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� Background and Aims Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide dis-
tribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has re-
cently been proposed based on morphological characters. This classification differs somewhat from previously
published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incom-
plete taxon sampling or misidentification of samples. While chromosome counts have been made for many species,
few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome
size analysis of the genus.
�Methods Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula sam-
ples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included
in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS
sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes
of 103 accessions representing nearly all described species were estimated using flow cytometry.
� Key Results As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree
shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections
show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia
(subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera. Unexpected placements are
also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa. Biogeographical disjunctions were
found within Betula between Europe and North America, and also disjunctions between North-east and South-west
Asia. The 2C-values for Betula ranged from 0�88 to 5�33 pg, and polyploids are scattered widely throughout the ITS
phylogeny. Species with large genomes tend to have narrow ranges.
� Conclusions Betula grossa may have formed via allopolyploidization between parents in subgenus Betula and sub-
genus Aspera. Betula bomiensis may also be a wide allopolyploid. Betula corylifolia may be a parental species of
allopolyploids in the subsection Chinenses. Placements of B. maximowicziana, B. michauxii and B. nigra need fur-
ther investigation. This analysis, in line with previous studies, suggests that section Apterocaryon is not monophyletic
and thus dwarfism has evolved repeatedly in different lineages of Betula. Polyploidization has occurred many times
independently in the evolution of Betula.
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INTRODUCTION

Phylogenetic trees based on individual genes (gene trees) pro-
vide useful data for systematics even though the evolutionary
history of a particular gene is not necessarily the same as the
history of other parts of the genome, or the species (Nichols,
2001). When gene trees contradict classifications based on mor-
phological characters, two broad categories of factors can
underlie this discordance. First, a gene tree may be discordant
with the species tree due to the effects of hybridization, gene
duplication, polyploidy and incomplete lineage sorting (Tate
and Simpson, 2003; Koonin, 2005; Degnan and Rosenberg,
2009). Secondly, morphological similarities may give a mis-
leading phylogenetic signal due to convergence (Day et al.,
2014). In addition, specimens may be occasionally misidenti-
fied (Wiens, 2004), and insufficient sampling can be a problem
when interpreting phylogenetic relationships (Pick et al., 2010).
Phylogenetic analysis of Betula L. (Betulaceae) is likely to be

subject to these problems as Betula species are reported to hy-
bridize frequently, include a number of polyploids and encom-
pass several species that are similar morphologically
(Ashburner and McAllister, 2013).

Betula, a genus of trees and shrubs, occupies a broad latitu-
dinal range in the northern hemisphere, from the sub-tropics to
the arctic, populating various habitats, including bogs, high-
lands, tundra and forests. Species of this genus occur in natural
landscapes and play important roles in horticulture and forestry
(Ashburner and McAllister, 2013). Although several Betula
species have wide ranges, some have narrow ranges and are
evaluated as endangered in the IUCN Red List (Ashburner and
McAllister, 2013; Shaw et al., 2014). The estimated species
number within the genus ranges from 30 to 120 (Furlow, 1990;
Koropachinskii, 2013), and new species have been described
recently (Zeng et al., 2008; McAllister and Rushforth, 2011;
Zeng et al., 2014).
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The taxonomy of this genus is difficult and controversial, and
several classifications have been proposed (Regel, 1865;
Winkler, 1904; De Jong, 1993; Skvortsov, 2002). Regel (1865)
divided it into subgenus Alnaster and subgenus Eubetula, with
the former having the single section Acuminatae and the latter
consisting of six sections (Albae, Costatae, Dahuricae,
Fruticosae, Lentae and Nanae). Winkler (1904) lowered the two
subgenera proposed by Regel (1865) to two sections and merged
section Dahuricae and section Fruticosae of Regel (1865) into
subsection Albae, and placed section Lentae into subsection
Costatae. De Jong (1993) divided the genus into five subgenera:
Betula, Betulaster, Betulenta, Chamaebetula and Neurobetula.
Based on previous publications and specimens collected from
northern Asia, Skvortsov (2002) proposed a classification of four
subgenera and eight sections, namely Asperae (sections Asperae,
Chinenses and Lentae), Betula (sections Acuminatae,
Apterocaryon, Betula, Costatae and Dahuricae), Nipponobetula
and Sinobetula. More recently, in a monograph of Betula
(Ashburner and McAllister, 2013), a classification into four
subgenera and eight sections was proposed. These subgenera
are: Acuminata (section Acuminatae), Aspera (sections Asperae
and Lentae), Betula (sections Apterocaryon, Betula, Costatae
and Dahuricae) and Nipponobetula (section Nipponobetula),
with section Asperae being further divided into two subsections:
subsection Asperae and subsection Chinenses. This classification
largely agrees with the one proposed by Skvortsov (2002), but
places section Acuminatae (subgenus Betula) of Skvortsov
(2002) as subgenus Acuminata and treats sections Asperae,
Chinenses and Lentae of Skvortsov (2002) as subsections
Asperae, Chinenses and section Lentae, respectively. Subgenus
Sinobetula is not included in this recent classification since
the sole species included was proposed based only on a single
specimen (Skvortsov, 2002), which is considered to belong to
subsection Asperae (Ashburner and McAllister, 2013).

