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Abstract: We put forward a method to easily generate a single or a 
sequence of fully developed speckle patterns with pre-defined 
correlation distribution by utilizing the principle of coherent imaging. 
The few-to-one mapping between the input correlation matrix and the 
correlation distribution between simulated speckle patterns is realized 
and there is a simple square relationship between the values of these 
two correlation coefficient sets. This method is demonstrated both 
theoretically and experimentally. The square relationship enables easy 
conversion from any desired correlation distribution. Since the input 
correlation distribution can be defined by a digital matrix or a gray-
scale image acquired experimentally, this method provides a convenient 
way to simulate real speckle-related experiments and to evaluate data 
processing techniques. 
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1. Introduction 

Speckle phenomena exist in all coherent imaging and non-imaging systems. Besides 
being experimentally investigated, simulation can be a powerful complement for 
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understanding the properties of speckles, for evaluating data processing methods and for 
investigating the possibility of further applications of laser speckle phenomena. In many 
experiments, such as imaging circulation dynamics, the correlation properties of the 
observed area are not uniformly distributed, therefore the simulated speckle patterns are 
supposed to have a desired correlation distribution across the area of interest, which 
demands the simulation to have a few-to-one mapping [1] between the input matrix and 
the correlation distribution between simulated speckle patterns. 

Various simulation methods have been proposed. The Fast Fourier transform of a 
phase matrix is a common approach [2], but this method can only synthesize independent 
speckle patterns. Since many applications of laser speckle are based on their correlation 
properties, simulation of speckle patterns with a predefined temporal correlation is 
desirable. Duncan and Kirkpatrick introduced the copula method to generate a sequence 
of speckle patterns, between which the correlation coefficient could be pre-defined [1, 3]. 
With this method one can investigate the speckle properties of a dynamic object by 
generating a series of correlated speckle patterns [4, 5]. But in this method the generation 
of the correlated speckle pattern depends on a quantile function and direct Fourier 
transform, both of which spatially mix the contribution of the input values and the effect 
of a spatially varying temporal correlation cannot be modelled, i.e. the generated speckle 
patterns have no location-mapping relationship to the input phase matrices. Therefore this 
method can only generate speckle patterns with specific temporal correlation coefficients 
as a whole that are not spatially varying. Although speckle simulation based on the 
optical transfer function has been investigated [6, 7], there is no solution for few-to-one 
mapping of the correlation coefficients between the input data and the simulated speckle 
patterns. 

In this paper we introduce a simple method based on the concept of the coherent 
imaging principle, to generate speckle images with a pre-defined correlation matrix to 
mimic situations with complex correlations across speckle images. The relationship 
between the input correlation coefficients and the correlation of the simulated speckle 
patterns are deduced and proved to be power 2. 

2. Theory 

2.1 Generating a variable with a specific correlation to another 

Supposing Ω1(x,y) and Ω2(x,y) are two two-dimensional matrices, which are composed of 
independent uniformly distributed variables on the interval (-π, π), then 1ie− Ω  and 2ie− Ω  
are uncorrelated. One method to generate a new variable W with a specific correlation to 

1ie− Ω  and 2ie− Ω  is as follows [8]: 

 1 221i iW re r e− Ω − Ω= + −  (1) 

where r is the correlation coefficient factor between W and 1ie− Ω . When r is adjusted 

from 1 to 0, W transitions from fully dependent on 1ie− Ω  to fully independent of 1ie− Ω . It 

can be noticed that 1ie− Ω  and 2ie− Ω  are similar to the expression of unit optical field at a 
spatial plane with Ω1 and Ω2 as the phases (for monochromatic light) at a moment and W 
is equivalent to the sum of these two fields’ amplitudes. When r is an array, this formula 
generates a sequence of W where the correlation with 1ie− Ω  is equal to r. This is similar to 
the temporal correlation changes of speckle images. When r is a two dimensional matrix, 
the correlation between the corresponding elements in W(x,y) and in 1ie− Ω  are directly 

related to the values in r, therefore r defines the spatial correlation between W and 1ie− Ω ; 
when r changes in three dimensions, it determines the temporal-and-spatial correlation 
between W and 1ie− Ω . The variation of the phases Ω1 and Ω2 with time and distance need 
not be considered but could be included when required to simulate a specific optical 
setup. 
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2.2 Coherent imaging theory in speckle pattern generation 

