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Standards in quantitative fluorescent imaging are vaguely recognized and receive insufficient discussion. A
common best practice is to acquire images at Nyquist rate, where highest signal frequency is assumed to be the
highest obtainable resolution of the imaging system. However, this particular standard is set to insure that all
obtainable information is being collected. The objective of the current study was to demonstrate that for
quantification purposes, these correctly set acquisition rates can be redundant; instead, linear size of the objects
of interest can be used to calculate sufficient information density in the image. We describe optimized image
acquisition parameters and unbiased methods for processing and quantification of medium-size cellular
structures. Sections of rabbit aortas were immunohistochemically stained to identify and quantify sympathetic
varicosities, .2 mm in diameter. Images were processed to reduce background noise and segment objects using
free, open-access software. Calculations of the optimal sampling rate for the experiment were based on the size
of the objects of interest. The effect of differing sampling rates and processing techniques on object
quantification was demonstrated. Oversampling led to a substantial increase in file size, whereas undersampling
hindered reliable quantification. Quantification of raw and incorrectly processed images generated false
structures, misrepresenting the underlying data. The current study emphasizes the importance of defining image-
acquisition parameters based on the structure(s) of interest. The proposed postacquisition processing steps
effectively removed background and noise, allowed for reliable quantification, and eliminated user bias. This
customizable, reliable method for background subtraction and structure quantification provides a reproducible
tool for researchers across biologic disciplines.
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INTRODUCTION

There exists a need for standardized, unbiased methods for
reproducible processing and quantifying objects of interest
in fluorescent imaging.1–5 A variety of data processing and
quantification options have been described,6–10 but stan-
dard procedures have yet to be agreed upon. A routine
approach is manual counting or reliance on built-in automatic
quantification algorithms, without evaluating the appropri-
ateness of the method. This often results in researchers
violating the requirements for reliable quantification and/or
acquiring excess volumes of data, leading to large data files
and irreproducible analyses.

Our group was recently challenged by a necessity to
quantify small, clustered, immunostained nerve varicosities

(.2 mm in diameter, with an average intervaricosity dis-
tance of 5 mm11, 12) in highly autofluorescent tissue
samples in several hundred slides. The study was designed to
detect and quantify sympathetic nerve termini in vascular
tissue, identified by the colocalization of 2 immunofluo-
rescently labeled proteins. Structures of this size are;10
times larger than the theoretical limits of conventional
microscopy.

The combination of small, low-contrast structures of
interest with interfering background in a large-scale imaging
project forced us to examine carefully the critical parameters
impacting the outcome of quantification analysis. The
current protocol is a result of that examination; beginning
with the first step of image acquisition, reproducible image
processing options are described and quantification dem-
onstrated, along with the effects of variations from the
suggested method. Each parameter is discussed to aid the
researcher in making a grounded decision if and when
modifications are needed. The current method was applied
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to images acquired using a confocal microscope. Data from
individual fluorescent channels were processed indepen-
dently to reduce background noise and were then binarized
and watershedded. Colocalization of the 2 channels
identified the particles of interest that were subsequently
counted.

MATERIALS AND METHODS

Animal Model

Aortas from 2 different strains of rabbit—the New Zealand
White (NZW) that is resistant to the development of
atherosclerotic disease and the Watanabe Heritable Hyper-
lipidemic (WHHL) that is genetically prone to developing
atherosclerosis—were examined and regional differences
compared within and across strains. To evaluate innervation
density between study groups, ;300 slides were imaged
and analyzed. Differences in the nature of the vascular
tissue (e.g., presence of disease) introduced considerable
variability in staining intensity and background, requiring
a valid, reproducible method to process and analyze the
generated data.

All procedures were approved by the Animal Care and
Use Committee of the University of Miami. The aim of the
current experiment was to identify and quantify the density
of sympathetic nerve termini within vascular tissue, iden-
tified by the immunologic colocalization of 2 proteins
present in the sympathetic nerve termini. Aortas obtained
from 46 WHHL (n = 22) and NZW (n = 24) rabbits were
formalin fixed and embedded in paraffin for cross-sectional
slicing. Standard immunohistochemical procedures were
used to prepare and stain 10 mm sections.

Immunohistochemistry

Before staining, slides were deparaffinized using an auto-
mated instrument (Leica Jung Autostainer XL; Leica
Biosystems, Buffalo Grove, IL, USA).We performed antigen
retrieval by placing slides in citrate solution (0.01 M citric
acid, 0.05% Tween 20, pH = 6) and heating under pressure
for 20 min at 120°C. Slides were cooled for 30 min, rinsed
withH20 and then PBS, and finally washedwith wash buffer
(BioGenex, Fremont, CA, USA). A universal blocking so-
lution was used to reduce nonspecific background staining
(BioGenex Power Block).