Several molecular phylogenies have been published for the
family Betulaceae (Bousquet et al., 1992; Chen et al., 1999;
Forest et al., 2005; Grimm and Renner, 2013) and for its con-
stituent genera: Alnus (Navarro et al., 2003), Corylus (Erdogan
and Mehlenbacher, 2000; Forest and Bruneau, 2000; Whitcher
and Wen, 2001), Carpinus (Yoo and Wen, 2002) and Betula
(see references above). It is generally agreed that genus Betula
is sister to Alnus, and the remaining four genera (Carpinus,
Corylus, Ostryopsis and Ostrya) form another group (Bousquet
et al., 1992; Chen et al., 1999). Within Betula, current under-
standing of phylogenetic relationships is based primarily on
five studies with only a sub-set of currently identified species
sampled in each study (J€arvinen et al., 2004; Li et al., 2005;
Nagamitsu et al., 2006; Li et al., 2007; Schenk et al., 2008).
To our knowledge, approx. 24 taxa were not included in
any previous phylogenetic studies, some because they have been
recently discovered or are of limited distribution, including
B. ashburneri, B. bomiensis, B. hainanensis and B. murrayana.
Some species placements in these phylogenies remain debated,
such as the placement of B. schmidtii (J€arvinen et al., 2004;
Li et al., 2005), the grouping of B. costata and B. alleghaniensis,
and the placement of B. glandulosa within section Asperae (Li
et al., 2005).

Previous comparisons of morphological and molecular clas-
sifications in Betula reveal that they are partially inconsistent
and contradictory (Li et al., 2005; Schenk et al., 2008). One

potential cause of this, hybridization, is known to occur fre-
quently between Betula species (Dehond and Campbell, 1987;
Dehond and Campbell, 1989; Nagamitsu et al., 2006;
Karlsdottir et al., 2009; Wang et al., 2014a) and has been
shown to occur across sections and even subgenera within
Betula (Johnsson, 1945; Dancik and Barnes, 1972; Czernicka
et al., 2014; Thomson et al., 2015), potentially causing discord-
ance in phylogenetic relationships.

The recent monograph of Betula (Ashburner and McAllister,
2013) includes determinations of the ploidy level of Betula spe-
cies based on chromosome counts, with levels ranging from
diploid to dodecaploid and counted chromosome numbers from
2n¼ 28 to 2n¼ 168. Ploidy level is an important factor in dis-
tinguishing some of the morphologically similar species in the
genus, such as diploid B. pendula (2n¼ 2x¼ 28) and tetraploid
B. pubescens (2n¼ 4x¼ 56); and diploid B. ashburneri
(2n¼ 2x¼ 28) and tetraploid B. utilis (2n¼ 4x¼ 56). Although
the ploidy level has been estimated for nearly all species of
Betula, there are only five counts of genome size in the Plant
DNA C-values Database (Bennett and Leitch, 2010), represent-
ing two diploid species, two tetraploid species and one triploid
hybrid. Three of these five counts are from Anamthawat-
J�onsson et al. (2010) where the genome size of 12 plants was
measured. The genome size of another three species has been
reported recently elsewhere (Bai et al., 2012). Of these genome
size measurements of which we are aware for Betula, species
considered to be diploid appear to have very different genome
sizes: the 2C-values of diploid species B. populifolia, B. nana
and B. nigra were estimated to be 0�40, 0�91 and 2�90 pg, re-
spectively (Bennett and Leitch, 2010; Bai et al., 2012). Hence,
there is a need for complete genome size information for the
genus carried out under standard conditions with reliable identi-
fication of the specimens used.

Here, we constructed a genus-level phylogeny based on the
nuclear ribosomal internal transcribed spacer (ITS) region for
the genus Betula using only samples that have been verified by
the authors of the recent monograph of the genus, Ashburner
and McAllister, except in the case of four species where sam-
ples were obtained from three researchers highly familiar with
them. We used the ITS region because its high level of poly-
morphism can help to distinguish species for phylogenetic ana-
lyses (�Alvarez and Wendel, 2003) although it may suffer from
complicating factors such as pseudogenes and biparental signals
in recent hybrids (Razafimandimbison et al., 2004). We also
conducted broader analyses with samples from living collec-
tions or GenBank that have not been previously verified by the
monographers. We also measured the genome size of each
taxon using flow cytometry.

MATERIALS AND METHODS

Taxon sampling

In order to ensure a complete correspondence between the spe-
cies names of Ashburner and McAllister (2013) and the taxa
included in this study, we obtained species from living collec-
tions at the Stone Lane Gardens in Devon (SL hereafter) and
University of Liverpool Botanic Gardens at Ness (N hereafter)
since these have been collected and curated by Ashburner and
McAllister. In addition, we obtained four species (B. alnoides,
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B. delavayi, B. glandulosa and B. hainanensis) from Jie Zeng
(Institute of Tropical Forestry, Chinese Academy of Forestry),
Paul Grogan (Queen’s University, Canada) and Zhikun Wu
(Kunming Institute of Botany, Chinese Academy of Sciences)
who have studied them over many years. We built our
main phylogenetic tree using these, which we designate for
the purposes of this study the ‘verified’ sample set. We
then also built a phylogenetic tree including additional samples
obtained from the Royal Botanic Gardens Kew, the
Royal Botanic Garden Edinburgh, the Helsinki Botanic
Garden, field collections (Supplementary Data Table S1) and

GenBank sequences from previous published phylogenetic
analyses.

DNA extraction, amplification and sequencing

Genomic DNA was isolated from silica-dried cambial tissue
(green vascular tissue located beneath the outer bark of woody
stems) or leaves following a modified 2� CTAB (cetyltrime-
thylammonium bromide) protocol (Wang et al., 2013). The iso-
lated DNA was assessed with 1�0 % agarose gels and measured
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FIG. 1. Phylogenetic tree from the maximum likelihood analysis of ‘verified’ Betula L. specimens using ITS sequences. Species were classified according to
Ashburner and McAllister (2013). Values above branches are bootstrap percentages of �50 %. The bars on the right-hand side indicate genome sizes, with colours

corresponding to the taxonomy. Bars with a black outline indicate a tentative genome size of the individual.