In coherent imaging systems the object plane, the image plane and the coherent transfer 
function of the imaging system have the following relationship [9]: 

 Img( , ) ( , ) ( , )x y Obj x y H x y=  (2) 

where Img(x,y) is the Fourier transform of the light field of the image, Obj(x,y) is the 
Fourier transform of the light field from the object and H(x,y) is the coherent transfer 
function of the imaging system. In a coherent imaging regime, H(x,y) is the optical pupil 
function, which is usually a circle or rectangle function depending on the aperture shape. 
Then the intensity distribution at the image plane, I, can be calculated from the inverse 
Fourier transform of Img(x,y): 

 ( ) 2 21 1Img( , ) [Obj(x, y) H(x, y)]I F x y F− −= =  (3) 

where F−1 stands for the inverse Fourier transform. 

2.3 Synthesis of correlated speckle patterns 

Supposing the variable W(x,y) in Eq. (1) is the light field in the object plane, then the 
intensity distribution of the image plane, which will be a speckle pattern, can be 
calculated by substituting Obj(x,y) in Eq. (3) with W(x,y) in Eq. (1). The speckle pattern 
can be expressed as: 

 
21[ ( ) H( , )]I F F W x y−=  (4) 

where F stands for Fourier transform. The introduction of the coherent imaging principle 
ensures the point-to-point match of element locations between the object and the image. 
Therefore the correlation of the pixels with the same coordinates in the speckle pattern 
generated from W and the speckle pattern generated from 1ie− Ω  strictly corresponds to the 
values defined in the matrix r when based on a large number of random samples. Because 
Eq. (1) is equivalent to the sum of amplitudes of light fields, the synthesized speckle 
patterns from Eq. (4) are fully developed and the intensity histogram follows a negative 
exponential distribution [10]. Since simulation is usually performed with software such as 
Matlab, the variables here are defined by digital matrices. 

It needs to be pointed out that H acts as a low pass filter, therefore in the simulation 
the central region of H that contains non-zero values can be called the clear aperture and 
it is smaller than the size of matrix F(W) or the size of W. When speckle patterns are 
synthesized with Eq. (4), the speckle size can be controlled by the ratio between the size 
of the clear aperture and the size of matrix W, similar to Kirkpatrick’s work [2]. But when 
this ratio is too small, i.e. the speckle size is big compared to the pixel size, the spatial 
resolution and the signal-to-noise rate (SNR) of the correlation map calculated from the 
synthesized speckle images decreases, as observed experimentally. However when the 
size of the clear aperture is equal to that of W, Eq. (4) does not apply, because there is no 
frequency filtering and the imaging system is equivalent to free-space light propagation. 
In this case Eq. (4) approximates to Fraunhofer diffraction supposing that the light 
propagation distance is much larger than the width of the object plane: 

 
2

( )I F W=  (5) 

This equation has been used to generate speckle patterns, for example see the work of 
Kirkpatrick et al. [1, 2]. Since it is a standard Fourier transform, no spatial correlation 
mapping is preserved, as expected for a non-imaging free space field propagation. 
However the correlations between speckle images and the corresponding phase matrix 
remain. 
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2.4 The correlation between the speckle images 

To simplify the equations, 1ie− Ω is denoted by M1 and 2ie− Ω by M2. The correlation 
between W and M1 is r and M1 is independent of M2. Then Eq. (1) becomes: 