Slides were washed again with wash buffer, incubated
with blocking solution against proteins from the secondary
antibody host (e.g., donkey serum), and incubated overnight
at 4°C with primary antibodies or nonimmune antibody
isotype controls (1 mg/ml; Jackson ImmunoResearch Labo-
ratories, West Grove, PA, USA) for the primary antibody
host (e.g., chicken and guinea pig) diluted in antibody dilu-
ent (1% BSA). We used the following primary antibodies
to identify sympathetic varicosities: chicken a-tyrosine

hydroxylase (1:500;Millipore,Billerica,MA,USA),anenzyme
precursor for catecholamines, and guinea pig a-synapsin
(1:250; “Synaptic” Systems, Goettingen, Germany), a protein
axonal marker. Immunostaining was visualized using the
following secondary antibodies: tyrosine hydroxylase, de-
tected using donkey a-chicken AlexaFluor 594 nm (1:300;
Jackson ImmunoResearch Laboratories), and synapsin, de-
tected with donkey a-guinea pig AlexaFluor 647 nm (1:450;
Jackson ImmunoResearch Laboratories).

After an overnight primary incubation, slides were
washed with buffer and incubated with secondary anti-
bodies for 2 h, washed again with buffer and PBS, mounted
with ProLong Gold with DAPI to stain cell nuclei (Thermo
Fisher Scientific Life Sciences, Waltham, MA, USA), and
allowed to cure 24 h before sealing. Images were acquired
using a Leica SP5 spectral confocal inverted microscope
(Leica Microsystems, Buffalo Grove, IL, USA) and
equipped with a motorized stage, standard- and high-
resolution Z-focus, and laser lines (405, 458, 476, 488,
496, 514, 561, 594, and 633 nm).

RESULTS

Optimizing Acquisition

In large-scale experiments, appropriate but not excessive
data acquisition is the goal. Formicroscopes, a common best
practice is to use the Abbe resolution limit to set the
information density.13However, if the objects to be resolved
aremuch larger in size than the highest possible resolution of
themicroscope, then this approachwill lead to unnecessarily
large files, increased acquisition time, and increased risk of
photo bleaching. For this reason, we argue that acquisition
parameters should be determined based on the size of the
object(s) of interest or distance between structures—whichever
value is smallest.14

A confocal microscope will likely include a set of lenses,
with numerical aperture (NA) values ranging from 0.4 to
1.4. This means that the theoretical lateral resolution of the
systemwill range from 0.25 to 0.75mm; the estimated value
for a perfectly aligned system is (0.513 l)/NA, where l is
the wavelength of the excitation light, and NA is obtained
from the selected objective lens.15 This estimation will
provide the highest resolution of the imaging system, given a
particular lens.

However, we have argued that for the quantification
purposes, the highest resolution of an imaging system can be
substituted with the lowest linear size of the structure of
interest. How is that translated into the scale of the cellular
environment? The aim of the current study was to count
nerve termini as small as 2mm.12 In this case, even the lowest
NA lens of the microscope (103/0.4 NA) provided suffi-
cient resolving power for the task [e.g., (0.51 3 500)/0.4,
with a resultant 0.638mm resolution].However, higherNA
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increases light transmission and therefore, may increase
photo bleaching, thereby affecting image intensity.

After determination of the optimal lateral resolution,
the next step is to define the sampling density for the
experiment, represented as pixels per micrometer in the
resulting image.Nyquist criterion is often used to determine
the minimal sampling density, where one must sample the
2-dimensional (2D) spatial object with 2 (2.3 for real-life
samples) times the highest frequency of the signal.16, 17

Thus, the required sampling density for images in the
current study was estimated to be ;0.86 mm/pixel (i.e.,
assuming a diameter of 2mmnerve termini, divided by 2.3).
The effect of differing sampling densities on the quality of
a resultant image is demonstrated (Fig. 1). Increasing resolution
improves image quality and detection of objects of interest;
however, the goal is to identify the resolution that provides
reliable quantitation without oversampling.

