins is
to defend the nutrient-rich drop from pathogens (Gelbart and
von Aderkas, 2002).

Cup s and Jun r are members of the PR-5 protein family and
thus may play a role in defence. They have been identified
as pollen allergens in Cupressus sempervirens and Juniperus
rigida, respectively (Cortegano et al., 2004; Breiteneder and

Mills, 2005). Other pollen allergens, such as CJP-38, share ho-
mology with b-1,3-glucanase, which degrades b-1,3-glucan, or
callose. Enzymes with glucanase or glucosidase activity are
also found in Chamaecyparis lawsoniana and Juniperus oxy-
cedrus (Table 1). Functions of b-1,3-glucanase are diverse, and
include the regulation of plasmodesmata (Levy et al., 2007),
hydrolysis of b-1,3-glucan in fungal cell walls and pollen tube
growth in angiosperms (Kotake et al., 2000; Sela-Buurlage
et al., 1993). In the pollination drops of Cephalotaxus, CJP-38
may have antifungal activity, or, if it originates from nucellar
cells, it may regulate plasmodesmata, and thus cell–cell com-
munication within the ovule. It is unclear whether CJP-38 is in-
volved in pollen tube growth in Cephalotaxus as is the case
in angiosperms. Callose is present in the pollen tubes of some
gymnosperms (Yatomi et al., 2002), but it is not ubiquitous,
and its distribution within the tube varies depending on species
and developmental stage (for a review, see Fernando
et al., 2010). In contrast, the angiosperm tube wall is composed
predominantly of callose, and callose septae, or plugs, are
formed throughout the tube as it grows (Abercrombie et al.,
2011).

a-Amylase hydrolyses starch, thus mobilizing energy for
growth and development (Huang et al., 1992). Starch has been
observed to accumulate in the nucellar cells of some gymno-
sperms just before drop formation (Carafa et al., 1992; Takaso
and Owens, 1995) and, in some species, it decreases at the time
of pollination drop production (Owens and Simmons, 1987).

Galactosidase enzymes are less widespread in pollination
drop proteomes than defence-related proteins, but they occur in
drops of Pseudotsuga mensziesii and some species of Ephedra.
They are also present in various plant tissues where they metab-
olize a variety of polysaccharides and are involved in fruit rip-
ening, growth and the hydrolysis of lactose. In flowering plants,
galactosidases are observed in both the stigma exudate and the
pollen, and are hypothesized to loosen the cell wall components
of the intine and assist in pollen germination and elongation
(Hruba et al., 2005; Rejon et al., 2013). It has been suggested
that galactosidase and xylosidase present in the pollination
drops of Pseudotsuga menziesii may also help loosen the cell
walls of pollen via degradation of xyloglucan support chains of
the pollen intine, thus promoting pollen tube growth (Poulis
et al., 2005).

The luminal binding protein (BiP) occurs in the endoplasmic
reticulum (ER) lumen, where it assists in the proper folding of
proteins (Boston et al., 1996; Galili et al., 1998). Based on its
typical sub-cellular location, BiP is probably present in the drop
as a result of nucellar breakdown. It is conserved across both
samples, suggesting that it may have an important metabolic
role at the time of pollination drop production. BiP activity in-
creases during biotic and abiotic stress responses to pathogens,
nutrient deficiency, temperature changes and water stress
(Alvim et al., 2001). It has been proposed that increased BiP
production is needed to support an increase in the synthesis of
PR proteins (Jelitto-Van Dooren et al., 1999). Numerous PR
proteins are present in the pollination drop; thus, it is possible
that BiP could support their synthesis.

Additional proteins were detected in either C. koreana or
C. sinensis, but not in both (Table 2). Technical replicates
are needed to verify that their presence is species specific (Elias

TABLE 2. Proteins identified in the pollination drops of C. koreana
and, C. sinensis

C. sinensis (outdoor) C. koreana (outdoor)

Alpha-galactosidase Alpha-galactosidase

Alpha-amylase type B isozyme Alpha-amylase type B isozyme
Beta-galactosidase Beta-galactosidase
Class I chitinase Class I chitinase

Class IV chitinase Class IV chitinase

Cup a 3 protein Cup a 3 protien
Luminal-binding protein (BiP) Luminal binding protein (BiP)
Pathogenesis-related protein Pathogenesis-related protein

Peroxidase Peroxidase
Pollen allergen CJP38 Pollen allergen CJP38
PR5 allergen Jun r PR5 allergen Jun r
Thaumatin-like protein Thaumatin-like protein

Alpha-1_4-glucan-protein synthase Acidic endochitinase
Alpha-amylase isozyme Acidic thaumatin-like protein

Ascorbate peroxidase Allergen Ara h 1
Aspartate aminotransferase Allergen Arah3/Arah4
Calmodulin Alpha-amylase
Cytosolic glyceraldehyde-3-phosphate

dehydrogenase

Ara h 1 allergen

Elongation factor 1-alpha Arachin
Elongation factor Conarachin
Enolase Endo-beta-mannanase
Eukaryotic translation elongation

factor

Glucan 1_3-beta-glucosidase

Glutathione-S-transferase Glucan endo-1_3-beta-glucosidase

Glyceraldehyde 3-phosphate

dehydrogenase

Glutathione reductase

Heat shock protein 70 Gly1
Histone H2A variant 1 Glycinin
Isocitrate dehydrogenase [NADP] Iso-Ara h3
Monodehydroascorbate reductase Malate dehydrogenase
Probable histone H2A variant 1 Neutral ceramidase
Triosephosphate isomerase Polygalacturonase
UDP-glucose:protein

transglucosylase-like

protein SlUPTG

Storage protein

Zinc finger protein_ putative

Bold indicates proteins that were detected in previous studies.
The first 12 proteins are found in both samples, followed by proteins unique

to each sample. Proteins in each are listed in alphabetical order.

Pirone-Davies et al. — Pollination drop proteins and ovule transcripts of Cephalotaxus 977



et al., 2005; Ham et al., 2008). Many of these other proteins are
involved in cellular metabolic processes, and may have been re-
leased from nucellar cells, as appears to be the case for similar
proteins recently detected in pollination drops of seven species
of Ephedra (von Aderkas et al., 2015).