 2
1 21W rM r M= + −  (6) 

r can be a one-dimensional, two-dimensional or three-dimensional variable to define 
the correlation between W and M1 or the speckle patterns generated from W and M1 in a 
pure temporal domain, pure spatial domain or in both spatial and temporal domains. 
Therefore a sequence of speckle patterns with complicated correlation distribution can be 
simulated and the correlation between the speckle patterns generated from W and M1 can 
be calculated from the following equation: 

 
( )( )

( ) ( )
1 1

1

W W M M

W M

I I I I

I I
ρ

σ σ
− −

=  (7) 

where IW is the intensity of the speckle pattern from W and IM1 is the intensity of the 
speckle pattern from M1. < > denotes the spatial average and σ means the standard 
deviation. 

Because the speckle pattern is fully developed, the PDF of the intensity follows a 
negative exponential distribution, and the mean is equal to the standard deviation. In the 
simulation, the total input intensity is kept constant and no energy loss was considered, 
therefore <IW> = <IM1> = σ(IW) = σ(IM1). We define this mean as <I>, then Eq. (7) can be 
reduced to: 

 
2

1

2

W MI I I

I
ρ

−
=  (8) 

According to Eq. (1) and Eq. (4), the intensity of the speckle pattern from W can be 
expressed as: 

( ) ( ){ } ( ) ( ){ }
( )( )

( ) ( )

*
1 1 2 1 1 2

1 2 1 2

2 * 2 *
1 2 1 2

2 2 2 * *
1 2 1 2 1 2

1 1

    1 1

    1 1

W

M M M M

M M M M M M

I F F rM H F F r M H F F rM H F F r M H

rA r A rA r A

r I r I r r A A A A

− − − −   = ⋅ + − ⋅ ⋅ + − ⋅            

= + − + −

= + − + − +

 (9) 

where AM1 and AM2 are the amplitudes of the speckle patterns from M1 and M2, and the 
superscript * denotes the complex conjugate. Then by substituting Eq. (9) into Eq. (8), we 
get the correlation: 

 

( ) ( )

( ) ( )

22 2 2 * *
1 2 1 2 1 2 1

2

22 2 2 2 * *
1 1 2 1 1 2 1 2

2

1 1

1 1

M M M M M M M

M M M M M M M M

r I r I r r A A A A I I

I

r I r I I r r I A A A A I

I

ρ
 + − + − + − =

+ − + − + −
=   

 (10) 

Since the autocorrelation of IM1 is equal to 1, 
22

1 2MI I=  according to Eq. (8). 

Similarly 
2

1 2M MI I I=  because IM1 and IM2 are independent. In addition, the real part 

of AM1 and AM2 follows a Gaussian distribution according to the Central Limit Theorem 
[11] and the mean is equal to zero, therefore the multiplication of the amplitudes follows 
“product-normal” distribution [12] and the mean remains as 0. Therefore 

( )* *
1 1 2 2 1 0M M M M MI A A A A+ =  and Eq. (10) becomes: 
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 2rρ =  (11) 

When a non-imaging system was considered, the speckle pattern was synthesized with 
Eq. (5). The deduction of the relationship between ρ and r was similar to that shown in 
Eqs. (7)-(11). Using Eq. (5) and Eq. (8), the correlation coefficient ρ can be expressed as: 

 

( ) ( ) ( ) ( )( )

( )

2 2 2 *
1 1 1 2 1 2

2

2
1 2

2

1 *

1
1

M M

M M

r I r r I F M F M F M F M

I

r I I

I

ρ
+ − +

=

−
+ −     

 (12) 

According to the linearity property and cross-correlation theorem of Fourier 
transform, because M1 and M2 are independent, ( ) ( ) ( ) ( )* *

1 2 1 2F M F M F M F M=  = 0. 

Therefore Eq. (12) becomes: 

 2rρ =  (13) 

This, together with Eq. (11) proves that the correlation between the intensity of 
speckle patterns is the square of the input correlation coefficient no matter whether the 
speckle pattern is synthesized with Eq. (4) or Eq. (5), i.e. we can simulate in the imaging 
domain. 