Wang et al. — Phylogeny and genome sizes of Betula 1025

http://aob.oxfordjournals.org/lookup/suppl/doi:10.1093/aob/mcw048/-/DC1


with a Qubit 2.0 Fluorometer (Invitrogen, Life Technologies)
using broad-range assay reagents. The quantified DNA was
then diluted to a final concentration of 10–20 ng lL–1 for subse-
quent use. The nuclear ribosomal internal transcribed spacer
(nrITS) region (ITS1, 5�8S and ITS2) was amplified using pri-
mers ITS4 (White et al., 1990) and ITSLeu (Baum et al.,
1998). The volume of the reaction mix was 20 lL containing:
0�4 lL of AmpliTaq polymerase, 2�0 lL of 10� NH4 buffer
(Bioline), 1�6 lL of 50 mM MgCl2 (Bioline), 0�5 lL of 100 mM

dNTP, 0�8 lL of each primer (10 mM), 12�9 lL of ddH2O and
1 lL of diluted DNA (10–20 ng). The PCR was carried out
using a touchdown program, consisting of an initial denatur-
ation at 95 �C for 3 min, followed by 32 cycles of 1 min at
94 �C, 50 s at 56–52 �C, 1�5 min at 72 �C, and was ended with
an extension step of 10 min at 72 �C. The PCR products were
purified by binding a 0�8 vol. of Ampure beads (Beckman
Coulter Inc.). The purified PCR products were diluted to
approx. 20 ng lL–1 in ddH2O prior to sending them to Eurofins
(Ebersberg, Germany) for sequencing.

Phylogenetic analyses

ITS tree based on the ‘verified’ sample set. Seventy-six ‘verified’
accessions representing approx. 60 Betula species and various
subspecies, varieties and natural hybrids were Sanger
sequenced. Their ITS sequences were checked for recombin-
ation in the RPD4 program (Martin et al., 2015) using seven
automated detection methods: Bootscanning (Salminen et al.,
1995); Chimaera (Posada and Crandall, 2001); GENECONV
(Padidam et al., 1999); MaxChi (Smith, 1992); RDP (Martin
et al., 2005); SiScan (Gibbs et al., 2000); and 3SEQ (Boni
et al., 2007). No signals of recombination were detected using
these methods. We downloaded ITS sequences of nine species
from other genera of Betulaceae from GenBank, for use as an
outgroup. In total, 85 sequences were aligned using BioEdit v
7.0.9.0 (Hall, 1999) with default parameters and the alignment
edited manually where necessary. A maximum likelihood (ML)
analysis was conducted in PhyML v.3.0 with the default set-
tings (Guindon and Gascuel, 2003) and with the best-fit substi-
tution model GTRþG selected in jModelTest 2.0 (Guindon
and Gascuel, 2003; Darriba et al., 2012) using the Akaike infor-
mation criterion (AIC). A Bayesian inference (BI) analysis was
also conducted using the program MrBayes v.3.2 (Ronquist
et al., 2012). Two independent runs were performed. For each
run, ten million generations were completed with four chains
(three heated, one cold). Trees were sampled every 1000 gener-
ations, and the first 25 % of runs were discarded as burn-in.
Convergence was assessed by determining that the average
standard deviation of split frequencies reached a value of
<0�01. A majority-rule consensus of the remaining trees from
the two runs was produced and used as the BI tree with poster-
ior probabilities (PPs).

ITS tree based on all samples. In addition to the ‘verified’ sam-
ple set, another 49 accessions were Sanger sequenced
(Supplementary Data Table S1) and 99 ITS sequences of
Betula species were retrieved from GenBank. A total of 233 se-
quences were aligned and analysed with ML and
BI as described above. The consensus trees generated using the

above methods were visualized in FigTree v.1.3.1 (http://tree.-
bio.ed.ac.uk/software/figtree) and edited in Adobe Illustrator
CS4 (Adobe Systems).

ITS tree based on diploid samples. We also conducted phylogen-
etic analyses exclusively on ‘verified’ species that our C-value
measurements (see below) showed to be diploid. Thirty-three
Betula accessions were included. An ML analysis was con-
ducted using the same parameters as described above.

Genome size analysis

We measured the genome size of nearly all samples collected
from SL and N to correlate them with ploidy levels obtained
from chromosome counts (Ashburner and McAllister, 2013).
Fresh leaves or cambial tissue were co-chopped with internal
standards: Oryza sativa ‘IR36’ (Bennett and Smith, 1991),
Solanum lycopersicum L. ‘Stupiké poln�ı rané’ (Dole�zel et al.,
1998), Petroselinum crispum (Mill.) Nyman ex A.W.Hill
‘Champion Moss Curled’ (Obermayer et al., 2002) and Pisum
sativum L. ‘Minerva Maple’ (Bennett and Smith, 1991) in 1 mL
of Extraction Buffer (Cystain PI absolute P, Partec GmbH,
Germany) and then filtered into a tube containing 2�0 mL of
Staining Solution (Cystain PI absolute P, Partec GmbH) with
12 lL of propidium iodide (PI). Samples were incubated at
room temperature in the dark for approx. 30 min. Three to five
replicates were analysed per sample; for each replicate, >5000
nuclei were measured using a Partec CyFlow Space flow
cytometer (Partec GmbH) fitted with a 100 mW green solid-
state laser (Cobolt Samba; Cobolt, Sweden). Four taxa were
analysed with less than three replicates (Supplementary Data
Table 1). The resulting histograms were analysed with the
Flow-Max software (v.2.4, Partec GmbH).