The transcriptome of C. sinensis at the time of pollination drop
production

The sequences we identified in the pollination drop proteome
are a small sub-set of the sequences in our RNA-Seq data. This
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FIG. 4. Histogram of gene ontology classifications, sub-divided into biological processes, cellular components and molecular functions. The right y-axis indicates the
number of genes in a category. The left y-axis indicates the percentage of genes in a category.
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is not surprising given that one sample is from an aqueous se-
cretion and the other from a multicellular tissue. Also, the syn-
thesis and degradation of mRNA and protein are differently
affected by various factors including numerous post-transcrip-
tion regulatory processes that affect mRNA stability, the timing
of protein synthesis and rates of protein turnover (for a review,
see Vogel and Marcotte, 2012). The degree of overlap in the
identities of transcripts and the proteins is small, with just 174
matching hits (Supplementary Data Table S4).

The transcripts detected in the ovule of C. sinensis represent
41 GO categories broadly distributed across biological pro-
cesses, cellular components and molecular functions (Fig. 4).
Among the more surprising results, we detected homologues of
S-locus proteins, which could function in pollen–ovule interac-
tions, and B-class MADS-box genes, which are expected in
male cones based on previous studies (Sundstrom and
Engstrom, 2002; Thiessen and Becker, 2004). We focus our
discussion here on transcripts for proteins that potentially are
involved in pollen recognition, pollination drop formation and
reproductive development.

Pollen recognition

We detected several transcripts that may be involved in pol-
len recognition, based on BLAST results and GO annotations
(Supplementary Data Table S4). Among the five proteins with
‘recognition of pollen’ in the GO annotation were one transcript
that matched an S-locus lectin protein kinase and four tran-
scripts that matched a g-type lectin S-receptor-like serine threo-
nine-protein kinase in either the NCBI nr or the SP database.
Additional transcripts had top blast hits to a g-type lectin S-re-
ceptor-like serine/threonine kinase, but did not include pollen
recognition in the GO annotation (Supplementary Data Table
S3). S-locus proteins determine the specificity of pollen rejec-
tion in angiosperm SI systems, but SI systems differ with re-
spect to the proteins encoded by the S-loci (Takayama and
Isogai, 2005). It is the SSI system of Brassicaceae that uses
S-receptor kinase (SRK) as the female determinant of pollen re-
jection (Stein et al., 1991; Sherman-Broyles et al., 2007). It be-
longs to the diverse receptor-like kinase (RLK) family and is
the best characterized member of the S-domain RLKs (SRLKs)
(Shiu and Bleecker, 2003; Xing et al., 2013). SRLKs are differ-
entiated from other RLKs by the presence of an extracellular S-
domain composed of three sub-domains, B_Lectin, SLG and
PAN_APPLE, one of which, SLG, is responsible for binding
the male determinant during SI reactions (Kemp and Doughty,
2007). Apart from SRK in Brassica, the functions of SRLK
members are largely unknown. They are present in non-repro-
ductive tissues and are predicted to be involved in roles other
than pollen recognition, including development and defence
(Dwyer et al., 1994; Bassett et al., 2005). A recent transcrip-
tomic profile for soybean under salt stress detected one SRLK
that was upregulated when stressed (Ge et al., 2010). A subse-
quent study sought to validate the role of this SRLK but relied
heavily on its overexpression in arabidopsis, leaving open the
question of its function in soybean (Sun et al., 2013).

Self-incompatibility is widespread in angiosperms, and the
fact that unrelated proteins are encoded by S-loci in different SI
systems is consistent with independent evolution of multiple SI

systems, both of the SSI and the GSI type (Gibbs, 2014). In
GSI and SSI, pollen either fails to germinate on the stigma or
growth of pollen tubes arrests in the style. There is genetic evi-
dence for a third type of SI, which may be more widespread
than GSI and SSI. Late-acting self-incompatibility (LSI), in the
strict sense, describes self-sterility resulting from the failure of
pollen tubes to penetrate the ovule or failure of egg and sperm
to fuse (reviewed in Gibbs, 2014). LSI may be widespread in
angiosperms, and it may be the ancestral type of SI in angio-
sperms (Gibbs, 2014). A similar phenomenon has been ob-
served in Picea glauca, where both abortion of pollen tubes and
failure of the tubes to release sperm were observed after self-
pollination but not after cross-pollination (Runions and Owens,
1998), and in Abies alba, where archegonia broke down in self-
but not in cross-pollinated ovules (Kormatuk, 1999). These pre-
zygotic events are distinguished from cases in which expression
of lethal genes in the zygote or embryo causes breakdown of
the ovule and low seed set. Post-zygotic breakdown may in fact
explain other cases in conifers in which self-pollination results
in low seed set.

There are intriguing suggestions from pollination studies in
conifers of signalling between pollen and ovules, which, if pre-
sent, could function in LSI or other SI systems. These include
the dependence of ovule development on the germination and
growth of the pollen tube in species of Pinus and Tsuga
(Pinaceae) (McWilliam, 1959; Dogra, 1967; Owens and Blake,
1983; Owens et al., 2005) and Thuja (Cupressaceae) (Owens
et al., 1990), aberrant pollen tube growth and/or ovular break-
down in heterospecific crosses in Pinus (McWilliam, 1959) and
Abies alba (Kormatuk, 1999), and the retraction of the pollina-
tion drop in the presence of conspecific, but not heterospecific
pollen in Juniperus communis (Mugnaini et al., 2007).
Signalling between pollen and ovule also could explain pollen
selection in the pollination drop. In several cross-pollination
studies, conspecific pollen germinated and grew better in the
pollination drop than heterospecific or heterogeneric pollen
(McWilliam, 1959; Fernando et al., 2005; von Aderkas et al.,
2012). These studies, however, did not distinguish whether this
resulted from nutritional needs being better met by conspecific
pollination drops, or by pollen–ovule signalling, or by both.
Outcrossing in Cephalotaxus is promoted by dioecy, although
dioecy does not necessarily prevent crossing among individuals
with nearly identical genotypes. Outcrossing would be further
promoted, however, if pollen selection was also occurring in
the pollination drop.

Self-incompatibility systems help promote outcrossing and
are often cited as a unique feature of angiosperms that contrib-
utes to reproductive isolation and speciation (Stebbins, 1957;
Jain, 1976). The presence of SI systems in gymnosperms would
require a revision of this hypothesis. The observations pointing
to pollen–ovule signalling are perhaps the most compelling,
whereas the SRLK transcripts in the ovule might be for proteins
that function in ovule development or defence. In the latter
case, one might expect SRLK members in the proteome of the
pollination drop. We did not detect SRLK proteins in this study.
However, it is possible that SRLK was present in our samples,
but in a quantity too low to be detected by the methods used
here. Also still needed from studies of pollination in conifers
and other gymnosperms are data from the diallel crosses that
can reveal the presence of SI (Gibbs, 2014), and a sufficient
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number of histological observations of self- and cross-pollina-
tion events.