3. Simulation results 

The simulations were performed with Matlab with the original phase matrices Ω1 and Ω2 
generated using the function ‘RAND’ and the values following a uniform distribution on 
the range (-π, π). In each section below an initial speckle image, I0, was synthesized with 
W = 1ie− Ω according Eq. (4) or Eq. (5) depending on whether it was simulating free-space 
propagation or an imaging system for the correlation calculation. 

3.1 Uniformly correlated speckle patterns in free-space propagation 

We defined r = 0, 0.05, 0.1,...,1 and two matrices (600 × 600 pixels) for Ω1 and Ω2. Then 
the initial image and a sequence of 21 further speckle patterns I1, I2…I21 were generated 
with Eq. (1) and Eq. (5). The correlation coefficients between the sequence of speckle 
patterns and the initial image were calculated with the following formula: 

 0

0

( , )
(0, )

( ) ( )
j

j

Cov I I
j

I I
ρ

σ σ
=  (14) 

where I0 is the initial speckle pattern and ρ(0, j) is the correlation coefficients between the 
initial image and Ij, j = 1,2,3,…,21. Cov stands for covariance and σ is the standard 
deviation. The relationship between ρ and r is plotted in Fig. 1. The calculated correlation 
coefficients fit well with the curve of r 2. 
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Fig. 1. The relationship between correlation coefficient of speckle patterns and that of the 
phase matrices. 
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3.2 Uniformly correlated speckle patterns in coherent imaging system 

A matrix H (600 × 600 pixels) was defined as the pupil plane in the frequency domain. 
The central circular area of H with radius equal to 100 pixels was assigned the value of 1 
and the other elements were set to 0, therefore the synthesized speckle size approximated 
to three image pixels. 21 speckle patterns were generated by using Eq. (1) and Eq. (4) 
with the same r and Ω1, Ω2 values as in Section 3.1. The correlation coefficients between 
the initial speckle image and the 21 frames were calculated with Eq. (14). The correlation 
coefficient as a function of r is shown in Fig. 2(a) and the probability density function 
(PDF) of the speckle pattern when r was equal to 0.3 is shown in Fig. 2(b). As expected, 
the square relationship between r and the correlation coefficient of the simulated data 
remains when the principle of coherent imaging is applied. The PDF of the speckle 
matches with a negative exponential function as shown in Fig. 2(b), indicating that the 
speckle patterns are fully developed. 
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Fig. 2. (a) The correlation coefficient of the speckle patterns as a function of r; (b) the 
probability density function of the speckle pattern. 

3.3 Speckle patterns with complicated correlation distribution and Brownian motion 

In this section, r is a matrix containing the desired spatially varying correlation 
coefficients and the speckle pattern was generated using Eq. (1) and Eq. (4). The pupil 
function was the same as that in Section 3.1 and 3.2. 

Figure 3(a) shows the correlation matrix r (600 × 600 pixels) used, which had a value 
of 0.6 in the 150th to 450th rows and a value of 1 for the other rows. Because the 
correlation coefficient can only be calculated as a statistical average, we calculated the 
value of ρ between the speckle pattern generated from W and M1 by averaging data within 
the rows. The result is shown in Fig. 3(b), in which the expected values of 0.36 and 1 are 
marked with a dotted line and a dashed line respectively. Although the curve is noisy, the 
mean value and the standard deviation are 0.998 and 0.16 respectively in the area with r 
equal to 1 and 0.347 and 0.096 respectively in the area with r equal to 0.6; i.e. the 
calculated correlation coefficients are around r2 as expected. Figure 3(c) shows a 
demonstration of the correlation distribution. To create this image, a kernel of 11 × 11 
pixels was defined and the correlation coefficients were calculated from the pixels in the 
kernel while the kernel passed through the whole image. This process is similar to the 
calculation of spatial contrast of speckle images and was accomplished in a Matlab 
program. The line profile of the 300th column is shown on the left side of Fig. 3(c) to 
illustrate the correlation values, with levels of 0.36 and 1 indicated. Both Fig. 3(b) and 
Fig. 3(c) show that the correlation coefficients fluctuate around the estimated values 
because of the speckle intensity variations and the limited sampling number during the 
correlation calculation. Further discussion of the signal to noise ratio can be found in the 
Discussion. 
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Fig. 3. (a) The phase matrix r used in the simulation, (b) the correlation coefficients of the 
rows between the speckle images generated from W and M1 (c) the correlation 
distribution of the two simulated speckle images. 

