Structured illumination temporal
compressive microscopy

Xin Yuan' and Shuo Pang>*

1 Bell Labs, 600 Mountain Ave, Murray Hill, NJ, 07974, USA
2College of Optics and Photonics (CREOL), University of Central Florida, 4304 Scorpius St.
Orlando, FL 32816, USA

*pang @creol.ucf.edu

Abstract: We present a compressive video microscope based on structured
illumination with incoherent light source. The source-side illumination cod-
ing scheme allows the emission photons being collected by the full aperture
of the microscope objective, and thus is suitable for the fluorescence readout
mode. A 2-step iterative reconstruction algorithm, termed BWISE, has been
developed to address the mismatch between the illumination pattern size
and the detector pixel size. Image sequences with a temporal compression
ratio of 4:1 were demonstrated.
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1. Introduction

Temporal microscopy imaging is a powerful revealing tool for the study of cell dynamics. Many
fundamental processes, such as neural activities, and the molecular motions are on the time
scale of millisecond and sub-millisecond [1, 2], requiring a frame rate >100 Hz. High speed
fluorescence imaging system could also greatly improve the throughput of fluorescence bioas-
say and microfluidic based analysis devices [3]. The CCD or CMOS imagers with fast readout
electronics are widely deployed in these systems. Typical imagers in consumer electronics have
a frame rates of 30 Hz. Sensors with readout speed from ~200 to 1000 Hz are required for high
speed imaging applications, but the cost is an order of magnitude more than typical sensors.
Using code division multiple access video compression implemented on the detection side was
recently demonstrated in a camera setting [4]. Though a compression ratio of ~ 10 was demon-
strated, such a setup would reduce the collection efficiency by ~ 50%, due to the coded aperture
mask, and therefore is not suitable for fluorescence readout.

Structured illumination, as a coding mechanism, has been explored extensively in the mi-
croscopy. Two notable examples are the super-resolution in lateral direction beyond the diffrac-
tion limit and the enhancement of depth sectioning capability [5, 6]. In the two dimensional
super-resolution microscope setup, a periodic illumination pattern induces a frequency shift
in the Fourier domain, channeling the high spatial frequency components into the detectable
range.

In this paper, we demonstrate a temporally compressive microscopy setup based on struc-
tured illumination. Similar to the super-resolution in the spatial domain, a temporally varying
illumination is deployed in our system, which channels high temporal frequency components
into low frame rate detection. To implement such a system, one only needs to insert a mask
in the illumination path, which requires minimal modification to a conventional microscope.
The source-side illumination coding scheme is suitable for low photon-budget applications: the
emission photon can be collected by the full aperture. This paper is organized as follows. We
first introduce the forward model of temporal compressive measurement and revisit the con-
cept of structured illumination in microscopy in Section 2. Then we describe the reconstruction
algorithm and discuss the effect of illumination feature size in reconstruction in Section 3. In
Section 4 we show the simulated reconstruction results and determined the optimal feature size
of the illumination pattern. Finally, we present our experimental results and conclude the paper
with potential applications for the system in Section 5.
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2. Theory
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Fig. 1. The forward model of structured illumination microscope. On the left we show the
microscope measurement g, and on the right we depict the sensing process. The mathe-
matical formulation is demonstrated in Equation (4). H is the point spread function matrix
served as the blur kernel. {Si}?]:T | are the structured illumination matrix and {fi}i.\’:T | are
the signal intensity from the object at different time slots. Each frame of the scene is first
encoded via the structured illumination matrix and then the measurement is convoluted by
the point spread function.