Pollination drop formation

The pollination drop, like nectar, is a liquid secretion from
reproductive tissue, and it is possible that the mechanisms con-
trolling secretion in these systems are similar. Ovule transcripts
in our RNA-Seq data may have a bearing on the question of
whether similar mechanisms are used. The pollination drop
originates in the nucellus, as shown by immunolocalization
studies of pollination drop proteins (Poulis et al., 2005), and
then passes through the micropyle to form a droplet.
Ultimately, it retracts, bringing pollen into the ovule. In
Cephalotaxus, drop production and retraction follow a diurnal
cycle, with drops produced in the early morning and slowly re-
tracting throughout the day, a phenomenon that has been ob-
served in podocarpaceous conifers (Tomlinson et al., 1991).
Drop retraction is also induced when pollen enters the drops of
Cephalotaxus (C. Pirone-Davies, pers. comm.); this also has
been noted in other conifers, including the Pinaceae,
Podocarpaceae and Cupressaceae (Doyle and O’ Leary, 1935;
Tomlinson et al., 1997; Mugnaini et al., 2007). The regulation
of water movement and its role in drop production is not well
understood. Conifer ovules are not vascularized, and thus water
associated with pollination drop formation and retraction appar-
ently is not associated with the osmotic potential of the xylem.
Pollination drop formation must therefore be controlled by wa-
ter dynamics within the ovule or cone (O’Leary and von
Aderkas, 2005). One explanation is that changes in the osmotic
potential of the drop facilitate the movement of water (Ziegler,
1959; Coulter et al., 2012). Sugars are proposed to regulate wa-
ter movement during nectar secretion in angiosperms (Lin
et al., 2014), and a similar process could be occurring during
drop formation in gymnosperms, with the various sugars pre-
sent in the drops serving as osmotic regulators (Seridi-
Benkaddour and Chesnoy, 1988; Nepi et al., 2009). Consistent
with this idea, we detected several transcripts for proteins in-
volved in the transport of sugars (Supplementary Data Table
S5), including several members of the SWEETS protein family,
a superfamily of sugar transporters (Xuan et al., 2013), some of
which are involved in nectar secretion (Lin et al., 2014).
Transcripts of b-glucosidase and P-loop-containing nucleoside
triphosphate hydrolases, additional proteins involved in nectar
production (Bender et al., 2012), also are present in the
Cephalotaxus drops.

Reproductive development

Ovules are a signature feature of the seed plants, and the
presence of the ovule and placental tissue connecting it to a
megasporophyll determines female identity. Ovules and pollen
typically are borne in separate structures in gymnosperms. This
leads to the expectation that genes known to control ovule de-
velopment and female identity in angiosperms will be ex-
pressed in the ovulate cones of gymnosperms, while those
controlling male identity will be expressed in pollen cones.
In particular, one might expect similar sets of genes to be

expressed in ovules across seed plants, since ovules are con-
served, unlike the structures on which they are borne (Mathews
and Kramer, 2012). Transcripts we detected in the ovules
of Cephalotaxus that are homologues of genes involved in re-
productive development in angiosperms bear on these expecta-
tions. These include ULTRAPETALA (ULT1), MADS-box
transcription factors, AP2-related, CLAVATA (CLV),
WUSCHEL (WUS), JOINTLESS and LEAFY (LFY)
(Supplementary Data Table S3). The roles of several of these
loci are understood in angiosperms, but fewer data are available
for gymnosperms (for a review, see Mathews and Kramer,
2012).

Ovule identity in angiosperms is determined by loci in the
AGAMOUS (AG) protein lineage (Pinyopich et al., 2003), and
we detected several AG and AG-like transcripts in the C. sinen-
sis ovule. Angiosperm ovules also express WUS, a member of
the WUSCHEL-related homeobox domain (WOX) family, but
they do not express CLAVATA3 (CLV3). In angiosperm shoot
apical meristems (Laux et al., 1996) WUS and CLV signalling
pathways interact to maintain the stem cell niche of the central
zone. In arabidopsis ovules, WUS is critical for initiation of the
integuments, consistent with the origin of the nucellus of the
ovule from a shoot apical meristem (Gross-Hardt et al., 2002;
Mathews and Kramer, 2012), and the presence of WUS in the
ovules of Gnetum (Nardmann et al., 2009) and C. sinensis sug-
gests that the role of WUS during integument formation may be
conserved across the seed plants. Consistent with their determi-
nate nature, CLV3 is not expressed in arabidopsis ovules. It is
thus interesting that we detected CLV transcripts in the dis-
sected ovules of C. sinensis. This could point to the presence of
a stem cell niche, maintained by the signalling of WUS and
CLV. Alternatively, the presence of WUS and CLV in the ovule
could result from meristematic activities in the integuments
during early stages of their development. Perhaps less probably,
they could represent a novel set of functions in ovules.

Within both shoot and floral meristems of arabidopsis, con-
trol of cell accumulation involves ULT1 (Fletcher, 2001). ULT1
also positively regulates floral meristem determinacy, possibly
through the AG pathway (Prunet et al., 2008). ULT1 encodes a
trithorax group protein, a class of proteins involved in chroma-
tin remodelling. In arabidopsis, ULT1 interacts with KANADI
to organize the gynoecium along two polarity axes (Pires et al.,
2014) In Cephalotaxus, the ULT1 homologue probably is also
involved in chromatin remodelling and may be controlling
some aspect of ovule development. It would be interesting to
determine whether it is involved in polarity determination in
the ovule.

MADS-box genes are transcription factors that contain a
MADS DNA-binding domain, which is conserved across eu-
karyotes and metazoans (Gramzow et al., 2014). MADS-do-
main proteins are sub-divided into Type 1, or serum response
factor (SRF)-like proteins, and Type 2, or myocyte enhancer
factor (MEF)-like proteins. Few Type 1 genes have been func-
tionally characterized, but Type 1 genes in arabidopsis are in-
volved in female gametophyte, embryo sac and seed
development (for a review, see Gramzow and Theissen, 2010).
Type 1 genes were detected in several members of the Pinaceae
as well as in Sciadopitys verticillata. However, detection of
transcripts is infrequent and is limited to shoot, bud, male cone
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and embryo tissues (Gramzow et al., 2014). The functions of
these transcripts are unknown. Our data set contains a single
Type 1 MADS-box transcript.