Brownian motion and laminar flow are two common motion types. We synthesized a 
sequence of speckle pattern frames and the correlation between the first frame and the 
following ones follows a negative exponential function that corresponds to Brownian 
motion [13]. The negative exponential correlation is expressed as: 

 exp( / )cρ τ τ= −  (15) 

where τc is decorrelation time and τ is the delay time. The 600 × 600 pixel correlation 
matrix in this simulation is designed as shown in Fig. 4(a) to simulate Brownian motion 
in the area between the 150th and 450th rows. According to Eq. (13) and Eq. (15), the 
input correlation values of the pixels between the 150th to 450th rows are defined as: 

 exp( / )cr τ τ= −  (16) 

τc was chosen as 370 μs according to reference [14] and τ was varied from 0 μs to 1.85 
ms with an increment of 37 μs. The correlation coefficients were calculated for pixels in 
the stationary part and in the dynamic part respectively between I0 and the speckle pattern 
sequence using Eq. (14). The result is shown in Fig. 4(b) where the asterisks mark the 
correlation coefficients of the stationary region, the diamonds show the correlation of the 
Brownian motion region and the line is the negative exponential function. It is clear that 
the correlation of the stationary parts remains constant while the correlation of the 
dynamic part decreases as a negative exponential function. 

 

Fig. 4. (a) The flow model. (b) The simulated correlation for the two regions as a function 
of the frame index. The asterisks mark the correlation coefficients of the stationary area 
with input values equal to 1; the diamonds represent the correlation coefficients in the 
Brownian motion region, and the line is a negative exponential function. 

3.4 A sequence of speckle patterns with complex correlation distribution 

In this section, we simulated speckle patterns with a more complex correlation 
distribution such as those expected when imaging blood vessels. Note that two 
approaches were used, the first of which only used these images to demonstrate the 
feasibility of the simulation method for complex correlation distributions and did not 
measure or investigate the temporal decorrelation for different areas of the real tissue. 
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The second approach demonstrated the possibility of creating a simulation based on the 
correlation features extracted from experimental data. 

In the first approach, the correlation matrix r0 was based on an image of a Sprague 
Dawley rat ear acquired with white light illumination segmented into only five gray-scale 
levels as shown in Fig. 5(b). We assumed that the larger vessels contained more blood, 
which strongly absorbed light and therefore exhibited lower intensity in the gray-scale 
image. It was also expected that these areas would have different decorrelation properties 
due to the higher flow speed. Therefore five correlation curves could be generated for the 
five pixel intensity classes by using a theoretically or experimentally derived correlation 
coefficient. In this simulation the equation ( ) ( )1 exp /c x b cρ = − − +  derived from P. 

Zakharov’s work [15] was used, where ρ is the correlation coefficient, x are the 
acquisition times of the sequence of speckle images, c characterizes the ratio of static part 
to the total detected light intensity according to reference [15] and it is the lowest 
correlation coefficient, b is the decorrelation time. 