2.1. Imaging forward model

Let the time-varying reflection or fluorescence signal from the object be f(x,y,t). The micro-
scope image sampling, which is determined by the detector pixel size after the object magni-
fication, usually satisfies the Nyquist criterion, and the spatial bandwidth is limited by the nu-
merical aperture (NA) of the microscope objective. The point spread function (PSF) is &(x,y),
and the structured illumination imposed on the sample is S(x,y,#). Then the measurement at the
detector coordinates (x’,y") and time point ¢/, described by g(x’,’,/), can be expressed as:

1l+A
ety = [T [[rex - stastada a. o

where the frame period of the camera is A;. We assume the time-varying illumination can be
discretized in time. The time period between two steps is T and each frame period can be
divided into Ny periods, i.e.A; /T = Nr. The illumination pattern at time (¢; + k7) is Si(x,y) =
S(x,y,t; + kT). So each captured frame can be considered as a compressed measurement of Ny
scenes from the object. Equation (1) can then be written as:

Nr ..
A / /
W) = X [ h— oy —y)Su( ) i) dady, @
k=1
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where f(x,y) = fttfk(;‘ +e f(x,y,)dt is the k™ scene within the i measurement frame. We can

discretize fi(x,y) as:
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which consists of m x n pixels in total. Let the vectorized form of Fy be f;, and the vectorized
measurement g can be expressed by the following forward model:

f
f>
g = H|[SS: - Sy] : , “4)

fy,

where S; is the structured illumination matrix of i illumination pattern, and H is the PSF
matrix of the objective served as a blur kernel. Figure 1 illustrates the forward model.

2.2.  Structured illumination

In this section, we relate the structured illumination for spatial super-resolution to compressive
temporal imaging. For the simplicity of the discussion, here we limit the system model to one
dimension in space and one dimension in time. The structured illumination pattern is translated
linearly at a constant speed s during one single-frame acquisition, i.e. S(x',#') = S(x’ — st’). The
scene from the object is f(x’,#’). Then Equation (1) becomes:

t—t

g(nr) = // f(x',t')S(x'—st')h(x—x’)rect( -

) dx'dt’, 5)
!

where h(x) is the point spread function of the microscope objective. The measurement in the
Fourier domain, ¢(u,v), can be expressed as

gu,v) = H(u)SiIIC(VA;)/f(M—W,V—SW)S(W)dW, (6)

where u and v are the spatial frequency variable and temporal frequency variable, respectively. f
and $ are the Fourier transform of the object function f and the structured illumination pattern S,
respectively. H is the optical transfer function (OTF) of the imaging system, which is the Fourier
transform of the point spread function /(x). The ideal normalized OTF can be calculated by [7]
Jow(p+u/2)w*(p—u/2) dp

Hi) = JZ w(p)|? dp ’ @

where w(u) is the amplitude transfer function:

1, ifd <t
— ) NA
w(u) { 0, otherwise ®)

with A representing the wavelength. The transfer function is a low-pass filter, and the pass-band
is limited by the wavelength and the NA. We focus our discussion and simulation on diffraction-
limited system, and for the case with optical aberrations, the OTF can be simply calculated by
adding in the wavefront aberrations.

#253396 Received 5 Nov 2015; revised 25 Jan 2016; accepted 26 Jan 2016; published 3 Feb 2016
(C)2016 OSA 1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.000746 | BIOMEDICAL OPTICS EXPRESS 749



Without the structured illumination S(x), the measurement temporal bandwidth is limited
by the frame-rate 1/A, of the imager. The spatial bandwidth is limited by the bandwidth of
the objectives OTF, A,. Thanks to the structured illumination S on the object, the high tempo-
ral and spatial components are aliased via the convolution [ f(u —w,v — sw)S(w)dw, and the
recovery of the high spatial or temporal components becomes feasible. The expended band-
width in the spatial domain is determined by the band-limit of the structured illumination A;. In
spatial supper-resolution microscope [5], the structured illumination channels the high spatial
frequency components to the bandwidth within the OTF of the objective. As the illumination
pattern is projected to the object through the microscope objective, the band-limit of the struc-
tured illumination § is also A,, and the spatial resolution of the reconstructed image can be
extended up to 2A,,.