The ranges of the species for which we measured genome
size were divided into four loose categories: narrow (species
occurring in a single or a few localities and tending to be endan-
gered), medium (species occurring commonly in multiple
areas), widespread (species occupying several parts of a contin-
ent) and very widespread (species spread extensively within a
continent or across continents) (Supplementary Data Table S2)
based on distribution information in the recent monograph of
Betula (Ashburner and McAllister, 2013). For species in which
multiple individuals were measured, the mean genome size was
used for subsequent analysis. Using the average ploidy level and
the mean 2C-value of each range category, statistically signifi-
cant differences between categories were tested using analysis of
variance (ANOVA). Tukey HSD post-hoc tests were performed
at P< 0�05 when results of ANOVA indicated significance
(a� 0�05). All analyses and plots were performed in R 3.1.0 (R
Develoment Core Team, 2012) and the package ‘ggplot2’
(Wickham, 2009).

To investigate further the evolution of genome size in
Betula, we calculated the monoploid genome size, 1Cx (found
by dividing the 2C-value by the ploidy level of the species)
(Greilhuber et al., 2005), for each of the 71 verified accessions
plus each accession of B. pubescens and B. tianshanica from
RBGE. These 1Cx-values were grouped according to the ITS
clade membership of the species; for each group, 1Cx-values
were plotted against ploidy level. We also compared the
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homogeneity of variance for 1Cx-values among diploid (2x),
tetraploid (4x), hexaploid (6x), and octoploid and above (8x–
12x) accessions, with R package ‘lawstat’ using the modified
robust Brown–Forsythe Levene-type test with 1000 bootstraps
(Hui et al., 2008).

RESULTS

The phylogeny of ‘verified’ Betula accessions
based on ITS sequences

The aligned ITS data matrix for the ‘verified’ sample set con-
tains 85 ITS sequences and 618 characters, of which 157 char-
acters are variable and 111 informative. There is broad
agreement between our ML (Fig. 1) and Bayesian
(Supplementary Data Fig. S1) analyses; below we discuss
our results based on the ML analyses as these give greater
resolution. To facilitate discussion, we have labelled six
main clades. Clades I, II and III consist of species of section
Lentae (subgenus Aspera). Betula alleghaniensis is sister to
B. murrayana whereas B. insignis is sister to B. insignis ssp.
fansipanensis, forming clade I and II, respectively. Clade III
consists of B. lenta, B. megrelica and B. medwediewii. Clade
IV includes species of section Asperae and B. corylifolia, the
single species of subgenus Nipponobetula, which appears to be
sister to Aspera subsection Chinenses. Clade V contains all
species of the subgenus Acuminata together with a sub-clade
of B. bomiensis (subsection Asperae) and B. nigra (section
Dahuricae), the latter being on a long branch. Clade VI con-
tains all but one of the species in subgenus Betula plus
B. grossa (subgenus Aspera, section Lentae) and B. maximo-
wicziana (subgenus Acuminata). The only species of subgenus
Betula not found in Clade VI is B. michauxii, which forms a
polytomy with clades IV, V and VI. Within Clade VI, the vari-
ous sections of subgenus Betula do not form unique sub-clades,
though B. costata, B. utilis and B. ashburneri from section
Costatae cluster together, and B. pubescens, B. pendula and
their subspecies/varieties cluster together (Fig. 1). Phylogenetic
relationships within the above clades are not fully resolved.

The phylogeny of all available Betula ITS sequences

The aligned ITS data matrix for all accessions contains 233
ITS sequences and 622 characters, of which 188 characters are
variable and 132 informative. The phylogeny of all samples
(Fig. 2) reveals a similar overall topology to that of the phyl-
ogeny based only on the ‘verified’ sample set. However, 24
(16 %) of the 148 unverified samples have unexpected phylo-
genetic positions. Of these 24, half were downloaded from
GenBank and half were sequenced from samples collected
from botanic gardens. Putative B. lenta (GenBank accession
FJ011775.1) and B. costata (GenBank accession AY352337.1)
appear within Clade II, whereas verified accessions for these
species are in Clade III and Clade VI, respectively (Fig. 2). One
putative accession of B. glandulosa (GenBank accession
AY761110.1) appeared within Clade IV, a clade of species
mainly of subsection Chinenses, whereas another three unveri-
fied B. glandulosa accessions (GenBank accession FJ011774.1,
RBG Kew DNA bank ID: 19950 and Helsinki Botanic Garden

accession 1986-0630) are placed in Clade VI. One accession of
B. insignis (GenBank accession KP092744) and of B. delavayi
(RBG Kew accession 1993-3034) are unexpectedly placed
within Clade V, whereas the ‘verified’ samples for these species
are in Clade I and Clade IV, respectively. An accession of puta-
tive B. dahurica (GenBank accession FJ011773) and one of pu-
tative B. skvortsovii are clustered with B. utilis in Clade VI and
one accession of B. chinensis (GenBank accession
AY761105.1) is clustered with seven accessions of B. dahurica
in Clade VI (Fig. 2). All the remaining 12 non-verified acces-
sions found unexpectedly in Clade VI cluster with B. pubes-
cens, B. pendula and their subspecies/varieties (Fig. 2).

The phylogeny of diploid Betula accessions

Betula diploids reveal similar phylogenetic positions to when
polyploids were included, with a few exceptions: B. corylifolia
is in a polytomy with subsection Asperae; B. lenta and B. lenta
f. uber are sister to species of subgenera Betula and Acuminata
whereas B. costata clusters with subgenus Acuminata
(Supplementary Data Fig. S2).