Addressing and optimizing axial (also known as Z)
resolution is also important. Two inter-related concepts—
axial resolution and optical slice thickness (OST)—need to
be distinguished. Axial resolution is defined solely by theNA
of the objective lens and is roughly 3 times lower than the
lateral resolution of the same lens. In wide-field microscopy,
each lens has a defined axial resolution, but there is no
control over the OST. In confocal microscopy, by in-
troducing a pinhole, it is possible to limit the light that
comes from above and below the focal plane of the objective,
thus introducing optical sectioning of the sample and
improving the signal-to-noise ratio. OST is the product of
the NA value of the lens, presence and characteristics of
immersion fluids, and pinhole size. OST is always greater
than the axial resolution of the objective lens used.

As the detection plane is normally perpendicular to the
x–y axes, axial resolution is especially relevant when acquiring
a 3D image, objects are densely crowded, or the signal-to-
noise ratio is low. For these situations, the adjustment of the
OST, bymodifying lens selection, can improve data accuracy
and image quality. The effect of differentNA andOST values
on a generated image is demonstrated (Fig. 2). Although both
images identified the same structures (evidenced by the
merged image; Fig. 2C), there was a noticeable enhancement
in the signal-to-noise ratio when using a higher NA objective
lens, resulting from improved resolution and light trans-
mission, thereby increasing the signal-to-noise ratio.We have
chosen to use a higher (203 vs. 103) objective lens for the
current project to improve the signal-to-noise ratio.

Data Processing

Background and noise are common issues in microscopy
and may be a result of many factors, including acquisition
settings, autofluorescence, or nonspecific staining. How-
ever, they have the potential to interfere with accurate image

quantification14, 18 and therefore, must be addressed before
quantification. One of the recurring problems in confocal
imaging stems from photomultiplier (PMT) noise, also
known as “salt and pepper” noise. This type of noise is
acquisition mediated and appears as individual bright
pixels on an overall lower-intensity background. During
acquisition, the reduction of the voltage of the PMT and
acquisition of several images in averaging or summing
mode can reduce this type of noise. Postacquisition, PMT
noise can be removed effectively from the image using a
smoothing filter, preferably the median filter, which
essentially replaces a pixel value with the median value of
its neighboring pixels, the “neighborhood” of which is
referred to as a “kernel.” The larger the kernel, the larger
the number of pixels included in the replacement value.
The power of applying a filter to diminish noise in the
acquired image is illustrated (Fig. 3). The binarization of
a raw image resulted in background pixels interpreted as
signal. Application of a median filter improved the signal-
to-noise ratio; however, low-intensity objects were lost.

Another common source of noise is autofluorescence
of the tissue. Autofluorescence can be managed pre- and
postacquisition. For example, pre-exposure to intense light19

or chemical pretreatment has been shown to reduce autofluo-
rescence in some cases (e.g., CuSO4 in ammonium acetate
buffer or Sudan Black B in 70% ethanol,20 NaBH4,

21 or
Pontamine sky blue).22

Autofluorescence is a property of the sample and is
relatively independent of acquisition method. Autofluo-
rescence is usually characterized by uniformity in signal
intensity across the sample. During acquisition, autofluo-
rescence is often excluded from the final image by adjusting
the offset of the system; however, this approach does not
work well when the signal intensities of the target objects are
low. Postacquisition, 1 common option to reduce autofluo-
rescence is background subtraction; in the simplest imple-
mentation, the mean intensity of background is measured
in every imaging channel and subtracted from the pixel values
in the image. Alternatively, spectral unmixing algorithms
could be applied to images. However, autofluorescence may
spatially present in a nonuniform distribution, limiting the
use of those approaches. Vascular tissue used in the current
study exhibited such nonuniform autofluorescence, origi-
nating from connective tissue and extracellular matrix fibers.

In cases of high autofluorescence, the Gaussian blur
filter is the preferred method for processing an image to
reduce autofluorescence, as it retains specific features better
thanmean ormedian filters. However, if there is a nonuniform
spatial autofluorescence distribution, a more sophisticated
approach, known as the unsharp mask, is required.23 The
approach stemmed from the idea that target structures in a
well-focused image are characterized by higher frequencies
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and higher intensities, whereas the noise is not as structured.
Thus, one can blur the image using a filter to preserve the
overall intensity map and subtract the blurred image from
the original image. The blurred image will contain close
intensity values approximating any area that is background.
The true objects in this blurred image are then represented
by pixels of several-fold lower intensity values compared
with the original image. Thus, the subtraction of this blurred
duplicate image reduces most of the background, whereas
only slightly changing the intensity of the true object pixels.
The resultant image intensity values can be normalized, that
is, multiplied by a number to bring the highest intensities in
the image to the upper value limit (e.g., 255 in an 8-bit
image).