Type 2 MADS-box genes, in contrast, have been extensively
studied in angiosperms, where they are best known for their
roles in floral organ identity. They also are involved in diverse
developmental processes in fruits, seeds, embryos, roots and
leaves (for reviews, see Becker, 2003; Theissen, 2001).
Determination of organ identity in flowers is described by the
ABCDE model, with A þ E class genes specifying sepals, A þ
B þ E class petals, B þ C þ E class stamens, C þ E class car-
pels, and D þ E class ovules (for reviews, see Causier et al.,
2010; O’Maoileidigh et al., 2014). Most genes in these classes
are Type 2 MADS-box genes. In gymnosperms, B and C class
genes appear to be involved in the specification of reproductive
structures and the differentiation of male and female cones
(Melzer et al., 2010). Using BLAST searches, we detected sev-
eral Cephalotaxus transcripts that showed greatest similarity to
Type 2 MADS-box genes, including B class and B-sister (Bs)
transcripts, AG and AG-like (C class), TM8 and DEFICIENS
AGAMOUS-LIKE 10 (DAL10). We verified via phylogenetic
analyses (S. Mathews, E. Kramer, C. Pirone-Davies, unpubl.
res.) that among the BLAST hits are single homologues of B
class, Bs and AG transcripts.

The MADS-box genes from the A class have not previously
been detected in gymnosperms (Melzer et al., 2010). However,
the A class gene AP2 from the AP2/ERF family of transcription
factors has been detected in several conifers (e.g. Nilsson et al.,
2007). In arabidopsis, AP2 specifies the identity of sepals and
petals, regulates C class genes, is involved in seed development
and may play a role in development of non-floral organs
(Jofuku et al., 1994). Homologues of AP2 from Picea probably
control diverse developmental events, but also share features of
their angiosperm counterparts, as PiAP2 has the capacity to
substitute for an A class gene in arabidopsis (Nilsson et al.,
2007). We detected one AP2-related transcript in C. sinensis.

The MADS-box genes from the B class have been found in
Ginkgo, Gnetum gnemon and some conifers (Mouradov et al.,
1999; Sundstrom et al., 1999; Gramzow et al., 2014), where
their expression is largely restricted to male cones. It appears
that the role of these genes in the development of pollen-bear-
ing structures is conserved across seed plants (Sundstrom and
Engstrom, 2002; Theissen and Becker, 2004). B class tran-
scripts were, however, found by Gramzow and colleagues
(Gramzow et al., 2014) in transcriptomes assembled from the
female cones of Picea abies. Our detection of B class and Bs
transcripts in the ovules of C. sinensis, suggests that B class
genes are indeed involved in a role beyond male reproductive
development. Since we collected ovules from outdoor sites
where pollen was likely to be present, we cannot completely
rule out the possibility that we detected transcripts from the pol-
len. It is unclear, however, whether B class transcripts would
occur in mature pollen. In situ data indicate their presence in
various pollen cone tissues, but no transcripts were detected in
the pollen mother cells, and mature pollen was not analysed
(Sundstrom and Engstrom, 2002). The expression of one or
more B gene homologues in ovules is not uncommon in angio-
sperms (for a review, see Kramer and Irish, 2000), so it may be
that this pattern is also common among gymnosperms.

Homologues of the C class gene AG have been identified in
all major gymnosperm lineages (Rutledge et al., 1998; Tandre
et al., 1998; Winter et al., 1999; Kramer et al., 2003), and AG
and AG-like are expressed in the female cones of four cycads
and several conifers, the male cones of Cryptomeria, the shoots
of Gnetum gnemon, non-reproductive tissues of Picea abies
and in the nucellus of Taxus globosa (Englund et al., 2011;
Gramzow et al., 2014). In flowering plants, AG is involved in
stamen and carpel identity and in establishing determinancy of
the floral meristem (Bowman et al., 1989). In gymnosperms,
AG genes are generally involved in the development of both
male and female cones (Melzer et al., 2010), and may be in-
volved in the development of ovuliferous scales (Tandre et al.,
1998) and in the transition from vegetative to reproductive
identity (Carlsbecker et al., 2013).

Additional Type 2 MADS-box genes in the Cephalotaxus
ovular transcriptome include TM8, DAL10 and JOINTLESS.
TM8 and DAL10 belong to a large clade that is sister to the C
class clade (Melzer et al., 2010). TM8 expression occurs in re-
productive and non-reproductive tissues of diverse gymno-
sperms (Gramzow et al., 2014), including the ovules of Taxus
baccata and G. biloba (Lovisetto et al., 2012). Although the
function of TM8 remains poorly understood, it may be involved
in controlling A class expression in tomato (Daminato et al.,
2014). Given the diversity of TM8 expression patterns across
seed plants, further research into its function is needed. DAL10
has also been found in numerous gymnosperm species and tis-
sues, but is absent from angiosperm lineages (Carlsbecker
et al., 2003). Similar to TM8, little is known about the function
of this gene, although it appears to be involved in the shift from
vegetative to reproductive buds, and its presence in developing
seed and pollen cones is similar to that of B and C class genes
(Carlsbecker et al., 2003, 2013). JOINTLESS is involved in the
formation of the abscission zone in tomato (Mao et al., 2000).
It works at least in part via the regulation of transcription fac-
tors involved in meristem identity, genes involved in cell wall
formation and lipid metabolism, and phytohormones (Nakano
et al., 2012).

The presence in Cephalotaxus ovules of transcripts similar to
the transcription factor gene LFY is consistent with its activity in
early female and male cone development (Vasquez-Lobo et al.,
2007). It may regulate some ABC class MADS-box proteins as it
does in angiosperms (Moyroud et al., 2010). In angiosperms,
LFY enables the transition from vegetative to floral meristems
(Weigel et al., 1992), and also activates floral homeotic genes
(Weigel and Meyerowitz, 1994). Members of the LFY lineage
have been detected in non-reproductive and reproductive tissues
of diverse non-flowering plants (Moyroud et al., 2010), including
the nucellus of Picea (Carlsbecker et al., 2013).