The temporal resolution, however, can be extended to sA;. Different from that of the spatial
resolution enhancement, the spatial bandwidth of the structured illumination does not limit the
temporal resolution, as long as the speed of the translation s is sufficiently fast. To expand the
temporal bandwidth from 1/A, to 1/, the speed of the translation needs to be on the order
of (tAs)~'. This implies that in order to resolve two consecutive scenes, the structured illumi-
nation needs to be translate one feature size of the illumination pattern. Instead of enhancing
the spatial resolution, our system applies temporally varying structured illumination to achieve
a higher image acquisition rate. Here, we assume that the object does not contain frequency
components beyond the bandwidth of the microscope objective.

3. Materials and methods
3.1. Reconstruction algorithm: BWISE

Diverse algorithms have been proposed and used for video compressive sensing [4, 8, 9, 10].
However, most of these algorithm are based on the model without consideration of the blur
kernel H. These algorithms also do not take the difference between the feature size of the spa-
tial coding and the pixel size of the sensor into consideration. This difference is negligible for
the detection-side coding scheme. Since the pattern size can be several magnitudes larger than
the sensor’s pixel size in the structured illumination setup, the existing algorithms would fail
to recover the high spatial frequency components beyond the bandwidth of the illumination
pattern, leading to an inferior resolution in reconstruction. Therefore, we have developed a new
algorithm integrating both considerations, which are critical to the success of the reconstruc-
tion. Roughly, these compressive sensing reconstruction algorithms are developed based on the
sparsity of the video in certain domains. For instance, the wavelet and discrete cosine transfor-
mation (DCT) are used in [4, 10] and the dictionary learning is used in [9]. In this work, we will
focus on the total variation (TV) based methods, with significant improvement described below
by proposing the Block-WIse Smooth Estimator (BWISE), which has been demonstrated to be
effective in solving our problem.
Let A = HS, and the forward model in (4) can be re-written as

g = Af )
The reconstruction problem can be formulated as

f = argmin|lg—Af|3+7R(D), (10)

where R(f) is a regularizer and it can be used to impose the sparsity of the signal in the basis
such as the wavelet and DCT, or a TV operator [11]. The regularizer penalizes characteristics of
the estimated f that would result in poor reconstructions. 7 is the Lagrange parameter balancing
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the measurement error (the first term in Equation (10)) and the regularizer is specified below:

R = [T, T is a sparse basis, an
- ZnN,T:1 TV(f,), TV isimposed on each frame.
where
mn
V@) = Yo/ evtim — fiin 2+ Gigein = fiin)? (12)
iJ

is performed on each frame and hence penalize estimates with sharp spatial gradients.

Several iterative compressive reconstruction algorithms can be categorized as an 2-step
iterative method, comprising [12, 13]: (i) projecting the measurement data to the desired
videos/images; and (ii) denoising the results obtained in step (i). For Step (i), various algo-
rithms have been used and the most popular methods are the iterative shrinkage-thresholding
(IST) algorithm [14], the ADMM [15] and the generalized alternating projection (GAP) algo-
rithm [8, 16]. Our algorithm also falls into this two-step iterative regime. For Step (i), both
ADMM and GAP need a matrix inversion [13], while IST is easier to be implemented, only
requiring matrix multiplications. Introducing a step size parameter ¢, we have the following
two-step iteratively alternating projection algorithm. For k' iteration

fiyr = fB+aA’(zg—Af), (13)
f,.1 = Denoising(f; ). (14)

Equations (13) and (14) are iteratively performed until termination criteria are satisfied.

For Equation (14), complicated patch based algorithms have been developed for video com-
pressive sensing [17] and have achieved excellent results. However, these algorithms are usu-
ally time consuming. The TV based algorithm [11], on the other hand, usually presents decent
results [4] in a shorter time.