Genome sizes

We found the 2C genome sizes of Betula species to range
from 0�88 pg in B. nigra to 5�33 pg in B. insignis ssp. fansipa-
nensis, thus the 1C-value ranges from 0�44 pg (430 Mbp) to
2�67 pg (2611 Mbp). We found Chinese B. alnoides to have a
2C genome size of 1�95 pg, indicating that it is tetraploid rather
than diploid (Fig. 1; Supplementary Data Table S1). The fact
that B. alnoides is tetraploid has been confirmed by chromo-
some counting and microsatellite genotyping (Hugh McAllister
and Jie Zeng, pers. comm.). We found a genome size of 0�91 pg
for B. hainanensis, indicating for the first time that this recently
discovered species is diploid. If all other ploidy levels given in
Ashburner and McAllister (2013) are correct, the monoploid
genome size of Betula (1Cx-value) ranges from 371 Mbp for B.
murrayana to 616 Mbp for B. dahurica (Fig. 3). The monoploid
genome size is similar among all diploids except for B. potani-
nii. Variance in monoploid genome size is greater among poly-
ploid accessions. There is a significant difference in the
variance of 1Cx-values among the groups of 2x, 4x, 6x and
8x–12x accessions [Fig. 4, P< 0�05; treated pairwise, all groups
are significantly non-homogenous in their variances except 4x
and 6x (P¼ 0�15) and 6x and 8x–12x (P¼ 0�38)]. The propor-
tion of polyploid species of this genus is approx. 0�60, if only
species, subspecies/varieties and different cytotypes are
included and species having synonyms are treated as one.

There is a significant difference in the average ploidy level
between species with narrow ranges and species with medium,
widespread and very widespread ranges (Fig. 5A, P< 0�05),
with species with narrow ranges tending to have higher ploidy
levels. There is no significant difference in the average ploidy
level for species with medium, widespread and very widespread
ranges (Fig. 5A, P> 0�05). Similar results also hold true for
2C-values (Fig. 5B).
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DISCUSSION

Phylogenetics and taxonomy

Subgenus Aspera. Ashburner and McAllister (2013) divided
subgenus Aspera into two sections: section Lentae (from Regel
1865) and section Asperae. Our ITS data support this division,
as the majority of species in these two sections fall into distinct
ITS clades, though section Lentae is further subdivided into
three unresolved clades. The amplified fragment length poly-
morphism (AFLP) data of Schenk et al. (2008) also agree with
the division of sections Lentae and Asperae. Ashburner and
McAllister (2013) further divided section Asperae into subsec-
tions Chinenses and Asperae, which are synonymous with sec-
tion Chinenses and section Asperae of Skvortsov (2002),
respectively. Our ITS data broadly support this division. Our
ITS data do not support Winkler’s (1904) combination of sec-
tions Lentae and Costatae of Regel (1865) into subsection
Costatae, nor do the data support subgenus Neurobetula of De
Jong (1993), which consists of species from section Asperae,
section Costatae and section Dahuricae of Ashburner
and McAllister (2013). In addition, our ITS data do not support
subgenus Betulenta of De Jong (1993) including species such

as B. lenta, B. lenta f. uber and B. globispica as B. globispica is
placed in a distinct clade (Fig. 1).

The tetraploid species B. bomiensis, which Ashburner and
McAllister (2013) place within section Asperae, is clustered by
ITS into a group of species of subgenus Acuminata, but as sister
to B. nigra which Ashburner and McAllister (2013) place in
section Dahuricae. As Ashburner and McAllister (2013) note,
B. bomiensis is morphologically similar to B. potaninii (section
Asperae), suggesting that this diploid species may be a parent
of B. bomiensis. Our genome size data support this hypothesis,
in that the monoploid genome size (1Cx) is unusually large
for both species (0�54 pg for B. potaninii and 0�55 pg for
B. bomiensis) (Fig. 3; Supplementary Data Table S2). The hy-
pothesis that B. bomiensis was formed via hybridization be-
tween B. potaninii and a species of subgenus Acuminata merits
further research with additional genetic loci.

Decaploid species B. medwediewii and dodecaploid species
B. megrelica form a well-supported clade with diploid species
B. lenta and B. lenta f. uber (Figs 1 and 2). This suggests that
B. lenta or its ancestral lineage may have been a parent of these
two polyploid species. The morphology of the three species
also supports this hypothesis (Hugh McAllister, unpubl. res).
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The study of Li et al. (2005) found a similar result that B. lenta
and B. lenta f. uber formed a clade with B. medwediewii. It has
previously been suggested (Barnes and Dancik, 1985) that the
octoploid species B. murrayana is a recent allopolyploid deriva-
tive from B.� purpusii, an inter-subgenus hybrid between
B. alleghaniensis (8x) and B. pumila (4x). We find it to form
a clade with B. alleghaniensis in the ITS tree, supporting this
species as one of its parents (Ashburner and McAllister, 2013).

Interestingly, B. delavayi, a hexaploid species, clustered with
the diploid species B. calcicola and B. potaninii, indicating that
one of these species or their common ancestor could be a paren-
tal species of B. delavayi. Interestingly, both B. potaninii
(1Cx¼ 0�54 pg) and B. delavayi (1Cx¼ 0�53 pg) have an un-
usually large monoploid genome size, which could be evidence
favouring B. potaninii as its parental species rather than
B. calcicola (1Cx¼ 0�46 pg). Further research is needed to con-
firm whether other species may also be potential progenitors of
B. delavayi.