In summary, our proteome data strongly support the hypothe-
sis that pollination drop proteins are important in defence, poly-
saccharide metabolism and pollen tube growth. We detected
additional, novel proteins that may be involved in defence (Cup
a3, Cup s and Jun r), starch degradation (a-amylase) and callose
degradation (pollen allergen CJP-38), while others are likely
to be by-products of nucellar degradation (luminal binding pro-
tein, histone and others). The implications of the latter in polli-
nation drop function, if any, are unclear. Examination of the
transcriptome of Cephalotaxus ovules revealed several
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transcripts that may be important in pollen–ovule recognition,
pollination drop formation and retraction, and reproductive and
developmental processes within the ovule. Functional valida-
tion of the pollination drop proteins and ovular transcripts char-
acterized here will deepen our knowledge of pollination
biology in gymnosperms. Transcriptome data, moreover, from
additional stages of ovule development and from a broad phylo-
genetic sample across gymnosperms will greatly advance our
understanding of gymnosperm reproductive development.
Finally, we note the need for histological and genetic data from
rigorous self- and cross-pollination experiments to explore the
intriguing observations that suggest that pollen–ovule signalling
occurs in at least some gymnosperm reproductive systems.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxfordjour
nals.org and consist of the following. Table S1: peptides and
proteins identified in the pollination drops of C. koreana and C.
sinensis. Table S2: BLAST results (nr, SwissProt and trEMBL)
for the ovule transcriptome of C. sinensis. Table S3: Blast2go
annotations for the ovule transcriptome of C. sinensis. Table
S4: list of transcripts and proteins found in both the transcrip-
tome and proteome data sets. Table S5: transcripts identified in
the ovules of C. sinensis with the putative functions of sugar
transport, pollen–ovule interactions and development.

ACKNOWLEDGEMENTS

We thank Elena Kramer for her insight on ovule development
and for sharing with us her data matrix of MADS-box genes.
This work was supported by a Putnam Fellowship from the
Arnold Arboretum of Harvard University to C.P.D. The
Natural Sciences and Engineering Research Council of
Canada’s PGS and Discovery Grant Programs provided finan-
cial support to N.A.P. and P.vA., respectively.

LITERATURE CITED

Abercrombie JM, O’Meara BC, Moffatt AR, Williams JH. 2011.

Developmental evolution of flowering plant pollen tube cell walls: callose
synthase (CalS) gene expression patterns. Evodevo 2: 14.

von Aderkas P, Nepi M, Rise M, et al. 2012. Post-pollination prefertilization
drops affect germination rates of heterospecific pollen in larch and Douglas-
fir. Sexual Plant Reproduction 25: 215–225.

von Aderkas P, Prior NA, Gagnon S, et al. 2015. Degradome and secretome of
pollination drops of Ephedra. Botanical Review 81: 1–27.

Alvim FC, Carolino SM, Cascardo JC, et al. 2001. Enhanced accumulation of
BiP in transgenic plants confers tolerance to water stress. Plant Physiology
126: 1042–1054.

Andrews S. FastQC a quality control tool for high throughput sequence data.
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Bassett CL, Nickerson ML, Farrell RE, et al. 2005. Characterization of an S-
locus protein kinase-like gene from peach. Tree Physiology 25: 403–411.

Becker A. 2003. The major clades of MADS-box genes and their role in the de-
velopment and evolution of flowering plants. Molecular Phylogenetics and
Evolution 29: 464–489.

Bender R, Klinkenberg P, Jiang Z, et al. 2012. Functional genomics of nectar
production in the Brassicaceae. Flora – Morphology, Distribution,
Functional Ecology of Plants 207: 491–496.

Boston RS, Viitanen PV, Vierling E. 1996. Molecular chaperones and protein
folding in plants. Plant Molecular Biology 32: 191–222.

Bowman JL, Smyth DR, Meyerowitz EM. 1989. Genes directing flower devel-
opment in Arabidopsis. The Plant Cell 1: 37–52.

Breiteneder H, Mills EN. 2005. Molecular properties of food allergens. Journal
of Allergy and Clinical Immunology 115: 14–23.

Carafa AM, Carrat�u G, Pizzolongo P. 1992. Anatomical observations on the
nucellar apex of Wellwitschia mirabilis and the chemical composition of the
micropylar drop. Sexual Plant Reproduction 5: 275–279.

Carlsbecker A, Sundstrom J, Tandre K, et al. 2003. The DAL10 gene from
Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific
subclass of MADS-box genes and is specifically active in seed cones and
pollen cones. Evolution and Development 5: 551–561.

Carlsbecker A, Sundstrom JF, Englund M, et al. 2013. Molecular control of
normal and acrocona mutant seed cone development in Norway spruce
(Picea abies) and the evolution of conifer ovule-bearing organs. New
Phytologist 200: 261–275.

Causier B, Schwarz-Sommer Z, Davies B. 2010. Floral organ identity: 20 years
of ABCs. Seminars in Cell and Developmental Biology 21: 73–79.

Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolat-
ing RNA from pine trees. Plant Molecular Biology Reporter 11: 113–116.

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005.

Blast2GO: a universal tool for annotation, visualization and analysis in func-
tional genomics research. Bioinformatics 21: 3674–3676.

Cortegano I, Civantos E, Aceituno E, et al. 2004. Cloning and expression of a
major allergen from Cupressus arizonica pollen, Cup a 3, a PR-5 protein ex-
pressed under polluted environment. Allergy 59: 485–490.

Coulter A, Poulis BAD, von Aderkas P. 2012. Pollination drops as dynamic
apoplastic secretions. Flora – Morphology, Distribution, Functional
Ecology of Plants 207: 482–490.

Daminato M, Masiero S, Resentini F, Lovisetto A, Casadoro G. 2014.

Characterization of TM8, a MADS-box gene expressed in tomato flowers.
BMC Plant Biology 14: 319.

Dogra PD. 1967. Seed sterility and disturbances in embryogeny in conifers with
particular reference to seed testing and tree breeding in Pinaceae. Studia
Forestalia Suecica 45: 4–28.

Doyle J, O’ Leary M. 1935. Pollination in Tsuga, Cedrus, Pseudotsuga, and
Larix. With 2 plates. Scientific Proceedings of the Royal Dublin Society
XXI: 191–204.

Dwyer KG, Kanakachari MK, Mahosky DI, et al. 1994. A superfamily of S
locus-related sequences in Arabidopsis: diverse structures and expression
patterns. The Plant Cell 6: 1829–1843.

Elias JE, Haas W, Faherty BK, Gygi SP. 2005. Comparative evaluation of
mass spectrometry platforms used in large-scale proteomics investigations.
Nature Methods 2: 667–675.

Englund M, Carlsbecker A, Engstrom P, Vergara-Silva F. 2011.