In optical microscopy applications, the reconstruction directly applying TV regularizer could
lead to the loss of fine details. The proposed algorithm, BWISE, imposes a block-wise TV reg-
ularization, rather than the pixel-wise TV regularization, and the size of the block depends on
the feature size of the structured illumination. Mathematically, the conventional TV denoising
is performed after imposing the pixel-wise differentiation operator, D. In BWISE, the TV de-
noising is performed after the block-wise differential operation. Thus the denoising in BWISE
is a joint global-local method. It is worth noting that the TV regularzier should be only per-
formed spatially within each frame as in Equation (12), rather than applied to the entire 3D data
cube, which allows us to reconstruct the motions between frames. Here we use D to denote the
block-wise differential operation, and by introducing z = Df, the iterative clipping algorithm for
block-TV denoising becomes:

fir = B —D'z, (15)
. 1
Z1 = clip (Zk + Eka-H ; g) : (16)

where zy = 0, 7 is the thresholding parameter used in the clipping function, B > maxeig(DD ")
and the clipping function clip(-) is defined as:

- _J b b <T
mejf—{Tg@w)|w>T

The BWISE algorithm is composed solely by Equation (13) and Equations (15)-(16), where
Equations (15)-(16) play the role of denoising as mentioned in Equation (14) (Step (if) men-
tioned above) and Equation (13) is playing the role of Step (7).

a7
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Fig. 2. (a) The photo of the experimental setup. (b) The schematic of the setup. A 20 x
0.5 NA objective (bottom part) is used in the system. The coded aperture mask, placed at
the conjugate image plane (middle-right part) in the illumination path. The step motion of
the mask is synchronized with the camera (top part) acquisition.

3.2.  Experimental setup

The experimental setup employed a 490nm LED (M490L3, Thorlabs) as the light source,
as most epi-illumination microscopes are equipped with an incoherent source for its cost-
effectiveness. It is worth noting that our system could also use a coherent source for higher
illumination efficiency, similar to the setup in [5]. The sample was a mounted microscope slide
with a layer of quantum dots 525 (753769, Sigma Aldrich). The pattern of “UCF” logo was
transferred to the microscope cover slip, and the thickness of the pattern is ~ 2um. The pattern
size is 100um x 50pum. The fluorescent sample was translated at a speed of 2mm/sec by a step
motor (LHA-HS, Newport). We also prepared samples of fluorescent cells. The infected HeLa
cell line expressing green fluorescence protein (GFP) [19, 20], were seeded onto poly-L-lysine-
coated 1.2cm coverslips at a density of 10,000 cells per coverslip in 0.15 ml of DMEM/10%
FBS for overnight before imaging. The detection path of the microscope system consisted of a
20x objective (0.5 NA, Nikon), and a tube lens with 200mm focal length. The fluorescence filter
cube has an excitation band centered at 480nm (bandwidth 40nm), and an emission band cen-
tered at 530nm (bandwidth 50nm) (41001, Chroma). We captured the video with a low frame
rate of 40 frame/second, limited by the camera (GO5000USB, JAI). The mask was a chrome
patterned on a fused silica optical blank, with a feature size of 6.5um (HTA photo mask), as
shown in Fig. 2. The mask was mounted on a piezo actuator, with the maximum stroke of 40um
(P-840.3 Physik Instrument). The magnification of the mask on the illumination side can be ad-
just by the illumination tube lens (M6Z1212, Computar). The calibration frame was acquired
by averaging the frames of a moving fluorescence target with a stationary mask.

4. Results and discussions

4.1. Reconstruction algorithm comparison

To demonstrate the performance of our proposed algorithm, we first synthesize video frames
using a moving “UCF” logo containing high frequency components (fine slanted strips) with
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Fig. 3. The comparison of the reconstruction results of the simulated moving “UCF” logo
dataset with different algorithms. The coded measurement is shown on the top-left. Each
row shows one frame. Each row (2-7) shows one frame. From the first to the fifth columns
are the truth, TWIST reconstruction, GAP reconstruction, pixel-wise TV reconstruction and
proposed BWISE reconstruction, respectively.