In this simulation we arbitrarily chose c = 0.6, 0.4, 0.3, 0.2, 0.1 and b = 1.5, 1.7, 1.9, 
2, 2.2 to assign to the pixels in Fig. 5(b) that correspond to the indicated classes 1 to 5. 
These values were based on the above assumptions about absorption and flow speed and 
allowed clearly separated correlation curves and correlation coefficient values to be 
generated that are reasonable compared to real experiments. Assigning the correlation 
coefficients for each class in the image generated a correlation matrix for the frame 
sequence and the correlation curves are shown in Fig. 5(a). Then the independent 
matrices Ω1 and Ω2 were defined to be the same size as the gray-scale image, although 
this induced poor simulation results due to the statistical residuals, as discussed in the 
following section. Equation (4) was used to generate the speckle patterns in an imaging 
domain and 20 frames were synthesized. Figure 5(c) shows the square root of the 
calculated correlation matrix between the first and the 20th synthesized speckle images. It 
is noticeable that the intensity distributions of Fig. 5(b) and Fig. 5(c) are similar although 
Fig. 5(c) exhibits statistical noise. We also calculated the temporal contrast image from 
the 20 simulated speckle images and the result is shown in Fig. 5(d). The variation in 
contrast values corresponds well to the chosen correlation coefficients. 
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Fig. 5. (a) The correlation coefficients of different segments and different frame indices; 
(b) the correlation distribution defined by five gray levels. This correlation image and the 
correlation curves were used to synthesize the 20 speckle patterns; (c) the correlation 
image calculated from the 1st and the 20th simulated speckle patterns; (d) temporal 
contrast calculated from the 20 simulated speckle patterns. 

A second approach was used to further demonstrate the simulation of blood 
circulation. We experimentally recorded 20 speckle images of a 5 × 3 mm area of a 
Sprague Dawley rat ear using a 671 nm laser with the camera frame rate equal to 40 fps 
and the exposure time equal to 20 ms. Then the temporal contrast of the observed area 
was calculated from the 20 speckle frames and the contrast image is shown in Fig. 6(a). 
This image was denoised, and segmented into four parts, shown in Fig. 6(b), according to 
the contrast values. Then the correlation coefficients were calculated respectively within 
the four contrast classes between the first and the 20 successive speckle frames and are 
shown in Fig. 6(d). The correlation curve of region 4 within the dashed square in Fig. 6(a) 
corresponds to the contrast background. 
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Then a sequence of 20 speckle frames was synthesized, again using the independent 
phase matrices Ω1 and Ω2 and by assigning the correlation between the frames using the 
data in Fig. 6(d) applied to the regions defined in Fig. 6(b). The simulation was run 10 
times and 10 contrast images were calculated and averaged to remove the noise. The 
result is shown in Fig. 6(c). The repetition of the simulation process was required because 
the correlation curves were noisy, being based on experimental data rather than purely 
simulated as in Fig. 5. A comparison of the contrast profile between the experimental data 
and the simulated data is shown in Fig. 6(e) which shows that the contrast distribution 
agrees with the segment layout and with the experimental contrast image. The contrast 
profile of the simulated and the experimental data fit well although the absolute values 
are different because the experimental images are not fully developed. The normalized 
error is 5% in the experimental data but is about 40% in the simulated result, giving a 
lower SNR. However, the normalized error of the simulation can be reduced by 
decreasing the speckle size and increasing the number of simulations to be averaged. For 
instance the normalized error was reduced by 50% when the speckle size was decreased 
to be 2 pixels, or when the number of simulation runs was increased to 30. The boarders 
of the vessels in Fig. 6(c) are not the same as in Fig. 6(a) because the contrast difference 
of the simulated result in region 2 and region 3 is not clear due to the low SNR and this 
can be improved with the methods mentioned above and with less noisy correlation 
curves. More classes could be used depending on the quality of the raw experimental 
speckle patterns. 
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Fig. 6. (a) Denoised temporal contrast from the experiment; (b) four labelled regions 
based on the temporal contrast image shown in (a); (c) the temporal contrast image 
calculated from the simulation; (d) correlation coefficients used in the simulation; (e) 
comparison of the contrast profile along the pixels marked by the dashed line in (c) from 
the experiment and the simulation after smoothing. 