Ashburner and McAllister (2013) place the hexaploid species
B. grossa in section Lentae due to clear morphological similar-
ities, but is not clustered with species of that section by ITS se-
quences (Fig. 1). This is consistent with AFLP data of Schenk
et al. (2008) and the ITS sequences of Nagamitsu et al. (2006).
In our case, both B. grossa accessions are from different botanic
gardens but each shows the same result (Fig. 2), making mis-
identification less likely. The unexpected placement of
B. grossa into a clade of species of subgenus Betula may

indicate that one of the progenitors of this polyploid belongs to
subgenus Betula. It is perhaps an allopolyploid formed from hy-
bridization with a species of section Lentae to which it has mor-
phological similarity, causing McAllister and Ashburner (2013)
to place it in that section. The ITS sequences from B. grossa
may be homogenized from one parent (Nagamitsu et al., 2006).
This hypothesis for the parentage of B. grossa deserves further
investigation with a larger number of genetic loci.

Subgenus Nipponobetula. Subgenus Nipponobetula, which com-
prises the single species B. corylifolia, with distinctive morph-
ology, forms a moderately supported clade (IV) with species of
subgenus Aspera in this study, with which it shares some mor-
phological features (Ashburner and McAllister, 2013). Our data
do not support the placement of B. corylifolia in section
Costatae as in Regel (1865), or subsection Costatae as in
Winkler (1904), or subgenus Betulenta as in De Jong (1993).
The placement of B. corylifolia with subgenus Aspera was also
indicated in two previous phylogenetic studies (Li et al., 2005;
Nagamitsu et al., 2006). However, we note that B. corylifolia is
found in an ITS clade within Aspera that is composed of the
polyploid species B. chinensis (hexaploid and octoploid),
B. fargesii and B. globispica, and this clade of four species is
sister to a clade containing the diploid Aspera species, of sub-
section Asperae. We cannot therefore exclude the possibility
that B. corylifolia is a parental species of allopolyploids
B. chinensis (hexaploid and octoploid), B. fargesii and
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B. globispica, through hybridization with a species from section
Asperae, and may appear nested in the subgenus Aspera as a re-
sult. Indeed, in phylogenetic analyses that include only diploid
species, B. corylifolia is not nested within subgenus Aspera, but
in a polytomy with that clade.

Subgenus Acuminata. The subgenus Acuminata does not form a
distinct clade in our ITS phylogenies. Four of its species appear
in a clade with B. nigra, an outlier from subgenus Betula, and
B. bomiensis, an outlier from subgenus Aspera. Of these four
species, B. alnoides and B. cylindrostachya are tetraploid and
B. hainanensis and B. luminifera are diploid species, suggesting
that one or both of the two diploids or their common ancestor
could be parental species of the tetraploids. A fifth species of
Acuminata, B. maximowicziana, appears in the subgenus
Betula. A close relationship of B. maximowicziana with species
of section Costate (subgenus Betula) is also supported by
AFLP markers (Schenk et al., 2008) (though other species of
subgenus Acuminata were not included in the AFLP study of
Schenk et al., 2008). In contrast, the low-copy nuclear gene
NIA supports the grouping of B. maximowicziana with
B. alnoides, another species of subgenus Acuminata (Li et al.,
2007), making the phylogenetic position of this species ques-
tionable. Two lines of evidence in addition to our ITS results
may suggest that B. maximowicziana is closely related to spe-
cies of subgenus Betula. First, a crossing experiment apparently
showed that fertile hybrids can form between B. maximowiczi-
ana and B. pendula ssp. mandshurica (Johnsson, 1945), indicat-
ing that no post-zygotic barriers exist; however, this result has
not been convincingly reproduced and we thus cannot exclude
the possibility that pollen contamination could have occurred.
Secondly, the autumn fruiting and much thicker male catkins of
B. maximowicziana are distinct from other species of subgenus
Acuminata (Ashburner and McAllister, 2013). Although the
overall appearance and detailed characteristics of B. maximo-
wicziana suggest a close relationship with other species of sub-
genus Acuminata, it does stand apart from them in several
features, suggesting an ancient genetic contribution from an-
other evolutionary line within the genus. If the subgenus
Acuminata is not monophyletic, the racemose pistillate inflores-
cence which characterizes it is possibly due to convergent
evolution.

Subgenus Betula. The majority of the species of the subgenus
Betula form a single clade, but the four sections of this sub-
genus have complex relationships in the ITS tree. Section
Costatae shows a close relationship with section Betula, and
section Apterocaryon species are intermixed with section
Betula (Figs 1 and 2). Species of section Betula may
have diverged from a lineage of section Costatae recently as
the reproductive barrier between the two sections is incomplete:
hybrids have been created and reported to be fertile, such as
B. pubescens�B. ermanii, B. pubescens�B. albosinensis and
B. pendula�B. ermanii (Johnsson, 1945). The status of section
Apterocaryon, containing B. michauxii and B. apoiensis,
B. nana, B. ovalifolia, B. fruticosa, B. pumila, B. humilis and
B. glandulosa, defined by dwarf character, is not supported by
the ITS tree, which indicates that the dwarf birches are hetero-
geneous (Figs 1 and 2). This study, together with several other
studies (Li et al., 2005, 2007; Schenk et al., 2008), suggests

that dwarfism is a convergent trait, perhaps due to adaptation to
cold temperature as evidenced by the existence of bud scales
(De Jong, 1993). Betula nana shows a closer relationship with
B. pubescens/B. pendula than with B. humilis (Fig. 1). A similar
result has been indicated by ADH (J€arvinen et al., 2004) and
NIA (Li et al., 2007). In addition, the more similar flavonoid
profiles of the buds of B. nana and B. pubescens compared with
those between B. nana and B. humilis (Wollenweber, 1975)
suggest a closer relationship of the former pair than the latter.
Surprisingly, B. michauxii, a species morphologically almost
identical to B. nana, is not placed within subgenus Betula (Fig.
1), which is consistent with the NIA phylogeny (Li et al., 2007).
Further research is needed to decipher the phylogenetic position
of B. michauxii.