Truth: 6

Ground truth Pixel-wise TV Proposed BWISE

Ta e Y
11 : I 8 L § g
L A N

Fig. 4. Magnified reconstruction result showing the capability of proposed BWISE algo-
rithm to reconstruct high frequency components. The reconstruction from the left to right is
the truth, pixel-wise TV and proposed BWISE algorithm, respectively. It can be observed
that the proposed BWISE recovers the high frequency components of the object.

ground truth shown in the first column of Fig. 3. The translation step-size is S5um between
frames. The frame has a total number of 256 x 512 pixels and the size of each pixel is
0.25um x 0.25um and we use NA = 0.5 with the wavelength A = 0.488m in Equations (7)-(8)
to calculate the OTF of the microscope objective. The feature size of the code is set to 2um.
We compare our algorithm BWISE, with the following popular reconstruction algorithms: (i)
TwIST [11], which exploits the pixel-wise TV but using a different projection approach from
our method, (ii) GAP, which exploits the sparsity of the video cube in the transformation do-
main, and here we use wavelet in space and DCT in time, same as [4]. For the proposed BWISE
algorithm, we perform both pixel-wise and block-wise TV (with a block size of 8 x 8 pixels).
We compare the PSNR (peak-signal-to-noise ratio) of the results from different algorithms.
With less than 200 iterations, the reconstructed images are shown in Fig. 3. Visually, both the
pixel-wise and block-wise TV provide higher PSNRs than TwIST and GAP. Furthermore, the
proposed BWISE reconstruction is able to keep the detailed features of the object, as demon-
strated in Fig. 4. Though the PSNR (of the entire image) reconstructed by the block-wise TV
is lower than the pixel-wise TV, the block-wise TV retains the high frequency components for

#253396 Received 5 Nov 2015; revised 25 Jan 2016; accepted 26 Jan 2016; published 3 Feb 2016
(C)2016 OSA 1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.000746 | BIOMEDICAL OPTICS EXPRESS 753



microscopy applications. GAP aims to keep the low frequency components of the video cube
(removing the high frequency components to satisfy the sparsity in frequency domain), while in
our simulation, the “UCF” logo contains both low-frequency and high-frequency components;
this is the reason that GAP fails.

Feature size 0.75 ym Feature size 1.5 ym Feature size 6.0 ym

Reconstructed Frame: 1 Reconstructed Frame: 1

Reconstructed Frame: 6

Fig. 5. Examples of the reconstructed images of the simulated moving beads dataset with
illumination pattern size of 0.75, 1.5 and 6 pm. The top row shows the coded measurement
and the bottom two rows demonstrate the reconstructed Frame 1 and Frame 6.

18.5

187

Reconstruction PSNR (dB)
= = [
a . 9 . N
[§)] (o)) (8] ~ (8]

=
(5]

14.5
0 1 2 3 4 5

illumination pattern size (pm)
Fig. 6. PSNR of the reconstructed images of the simulated moving beads dataset with dif-

ferent illumination pattern sizes, 0.75um — 6um. 10 trials are performed with different
random masks.

4.2.  Illumination pattern size

We further conduct simulation of another dataset: the moving beads traveling in a microfluidic
channel, as shown in Fig. 5. The diameter of the beads is around 20um. Same parameters
(NA=0.5,1 =0.488um, pixel size 0.251um x 0.25m) are used as the “UCF” logo dataset, and
we aim to investigate the performance of the reconstruction under different illumination pattern
sizes. We perform inversion with BWISE with different feature sizes from 0.75m to 6um with
PSNR results plotted in Fig. 6. We only show the first and last frames of the reconstruction in
Fig. 5. Different trials with random coding pattern are used during the simulation with error-bars
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also presented in Fig. 6. It can be seen that when the illumination pattern size equals 1.5um,
the highest PNSR is achieved and we can also identify the quality of reconstructed images in
Fig. 5. On the other pattern sizes, the reconstruction images are either blurred or dispersed. This
further verifies our speculation in Section 2.2. When the feature of the illumination pattern is
close to or smaller than the point spread function of the objective, the contrast of the imposed
structure is low, and the coding contrast in each frame becomes weaker. We used incoherent
light source in our experiment, and the resolution of the microscope is 0.60um, determined
by Rayleigh criterion. When the illumination feature size is 0.75um, close to the resolution
of the objective, the low contrast of the pattern would result in poor reconstruction. Though
large mask pattern size will improve illumination contrast, there will be large patches not being
illuminated, leading to errors in the reconstruction as well. The illumination pattern that is about
twice the size of the microscope resolution shows excellent reconstruction results.