4. Discussion 

Laser speckle analysis has been applied to investigate the changes in blood circulation 
induced by disease, drugs, and therapeutic response. Although point detection of laser 
speckle can measure the changes of blood circulation, the investigation of laser speckle 
properties in an imaging domain can offer additional information. Therefore simulating 
both temporally and spatially correlated speckle patterns is more desirable than the 
simulation of speckle patterns that are only temporally correlated. In addition, animal 
trials are limited by the availability of animal samples and the strict experimental 
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environment. Moreover unproven experimental and data processing methods may induce 
unnecessary animal sacrifices and loss of time. However the previous simulation methods 
are not able to simulate this type of speckle pattern. Therefore we proposed this new 
method to generate speckle patterns with both pre-defined temporal and spatial 
correlation distribution, which may be experimentally or theoretically derived. With this 
method laser speckle patterns with complex flow structures can be synthesized. 

In this method the square relationship between the input correlation coefficient and 
the calculated correlation from the simulated speckle patterns is deduced based on the 
negative exponential distribution property of the speckle intensity, therefore generating 
fully developed speckle patterns is essential since the intensity of partly developed 
speckle pattern follow other distributions. There are two conditions to ensure fully 
developed speckle patterns: the phases Ω1 and Ω2 are uniformly distributed on the interval 
of (-π, π) and the speckle size is no smaller than 2 pixels, which means the size of clear 
pupil function H(x,y) must be equal to or smaller than half the size of the phase matrices. 
Sometimes Gaussian distributed variables are used to generate correlated variables. In 
this case the Gaussian distributed phases need to have a mean equal to 0 and a standard 
deviation larger than 2π to guarantee the generation of fully developed speckle patterns 
[10]. 

The correlation coefficient is a statistical parameter, therefore correlation fluctuation - 
also called noise - is inevitable in the correlation map calculated from the synthesized 
speckle patterns. This is due to the small number of spatial sampling points, although it 
does not affect the feature matching of the correlation distribution between the input data 
and the simulated data and can be decreased by averaging the result over multiple 
simulation runs. 

When the correlation coefficient distribution was calculated with the kernel method, 
as in Fig. 3, the noise comes from the statistical error with the minimum determined by 
the kernel size. This is demonstrated in Fig. 7 with a kernel size equal to 11 × 11. 
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Fig. 7. Investigation of noise level of the correlation calculated with a kernel size equal to 
11 × 11. (a) The subtraction of Fig. 3(a) and the square root of Fig. 3(c); (b) the standard 
deviation of the simulated correlation coefficients as a function of r; (c) the standard 
deviation of the simulated correlation as a function of the number of correlation images 
that are averaged. 

Figure 7(a) is the subtraction of the ground truth data in Fig. 3(a) and the square root 
of the simulated correlation distribution in Fig. 3(c), which shows the noise distribution. 
The noise level is lower in the area with r equal to 1, which is reasonable because the 
pixel intensities in the speckle patterns generated from W and M1 are identical in the area 
with r equal to 1 therefore the limitation of sampling number induces less statistical errors 
than it does in the area with r equal to 0.6. The noise in the area with r equal to 1 comes 
from the different way of calculating the covariance and standard deviation and it can be 
removed by programing the calculation of covariance using the same kernel scanning 
method with the Matlab built-in stdfilt if stdfilt used to calculate the standard deviation. 
But here we just keep this result since it doesn’t change the trend of the noise as a 
function of r and the number of averaged simulations. Figure 7(b) shows that the standard 
deviation is lowest when r is equal to 1 and reaches a maximum when r is equal to 0.5, 
for the same reasons just mentioned. The standard deviation drops slightly as r decreases 
from 0.5 to zero because the kernel calculation is less affected by the local intensity 
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divergence until the two speckle patterns are totally independent. Figure 7(c) proves that 
the error can be reduced by averaging over multiple simulations. After 30 runs, the 
standard deviation is only 0.045, which may be reduced further by increasing the kernel 
size. 