The taxonomies of the widespread species B. pendula and its
tetraploid relative B. pubescens have been particularly contro-
versial in the past, with several subspecies or varieties of both
being described and sometimes classified as independent spe-
cies. Our analysis (Figs 1 and 2) supports the taxonomic treat-
ment of these two species suggested by Ashburner and
McAllister (2013), where taxa within the two species are not
given species status. Betula pubescens is a tetraploid species;
its close relationship with B. pendula indicates the possible in-
volvement of B. pendula in its formation, as has previously
been suggested (Howland et al., 1995). The morphological di-
versity found within these species is probably due to their wide
distribution ranges, with morphological variation shaped by
overall climatic factors, similar to the variation found within
B. papyrifera in North America (Pyakurel and Wang, 2013).
Another factor may be hybridization and gene flow between
Betula species in different areas of their distributions.

Within section Costatae, B. costata forms a well-supported
clade with other species of section Costatae such as B. utilis
based on ITS data (Fig. 1). This supports the inclusion of
B. costata and B. utilis in section Costatae (Skvortsov, 2002;
Ashburner and McAllister, 2013). Within Clade V, the tetra-
ploid species B. alnoides and B. cylindrostachya form an unre-
solved cluster with the two diploid species, B. luminifera and
B. hainanensis, indicating their common ancestry (Fig. 1).

Betula nigra is placed outside the subgenus Betula in all of
our ITS phylogenies, both with and without unverified samples,
and with and without polyploids in the analyses (Figs 1 and 2;
Supplementary Data Fig. S2). In contrast, a phylogenetic study
based on NIA suggests that it is more closely related to species
of subgenus Betula than B. alnoides (Li et al., 2007), and mor-
phologically B. nigra is most similar to B. dahurica (subgenus
Betula). The phylogenetic position of B. nigra needs further re-
search based on multiple loci.

Genome size and ploidy evolution

Different ploidy levels are present in all subgenera and sec-
tions of Betula except subgenus Nipponobetula, indicating sev-
eral independent occurrences of polyploidy in the evolution of
the genus (J€arvinen et al., 2004). Only subgenus Aspera con-
tains ploidy levels above octoploid (Fig. 3; Supplementary Data
Table S1).

The narrow ranges of these species of subgenus Aspera with
high ploidy level (e.g. B. insignis, B. megrelica, B. globispica
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and B. fargesii) may indicate that they are of recent origin or
have low invasiveness perhaps due to a low growth rate, which
has been associated with larger genome size (Lavergne et al.,
2010; Fridley and Craddock, 2015), or their lack of, or very nar-
row, seed wings (Ashburner and McAllister, 2013). The narrow
distributions of these relatively large genomes may also be
influenced by available nutrients, such as nitrogen or phos-
phorus which may select against plants with large genome sizes
(Knight et al., 2005; Leitch and Leitch, 2012), and low tem-
perature, which may influence the rate of cell division (Grime
and Mowforth, 1982). On the other hand, these high ploidy
level birches occur in areas known to harbour many relictual
species, and their small populations may be relicts from larger
distributions in the past. In contrast, the most diversified, wide-
spread and ‘successful’ species are members of subgenus
Betula with low ploidy levels (such as B. pendula, B. nana and
B. glandulosa). Hybridization and adaptive introgression occur
frequently within subgenus Betula (Th�orsson et al., 2010),
which may play an important role in colonization of new
habitats.

Our genome size results agree with published genome sizes
for Icelandic birches, B. nana and B. pubescens, which suggest
that no significant genome downsizing has occurred in tetra-
ploid B. pubescens (Anamthawat-J�onsson et al., 2010).
However, our results for the 2C-value of B. populifolia are over
twice as large as those measured by Feulgen microdensitometry
(Olszewska and Osiecka, 1984). This is unlikely to be simply
due to the difference in methodology, as flow cytometry and
Feulgen microdensitometry were shown to give congruent
measurements for Icelandic birches (Anamthawat-J�onsson
et al., 2010). Specimen misidentification is also unlikely to be
the cause of the differences, as all of the Betula species that we
measured have a 2C-value of more than twice the measure of
the 2C-value of B. populifolia (Olszewska and Osiecka, 1984);
perhaps chemical interference (Greilhuber, 2008) is the explan-
ation for their unusual result. We also found the previously re-
ported 2C-value of B. nigra at 2�90 pg (Bai et al., 2012) to be
large compared with the 2C-value of 0�88 pg for B. nigra here,
and the specimen measured by Bai et al. (2012) has now been
identified as B. alleghaniensis through checking the voucher
specimen (DOB0420) (Professor Waller, pers. comm.), which
is congruent with the 2C-value of 2�97 pg of B. alleghaniensis
found here (Supplementary Data Table S1).

We found the monoploid genome size (1Cx-value) for most
species of Betula to be between 0�42 pg and 0�57 pg. Four outlier
species, two with lower 1Cx-values and two with higher 1Cx-
values, all have higher ploidy levels: octoploid B. murrayana
(1Cx¼ 0�38 pg), octoploid B. chinensis (1Cx¼ 0�39 pg), hexa-
ploid B. dahurica (1Cx¼ 0�60 pg) and octoploid B. dahurica
(1Cx¼ 0�57 pg). The chromosome counts of these accessions
need to be double-checked, but, assuming they are correct, we
found a general pattern that the variance of 1Cx genome sizes is
greater in the species of Betula with higher ploidy levels than it
is in the diploid species. This suggests that upsizing or downsiz-
ing of the sizes of the genomes is occurring in the polyploid
birches, perhaps through loss of genome fragments (Buggs et al.,
2009, 2012), or proliferation of transposable elements
(Bennetzen et al., 2005).