4.3.  Experimental results

Low frame rate Coded High frame rate
measurements measurements reconstructions

B =N I B
e : oun

Fig. 7. Experimental reconstructions of the “UCF” logo with the hardware setup
shown in Fig. 2. (a) Frames of the raw measurements without structured illumination
at 40 frames/second, (b) Coded measurements with the structured illumination at 40
frames/second, (c) Reconstruction of high-speed frames at 160 frames/second.

4.3.1. Imaging of the “UCF” Logo

The experimental results are shown in Fig. 7. Figure 7(a) shows 5 frames of the measurement
of the raw images without structured illumination. The “UCF” logo was translated at speed
of 2mm/sec, and the period of the imaging sensor is 25ms. The sample travels 50um within
this time period. Each letter of the logo has a dimension roughly 50um x 50um. The letter is
severely blurred because of the translational movement. Figure 7(b) shows another measure-
ments of 5 frames. According to the simulation results shown in Fig. 6, the optimal pattern size
is around 1.5um for a microscope objective with 0.5NA. The mask pattern size is 6.5um. With
a demagnification factor of 5, the equivalent pattern size on the sample is 1.5um, matching
the simulation results. The step size of the mask movement is one feature size. The maximum
stroke size of the piezo actuator is 40um, to avoid the non-linearity we only used 27m of the
full travel range and demonstrated a compression ratio of 4, shown in Fig. 7(c). The recon-
structed frame rate is 160 fps. The reconstructed frames can clearly resolve each letter in the
logo.
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Fig. 8. Fluorescence imaging of two moving HeLa cells emulating imaging flow cytometry.
(a) 20x microscope image of bright field (top) and fluorescence image (bottom). (b) Low
frame rate (2 fps) measurement with structured illumination. (c¢) Image sequence recon-
struction with high frame rate (8 fps). The circles with a diameter of 30um were added in
each frame to aid the visualization.

4.3.2. Imaging of cell samples

The structured illumination temporal compression microscope is suitable to image microfluidic
systems, especially in imaging flow cytometry and high-throughput droplet counting applica-
tions [3]. The flow speed of microfluidic system usually ranges from 1 um =" to 1 cm/sec [18],
and to emulate such systems, we imaged a sequence of green fluorescence protein (GFP) la-
beled HeLa cells on a microscope coverslip translated at a speed of 20 pm/sec. The image
acquisition time is 0.5 second. For this experiment, we used a higher NA microscope objective
(Nikon, 20 x 0.75NA) to increase the collection efficiency. Figure 8 shows the reconstruction
results. Due to the motion blur, the fluorescence signals from the two cells are indistinguishable
at low frame rate, as shown in Fig. 8(b). At high frame rate reconstruction shown in Fig. 8(c),
two cell nuclei can be identified. The compression ratio is 4:1. The average size of the cell
nuclei is 10-15um and the estimated flow speed is 18 pm/sec, which is in agreement with the
experimental setup. It is worth noting that due to the limit of the illumination irradiance, one
should not compare the current imaging speed with the commercialized imaging flow cytom-
etry [21]. The structured illumination demonstrated here could serve a general method to be
applied to the commercialized imaging system to improve the throughput.