Instead of using a kernel to calculate the correlation, another option is to run multiple 
simulations with different Ω1 and Ω2 to generate multiple pairs of W and Ω1 speckle 
images. The correlation can then be calculated for each pixel in the image across the 
multiple runs, resulting in a higher spatial resolution but requiring more simulation runs 
to find the correlation. Here we call this method single-pixel based method and is 
demonstrated in Fig. 8. 

We used 200 random Ω1 and Ω2 matrices to generate 200 frames respectively from M1 
and W with r the same as the one shown in Fig. 3(a) and calculated the correlation 
coefficient at each pixel across the 200 frames, as shown in Fig. 8(a). It is clear that Fig. 
8(a) has higher spatial resolution than kernel method and the SNR was also tested by 
subtracting Fig. 8(a) from the input ground truth – the square of Fig. 3(a) – and the result 
is shown in Fig. 8(b). The regions with r equal to 1 have zero error in this case, since each 
pair of W and M1 are identical. The noise is further illustrated as line profiles of the 300th 

common in Fig. 8(c) for different values of r ( 0.1, 0.2, 0.3, 0.9   ). The noise is 
lower when r is higher, the same as was found above for the kernel method, and the 
biggest fluctuation is around ± 0.05. We randomly tested the smallest correlation 
difference and found that a correlation difference between 0.01 and 0.03 could be 
resolved in image domain as shown in Fig. 8(d). This limit is expected to reduce with the 
value of r closer to 1. 
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Fig. 8. Single-pixel based correlation coefficient calculated from simulated speckle 
images. (a) the correlation map when using the matrix shown in Fig. 3(a); (b) the 
subtraction of the square of Fig. 3(a) and Fig. 8(a); (c) the line profile of the correlation 
coefficients along the 300th column with different input value of correlation coefficients; 
(d) the smallest correlation coefficient difference that can be shown in the image domain. 
In this case the input values of r are equal to 0.01 and 0.03 respectively for the two areas. 

When using a 2D correlation image extracted from the experimental data as the input 
correlation matrix and the image is noisy, such as when the values of the surrounding area 
vary in the same range as those of the features to be detected (e.g. a number of small 
vessels spreading in the observing area when using a vessel image as the input correlation 
matrix), the calculated correlation image from the synthesized speckle patterns will lose 
spatial resolution and the small structures become unperceivable. A demonstration is 
shown in Fig. 9. 
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Fig. 9. Demonstration of a simulation using noisy images as the input correlation matrix. 
(a) the input correlation matrix; (b) the correlation map calculated from synthesized 
speckle images; (c) the temporal contrast image calculated from the synthesized speckle 
images. 

In the second simulation in Section 3.4 the image was segmented to allow the 
correlation coefficients to be more accurately calculated for each class. Ideally the 
simulated correlation coefficient map would be calculated based on the temporal intensity 
changes of every single pixel in the speckle image, but this demands a large number of 
speckle frames. A good camera may also increase the SNR of the correlation coefficient 
map. This proposed simulation method is therefore able to generate speckle patterns with 
a specified correlation distribution in the spatial and temporal domains, and also to 
produce the contrast images. The performance depends on the accuracy with which the 
correlation map may be derived theoretically or from an experimental result. 

5. Conclusion 

In this paper we proposed a new method to simulate a single speckle image or a sequence 
of speckle images with either uniform or arbitrary correlation distribution in the spatial 
and temporal domains. The few-to-one mapping of correlation coefficients from the 
object to the image was demonstrated both by mathematical deduction and simulation. It 
was proved that the correlation coefficients between the synthesized speckle images are 
the square of those between the input correlation factors, which enables a simple 
conversion to any desired correlation mode. This work solved the issue of few-to-one 
mapping of speckle pattern simulation and provided an effective way to create 
simulations from in vivo experiments to evaluate processing methods. 
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