Biogeography

The phylogeography of several species of Betula has been
extensively studied. In general, widespread species, such as
B. pubescens/B. pendula (Maliouchenko et al., 2007) in Europe
and B. papyrifera/B. alleghaniensis in North America
(Thomson et al., 2015) show little population subdivision even
at large scale, perhaps due to rapid population growth and high
levels of gene flow, due to dispersal of pollen and seeds over
long distances. In contrast, species likely to have lower disper-
sal ability, such as B. nana (Wang et al., 2014a), B. humilis
(Jadwiszczak et al., 2012) and B. maximowicziana (Tsuda and
Ide, 2005; Tsuda et al., 2015), reveal a more subdivided genetic
population structure. In addition, geographic barriers in the past
and present may play an important role in causing genetic dis-
continuity (Eidesen et al., 2013).

To our knowledge, biogeographical disjunctions among
Betula species have only been mentioned in Li et al. (2005),
based on a smaller sample size. Species of Clade III have dis-
junct distributions (Ashburner and McAllister 2013), with
B. medwediewii and B. megrelica in Georgia and Turkey, and
B. lenta in North America. We speculate that their common an-
cestor may have been continuously distributed over the north-
ern hemisphere. Subsequent climate change may have
eliminated it in intervening regions, causing geographical dis-
junctions. In addition, this genus contains three groups with dis-
junct distributions between North-east Asia and South-west
Asia: a common disjunction in groups of related species (Ran
et al., 2006). Within subsection Asperae, B. schmidtii and
B. chichibuensis occur in North-east Asia whereas B. calcicola,
B. potaninii and B. delavayi occur only in South-west China. In
the clade comprising subsection Chinenses, B. globispica
occurs in North-east Asia, whereas B. fargesii occurs in South-
west and central China. In the clade comprising B. costata,
B. utilis and B. ashburneri (section Costatae), the first species
occurs in North-east Asia whereas the latter two are in South-
west and central China.

Unexpected phylogenetic positions of unverified accessions

Unexpected phylogenetic signals for a subset of taxa in our
phylogeny of all samples led us to re-appraise their identifica-
tion. The B. fruticosa and B. nana ssp. exilis (synonym B. glan-
dulosa) samples from Helsinki Botanic Garden were
determined to be a subspecies of B. pendula and B. pumila, re-
spectively, based on ITS and morphology (examined by
H.A.M.). The putative B. skvortsovii sample was determined to
be B. ashburneri based on ITS, morphology (examined by
H.A.M.) and genome size of 1�00 pg (2C-value). The nesting of
two accessions of B. glandulosa into a clade including B. pum-
ila, whereas the verified B. glandulosa was placed into a dis-
tinct clade, was probably caused by the misidentification of
B. pumila as B. glandulosa due to their morphological similar-
ity (Fig. 2). Similarly, B. pendula is sometimes misidentified as
B. pubescens, and vice versa, as there is a continuum of leaf
variations between the two (Wang et al., 2014b).

In addition, of the 12 sequences downloaded from GenBank,
we think that at least five were possibly misidentified: B. cos-
tata (AY352337.1), B. insignis (KP092744.1), B. glandulosa
(AY761110.1), B. dahurica (FI011773) and B. chinensis
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(AY761105.1). The fact that B. dahurica (FI011773) was col-
lected from the Himalaya region is a strong signal of its mis-
identification because B. dahurica is distributed in North-east
Asia. This species is more likely to be B. utilis as B. utilis is
common in the Himalaya region, and this fits with the ITS data.
There are 12 accessions clustered with a clade of B. pubescens/
B. pendula, showing unexpected phylogenetic signals (Fig. 2).
Besides the one labelled as B. fruticosa that is a clear misidenti-
fication, the remaining unexpected placements may be caused
by hybridization or gene flow between B. pubescens/B. pen-
dula, as these species (such as B. nana, B. glandulosa,
B. humilis, B. occidentalis, B. turkstanica and B. papyrifera)
can hybridize naturally or in cultivation with B. pubescens/B.
pendula (Barnes et al., 1974; Sulkinoja, 1990; Truong et al.,
2007; Jadwiszczak et al., 2012; Ashburner and McAllister,
2013).

Concluding remarks

Phylogenentic analyses of the genus Betula based on ITS se-
quences provide broad agreement with Ashburner and
McAllister’s (2013) taxonomical treatment of this genus.
This study gives us some new information about the possible
origins of some polyploids in the genus, such as B. alnoides, B.
chinensis, B. delavayi, B. medwediewii and B. megrelica, but
the origins of B. bomiensis and B. grossa remain ambiguous.
The phylogenetic positions of B. michauxii, B. maximowicziana
and B. nigra remain questionable. The phylogenetic relation-
ships of the genus Betula needs to be further addressed using
multiple loci and next-generation sequencing methods such as
restriction site-associated DNA markers, which have been suc-
cessfully applied to Betula species in a pilot study (Wang et al.,
2013).

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxford-
journals.org and consist of the following. Table S1: detailed in-
formation of the taxa used for ITS sequencing and taxa used for
genome size estimation. Table S2: detailed information of the
taxa used for comparing the average ploidy level and the mean
2C value of genome size of different ranges. Figure S1:
Bayesian analysis of verified Betula species using ITS se-
quences. Figure S2: phylogenetic tree from the maximum like-
lihood analysis of Betula diploids using ITS.
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