Morphological ‘primary homology’ and expression of AG-subfamily
MADS-box genes in pines, podocarps, and yews. Evolution and
Development 13: 171–181.

Fernando DD, Long SM, Sniezko RA. 2005. Sexual reproduction and crossing
barriers in white pines: the case between Pinus lambertiana (sugar pine) and
P. monticola (western white pine). Tree Genetics and Genomes 1: 143–150.

Fernando DD, Quinn CR, Brenner ED, Owens JN. 2010. Male gametophyte
development and evolution in extant gymnosperms. International Journal
of Plant Developmental Biology 4: 47–63.

Fletcher JC. 2001. The ULTRAPETALA gene controls shoot and floral meri-
stem size in Arabidopsis. Development 128: 1323–1333.

Franco OL, Rigden DJ, Melo FR, Grossi-de-Sa M. 2002. Plant alpha-amylase
inhibitors and their interaction with insect alpha-amylases. European
Journal of Biochemistry 269: 397–412.

Franklin-Tong VE. 2008. Self-incompatibility in flowering plants. Berlin:
Springer-Verlag.

Galili G, Sengupta-Gopalan C, Ceriotti A. 1998. The endoplasmic reticulum
of plant cells and its role in protein maturation and biogenesis of oil bodies.
Plant Molecular Biology 38: 1–29.

Ge Y, Li Y, Zhu YM, et al. 2010. Global transcriptome profiling of wild soybean
(Glycine soja) roots under NaHCO3 treatment. BMC Plant Biology 10: 153.

Gelbart G, von Aderkas P. 2002. Ovular secretions as part of pollination mech-
anisms in conifers. Annals of Forest Science 59: 345–357.

Gibbs PE. 2014. Late-acting self-incompatibility – the pariah breeding system in
flowering plants. New Phytologist 203: 717–734.

Grabherr MG, Haas BJ, Yassour M, et al. 2011. Full-length transcriptome as-
sembly from RNA-Seq data without a reference genome. Nature
Biotechnology 29: 644–652.

982 Pirone-Davies et al. — Pollination drop proteins and ovule transcripts of Cephalotaxus

http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcw026/-/DC1
http://www.aob.oxfordjournals.org
http://www.aob.oxfordjournals.org
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Gramzow L, Theissen G. 2010. A hitchhiker’s guide to the MADS world of
plants. Genome Biology 11: 214–225.

Gramzow L, Weilandt L, Theissen G. 2014. MADS goes genomic in conifers:
towards determining the ancestral set of MADS-box genes in seed plants.
Annals of Botany 114: 1407–11429.

Grenier J, Potvin C, Trudel J, Asselin A. 1999. Some thaumatin-like proteins
hydrolyse polymeric b-1,3-glucans. The Plant Journal 19: 473–480.

Gross-Hardt R, Lenhard M, Laux T. 2002. WUSCHEL signaling functions in
interregional communication during Arabidopsis ovule development. Genes
and Development 16: 1129–1138.

Grover A. 2012. Plant chitinases: genetic diversity and physiological roles.
Critical Reviews in Plant Sciences 31: 57–73.

Ham BM, Yang F, Jayachandran H, et al. 2008. The influence of sample prep-
aration and replicate analyses on HeLa cell phosphoproteome coverage.
Journal of Proteome Research 7: 2215–2221.

Han Y, Ma B, Zhang K. 2005. SPIDER: software for protein identification from
sequence tags with de novo sequencing error. Journal of Bioinformatics and
Computational Biology 3: 697–716.

Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DS. 1995. Antifreeze pro-
teins in winter rye are similar to pathogenesis-related proteins. Plant
Physiology 109: 879–89.

Hruba P, Honys D, Twell D, Capkova V, Tupy J. 2005. Expression of beta-
galactosidase and beta-xylosidase genes during microspore and pollen
development. Planta 220: 931–940.

Huang N, Stebbins GL, Rodriguez RL. 1992. Classification and evolution of
alpha-amylase genes in plants. Proceedings of the National Academy of
Sciences, USA 89: 7526–7530.

Igic B, Lande R, Kohn JR. 2008. Loss of self-incompatibility and its evolution-
ary consequences. International Journal of Plant Sciences 169: 93–104.

Iwano M, Takayama S. 2012. Self/non-self discrimination in angiosperm self-
incompatibility. Current Opinion in Plant Biology 15: 78–83.

Jain SK. 1976. The evolution of inbreeding in plants. Annual Review of Ecology
and Systematics 7: 469–495.

Jelitto-Van Dooren EP, Vidal S, Denecke J. 1999. Anticipating endoplasmic
reticulum stress. A novel early response before pathogenesis-related gene
induction. The Plant Cell 11: 1935–1944.

Jofuku KD, den Boer BGW, Montagu MV, Okamuro JK. 1994. Control of
Arabidopsis flower and seed development by the homeotic gene
APETALA2. The Plant Cell 6: 1211–1225.

Joshi NA, Fass JN. 2011. Sickle: a sliding-window, adaptive, quality-based
trimming tool for FastQ files. http://github.com/najoshi/sickle.

Kemp BP, Doughty J. 2007. S cysteine-rich (SCR) binding domain analysis of
the Brassica self-incompatibility S-locus receptor kinase. New Phytologist
175: 619–629.

Kormatuk A. 1999. Self-incompatibility in silver fir (Abies alba). Biologia
Bratislava 54: 101–105.

Kotake T, Li YQ, Takahashi M, Sakurai N. 2000. Characterization and func-
tion of wall-bound exo-b-glucanases of Lilium longiflorum pollen tubes.
Sexual Plant Reproduction 13: 1–9.

Kramer EM, Irish VF. 2000. Evolution of the petal and stamen developmental
programs: evidence from comparative studies of the lower eudicots and
basal angiosperms. International Journal of Plant Sciences 161: S29–S40.

Kramer EM, Jaramillo MA, Di Stilio VS. 2003. Patterns of gene duplication
and functional evolution during the diversification of the AGAMOUS sub-
family of MADS Box genes in angiosperms. Genetics 166: 1011–1023.

Laux T, Mayer KFX, Berger J, Jurgens G. 1996. The WUSCHEL gene is re-
quired for shoot and floral meristem integrity in Arabidopsis. Development
122: 87–96.

Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S.

2012. Hemisphere-scale differences in conifer evolutionary dynamics.
Proceedings of the National Academy of Sciences, USA 109: 16217–16221.