4.3.3. Imaging of the resolution target

In Section 2, we have mentioned that the temporal resolution can be extended despite of the
low spatial bandwidth of the structured illumination, as long as the speed of the translation s is
sufficiently high. Figure 9(a) shows the structured illuminated measurement of a USAF-1951
resolution target (Newport) under the bight field reflection geometry. In order to exclude the
effect of motion blur, we keep the resolution target stationary during the capturing process. The
reconstructed fames are shown in Fig. 9(b). The smallest feature in the resolution target has
a line width of 2.2um, which is close to the optimal feature size of our illumination pattern.
From the zoomed-in figure and intensity profiles of the reconstructed images, Fig. 9(c), the line
features can be clearly distinguished. Here the reader might notice the background pattern in the
reconstructed images. The textures are caused by the limited variance of the illumination pattern
rather than the reconstruction algorithm. Due to the stroke limit of the piezo actuator, during the
four-step movement, certain area on the sample remains unilluminated, leaving certain block
appears dark in the reconstruction. An improved illumination coding scheme would reduce this
background texture.

5. Conclusion

We have reported a temporal compressive microscope system based on structured illumina-
tion. The source-side illumination coding scheme allows the reflection/emission photons col-
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Fig. 9. Reconstruction results of a static USAF-1951 resolution target. (a) Measurement
from the experimental prototype in reflection mode. (b) The 4 reconstructed frames. (c)
Zoom-in figure of the boxed area in (b). Notice that the highest resolution can be clearly
identified from the intensity profile (c2).

lected by the full aperture of the microscope objective. The time-varying structured illumination
aliased the high temporal frequency components into the low frame-rate measurements.

We proposed a block-wise smoothing estimator, which imposes a regularizer on the blocks
of images according to the illumination feature size, rather than the size of the pixels. Via this
algorithm, we can reconstruct the image with high fidelity as well as keeping image details.
Though the simple analysis indicates that the coding size does not affect the temporal reso-
Iution, however, as our simulation and experimental results demonstrated that the frequency
components of the illumination pattern does impact the reconstruction. On the one hand, if the
mask pattern is finer than the point spread function of the objective, the contrast of the illu-
mination will be reduced, resulting in a deteriorated reconstruction. On the other hand, if the
over-sized mask pattern is used, the prior knowledge of the sample frequency distribution will
not be able to recover the regions that are not illuminated by the opaque parts of the mask,
leading to the errors in the reconstruction. According to the simulation results, we chose the
illumination pattern size of 1.5um for 0.5 NA microscope objective. It is worth noting that the
current experimental system is limited to the imaging of 2-dimensional sample. The coding us-
ing an incoherent source loses the coding contrast out of the focus of the objective. Structured
3D coding device can be developed for temporally compressed depth resolved imaging in the
future.

We have demonstrated a compression ratio of 4:1 in experiments. The system uses an in-
coherent light source, and requires minimal modification to an epi-illumination microscope.
Such an imaging system could expand the applications in functional microscopy imaging and
high-speed fluorescence readout module for microfluidic total analysis systems. Also, the struc-
tured illumination provides a degree of freedom in design at high frame rate. Depending on the
application, the illumination pattern could be specifically engineered so that the most relevant
biologically information will be extracted [22].

#253396 Received 5 Nov 2015; revised 25 Jan 2016; accepted 26 Jan 2016; published 3 Feb 2016
(C)2016 OSA 1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.000746 | BIOMEDICAL OPTICS EXPRESS 757



Acknowledgment

We would like to thank Aristide Dogariu from CREOL, University of Central Florida and Lap
Man Lee from University of Michigan for their insightful discussions and help in the experi-
mental setup. We would also like to thank Limei Chen and Karl Chai from School of Biomedical
Science, University of Central Florida for providing the infected HeLa cell sample for imaging.

#253396 Received 5 Nov 2015; revised 25 Jan 2016; accepted 26 Jan 2016; published 3 Feb 2016
(C)2016 OSA 1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.000746 | BIOMEDICAL OPTICS EXPRESS 758