Levy A, Erlanger M, Rosenthal M, Epel BL. 2007. A plasmodesmata-associ-
ated beta-1,3-glucanase in Arabidopsis. The Plant Journal 49: 669–682.

Lin IW, Sosso D, Chen LQ, et al. 2014. Nectar secretion requires sucrose phos-
phate synthases and the sugar transporter SWEET9. Nature 508: 546–549.

Liu JJ, Sturrock R, Ekramoddoullah AK. 2010. The superfamily of thauma-
tin-like proteins: its origin, evolution, and expression towards biological
function. Plant Cell Reports 29: 419–436.

Lohse M, Bolger AM, Nagel A, et al. 2012. RobiNA: a user-friendly, integrated
software solution for RNA-Seq-based transcriptomics. Nucleic Acids
Research 40: W622–W627.

van Loon LC, Rep M, Pieterse CM. 2006. Significance of inducible defense-
related proteins in infected plants. Annual Review of Phytopathology, 44:
135–162.

Lovisetto A, Guzzo F, Tadiello A, Toffali K, Favretto A, Casadoro G. 2012.

Molecular analyses of MADS-box genes trace back to Gymnosperms the in-
vention of fleshy fruits. Molecular Biology and Evolution 29: 409–419.

Mao L, Begum D, Chuang H, et al. 2000. JOINTLESS is a MADS-box gene
controlling tomato flower abscission zone development. Nature 406:
910–913.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput se-
quencing reads. EMBNet 17: 10–12.

Mathews S, Kramer EM. 2012. The evolution of reproductive structures in
seed plants: a re-examination based on insights from developmental genet-
ics. New Phytologist 194: 910–923.

McWilliam JR. 1959. Interspecific incompatibility in Pinus. American Journal
of Botany 46: 425–433.

Melzer R, Wang YQ, Theissen G. 2010. The naked and the dead: the ABCs of
gymnosperm reproduction and the origin of the angiosperm flower.
Seminars in Cell and Developmental Biology 21: 118–128.

Mouradov A, Hamdorf B, Teasdale RD, Kim JT, Winter K, Theissen G.

1999. A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radi-
ata contains an ortholog of angiosperm B class floral homeotic genes.
Developmental Genetics 25: 245–252.

Moyroud E, Kusters E, Monniaux M, Koes R, Parcy F. 2010. LEAFY blos-
soms. Trends in Plant Science 15: 346–352.

Mugnaini S, Nepi M, Guarnieri M, Piotto B, Pacini E. 2007. Pollination drop
in Juniperus communis: response to deposited material. Annals of Botany
100: 1475–1481.

Nakano T, Kimbara J, Fujisawa M, et al. 2012. MACROCALYX and
JOINTLESS interact in the transcriptional regulation of tomato fruit abscis-
sion zone development. Plant Physiology 158: 439–450.

Nardmann J, Reisewitz P, Werr W. 2009. Discrete shoot and root stem cell-
promoting WUS/WOX5 functions are an evolutionary innovation of angio-
sperms. Molecular Biology and Evolution 26: 1745–1755.

Nepi M, von Aderkas P, Wagner R, Mugnaini S, Coulter A, Pacini E. 2009.

Nectar and pollination drops: how different are they? Annals of Botany 104:
205–219.

Nilsson L, Carlsbecker A, Sundas-Larsson A, Vahala T. 2007. APETALA2
like genes from Picea abies show functional similarities to their
Arabidopsis homologues. Planta 225: 589–602.

O’Leary SJB, von Aderkas P. 2005. Postpollination drop production in hybrid
larch is not related to the diurnal pattern of xylem water potential. Trees 20:
61–66.

O’Leary SJB, Joseph C, von Aderkas P. 2004. Origin of arabinogalactan pro-
teins in the pollination drop of Taxus � media. Austrian Journal of Forest
Science 121: 35–46.

O’Leary SJB, Poulis BAD, von Aderkas P. 2007. The identification of two
thaumatin-like proteins (TLPs) in the pollination drop of hybrid yew that
may play a role in pathogen defence during pollen collection. Tree
Physiology 27: 1649–1659.

O’Maoileidigh DS, Graciet E, Wellmer F. 2014. Gene networks controlling
Arabidopsis thaliana flower development. New Phytologist 201: 16–30.

Owens JN, Blake MD. 1983. Pollen morphology and development of the polli-
nation mechanism in Tsuga heterophylla and T. mertensiana. Canadian
Journal of Botany,61: 3041–3049.

Owens JN, Simmons SJ. 1987. The pollination mechanism of Engelmann
spruce (Picea engelmanii). Canadian Journal of Botany 65: 1439–1450.

Owens JN, Colangeli AM, Morris SJ. 1990. Factors affecting seed set in
Douglas-fir (Pseudotsuga menziesii). Canadian Journal of Botany 69:
229–238.

Owens JN, Bennett J, L’Hirondelle S. 2005. Pollination and cone morphology
affect cone and seed production in lodgepole pine seed orchards. Canadian
Journal of Forest Research 35: 383–400.

Passardi F, Cosio C, Penel C, Dunand C. 2005. Peroxidases have more func-
tions than a Swiss army knife. Plant Cell Reports 24: 255–265.

Pinyopich A, Ditta GS, Savidge B, et al. 2003. Assessing the redundancy of
MADS-box genes during carpel and ovule development. Nature 424: 85–88.

Pires HR, Monfared MM, Shemyakina EA, Fletcher JC. 2014.

ULTRAPETALA trxG genes interact with KANADI transcription factor
genes to regulate Arabidopsis gynoecium patterning. The Plant Cell 26:
4345–4361.

Pirone-Davies et al. — Pollination drop proteins and ovule transcripts of Cephalotaxus 983

http://github.com/najoshi/sickle


Poulis BAD, O’Leary SJB, Haddow JD, von Aderkas P. 2005. Identification
of proteins present in the Douglas fir ovular secretion: an insight into conifer
pollen selection and development. International Journal of Plant Sciences
166: 733–739.

Prior N, Little SA, Pirone C, et al. 2013. Application of proteomics to the study
of pollination drops. Applications in Plant Science 1: doi:10.3732/
apps.1300008.

Prunet N, Morel P, Thierry AM, et al. 2008. REBELOTE, SQUINT, and
ULTRAPETALA1 function redundantly in the temporal regulation of flo-
ral meristem termination in Arabidopsis thaliana. The Plant Cell 20:
901–919.

Rai HS, Reeves PA, Peakall R, Olmstead RG, Graham SW. 2008. Inference
of higher-order conifer relationships from a multi-locus plastid data set.
Botany 86: 658–669.

Rejon JD, Delalande F, Schaeffer-Reiss C, et al. 2013. Proteomics profiling re-
veals novel proteins and functions of the plant stigma exudate. Journal of
Experimental Botany 64: 5695–5705.

Runions CJ, Owens JN. 1998. Evidence of pre-zygotic self-incompatibility in a
conifer. In: Rudall PJ, Owens SJ, eds. Reproductive biology. Kew: Royal
Botanic Gardens, 255–264.

Rutledge R, Regan S, Nicolas O, et al. 1998. Characterization of an
AGAMOUS homologue from the conifer black spruce (Picea mariana) that
produces floral homeotic conversions when expressed in Arabidopsis. The
Plant Journal 15: 625–634.

Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, et al. 1993. Only specific
tobacco (Nicotiana tabacum) chitinases and [beta]-1,3-glucanases exhibit
antifungal activity. Plant Physiology 101: 857–863.

Seridi-Benkaddour R, Chesnoy L. 1988. Secretion and composition of the pol-
lination drop in Cephalotaxus drupaceae (gymnosperm, Cephalotaxeae). In:
Cresti M, Gori P, Pacini E, eds. Sexual reproduction in higher plants.
Berlin: Springer Verlag, 345–350.

Sherman-Broyles S, Boggs N, Farkas A, et al. 2007. S locus genes and the evo-
lution of self-fertility in Arabidopsis thaliana. The Plant Cell 19: 94–106.

Shiu SH, Bleecker AB. 2003. Expansion of the receptor-like kinase/Pelle gene
family and receptor-like proteins in Arabidopsis. Plant Physiology 132:
530–543.

Singh H. 1978. Embryology of gymnosperms. Berlin: Gerbr€uder Borntraeger.
Stebbins GL. 1957. Self fertlization and population variability in the higher

plants. American Naturalist 91: 337–354.
Stein JC, Howlett B, Boyes DC, Nasrallah ME, Nasrallah JB. 1991.

Molecular cloning of a putative receptor protein kinase gene encoded at the
self-incompatibility locus of Brassica oleracea. Proceedings of the National
Academy of Sciences, USA 88: 8816–8820.

Sun XL, Yu QY, Tang LL, et al. 2013. GsSRK, a G-type lectin S-receptor-like
serine/threonine protein kinase, is a positive regulator of plant tolerance to
salt stress. Journal of Plant Physiology 170: 505–515.

Sundstrom J, Engstrom P. 2002. Conifer reproductive development involves
B-type MADS-box genes with distinct and different activities in male organ
primordia. The Plant Journal 31: 161–169.

Sundstrom J, Carlsbecker A, Svensson ME, et al. 1999. MADS-Box genes ac-
tive in developing pollen cones of Norway Spruce (Picea abies) are

homologous to the B-Class floral homeotic genes in angiosperms.
Developmental Genetics 25: 253–266.

Takaso T, Owens JN. 1995. Pollination drop and microdrop secretions in
Cedrus. International Journal of Plant Sciences 156: 640–649.

Takayama S, Isogai A. 2005. Self-incompatibility in plants. Annual Review of
Plant Biology 56: 467–489.

Tandre K, Svenson M, Svensson ME, Engstrom P. 1998. Conservation of
gene structure and activity in the regulation of reproductive organ develop-
ment of conifers and angiosperms. The Plant Journal 15: 615–623.

Theissen G. 2001. Development of floral organ identity: stories from the MADS
house. Current Opinion in Plant Biology 4: 75–85.

Theissen G, Becker A. 2004. Gymnosperm orthologues of class B floral homeo-
tic genes and their impact on understanding flower origin. Critical Reviews
in Plant Sciences 23: 129–148.

Tomlinson PB, Braggins JE, Rattenbury JA. 1991. Pollination drop in relation
to cone morphology in Podocarpaceae: a novel reproductive mechanism.
American Journal of Botany 78: 1289–1303.

Tomlinson PB, Braggins JE, Rattenbury JA. 1997. Contrasted pollen capture
mechanisms in Phyllocladaceae and certain Podocarpaceae (Coniferales).
American Journal of Botany 84: 214–223.

Vasquez-Lobo A, Carlsbecker A, Vergara-Silva F, Alvarez-Buyila ER, Pineroa

D, Engstrom P. 2007. Characterization of the expression patterns of LEAFY/
FLORICAULA and NEEDLY orthologues in female and male cones of the
conifer genera Picea, Podocarpus, and Taxus: implications for current evo-
devo hypotheses for gymnosperms. Evolution and Development 9: 446–459.

Vogel C, Marcotte EM. 2012. Insights into the regulation of protein abundance
from proteomic and transcriptomic analyses. Nature Reviews Genetics 13:
227–232.

Wagner RE, Mugnaini S, Sniezko R, et al. 2007. Proteomic evaluation of gym-
nosperm pollination drop proteins indicates highly conserved and complex
biological functions. Sexual Plant Reproduction 20: 181–189.

Weigel D, Meyerowitz EM. 1994. The ABCs of floral homeotic genes. Cell 78:
203–209.

Weigel G, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. 1992.

LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859.
Winter K, Becker A, Munster T, Kim JT, Saedler H, Theissen G. 1999.

MADS-box genes reveal that gnetophytes are more closely related to coni-
fers than to flowering plants. Proceedings of the National Academy of
Sciences, USA 96: 7342–7347.

Xing S, Li M, Liu P. 2013. Evolution of S-domain receptor-like kinases in land
plants and origination of S-locus receptor kinases in Brassicaceae. BMC
Evolutionary Biology 13: 1–11.

Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, Hou BH, Frommer WB.

2013. Functional role of oligomerization for bacterial and plant SWEET
sugar transporter family. Proceedings of the National Academy of Sciences,
USA 110: E3685–E3694.

Yatomi R, Nakamura S, Nakamura N. 2002. Immunochemical and cytochemi-
cal detection of wall components of germinated pollen of gymnosperms.
Grana 41: 21–28.

Ziegler H. 1959. €Uber die Zusammensetzung des ‘Best€aubungstropfens’ und
den Mechanismus seiner Sekretion. Planta 52: 587–599.

984 Pirone-Davies et al. — Pollination drop proteins and ovule transcripts of Cephalotaxus


	mcw026-TF1
	mcw026-TF2
	mcw026-TF3
	mcw026-TF4