Variability in intensities is another concern and should
be avoided but still often occurs among images acquired at
different time points or with different settings, attempting
to adjust for nonuniformity in signal intensities. To avoid
this potential bias, an object-based, rather than intensity-
based, approach was used to identify targets in our images.
Each image was binarized (i.e., each pixel was assigned a
value of 0 or 1), and then a watershed algorithm (i.e., a
geometrical approach segmented elements into distinct

objects) was applied to define object limits. The binariza-
tion of an image defines pixels that represent the signal,
separating them from the background. There are multiple
thresholding algorithms available that can be accessed
through the Auto Threshold and Auto Local Threshold
plug-ins of FIJI/ImageJ.24 The chosen option should be
selected as appropriate for segmenting objects of interest and
must be applied to all images, as certain algorithms are more
or less conservative in segmentation and could influence the
quantification outcome. The default binary algorithm was
found to be sufficient for the current study, as it preserved
low-intensity structures. The watershed method worked
well for the current study, however, there are many speci-
mens that give highly erroneous segmentation following
the watershedding, and the use of the algorithm should be
carefully evaluated in other sample types.

The use of different methods to eliminate nonuniform
background, while concurrently preserving low-intensity
signals, is demonstrated (Fig. 4). Direct binarization of raw
images resulted in false-positive structures (Fig. 4A). The
commonly used median filter resulted in merging of indi-
vidual objects and was insufficient for removal of nonuni-
form background (Fig. 4B). Note the increased separation

FIGURE 2

Signal-to-noise ratio increases through the re-
duction of OST, achieved here by changing the
objective lens, increasing bothmagnification and
the NA. A) 203/0.7 NA lens; B) 633/1.4 NA
lens, same field of view; C) overlay of A and B,
where green represents the 203 channel. Origi-
nal scale bars, 20 mm.

FIGURE 1

Sampling density affects the appearance of the
final image. Images represent a typical field of
view, showing several nerve termini identified
by the localization of tyrosine hydroxylase. All
images were acquired with a 203/0.7 NA ob-
jective lens using different sampling rates. Pixel
length for eachpanel:A)6mm;B)3mm;C)1.5mm;
D) 0.75 mm; E) 0.37 mm; F) 0.09 mm. Original
scale bars, 6 mm.
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of signal and noise and the retention of structures of
interest when using the proposed method of Gaussian
blur-derived background subtraction and object segmen-
tation (Fig. 4C). This approach is not novel, and technical
aspects of this background correction method have been
described.23 The current method describes and demon-
strates its validity with the aim of proposing its widespread
use before image quantification.

Quantification

Once the background is reduced, quantification can be
accomplished using readily available options, as appropriate

for their ability to identify the structure(s) of interest.
FIJI/ImageJ includes several options for counting particles
(e.g., Analyze Particles, 3D Object Counter, Nucleus
Counter, and Cell Counter), and a comprehensive list of
available analysis plug-ins has been catalogued recently.25

For the purposes of the current study, the basic Analyze
Particles algorithm was ideal, as it provided a simple
method for quantifying objects within a specific size
range. Sampled properly, structures of interest should be
represented by at least 2 pixels in any dimension; thus, the
lower size limit was set to an area representing the size of
4 squared pixels.

FIGURE 3

Application of a median filter improves object
and background segmentation. Image acquired
with 203/0.7 NA objective lens, 1024 3 1024
frame size. The raw image (A) was directly
binarized using the maximum entropy FIJI/
ImageJ algorithm (U.S. National Institutes of
Health, Bethesda, MD, USA; C) with the result
overlaid onto the original image (E). Note that
use of this approach resulted in background
pixels interpreted as signal, indicated by a large
circle in C. B) The result of a median filter applied
to the original image, subsequent binarization
using the maximum entropy method (D), and
overlay (F). Note the improvement of signal-to-
noise segmentation by removing background
before binarization in D compared with C,
indicated by large circles. However, both ap-
proaches failed to identify low-intensity objects,
designated by circles in E and F. Original scale
bar, 120 mm.
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The effects of varying sampling rates and processing
methods on quantificationwere evaluated (Table 1). Images
were acquired with a 203/ 0.7 NA objective lens using 7
different sampling rates over the same 7753 775 mm field
of view, within the same focal plane. Termini counts for all
iterations were compared with the highest lateral resolution
image. Sampling rate is shown as frame size in column A
(e.g., the first line represents an image sampled at 8192 3
8192 pixels, 0.09 mm pixel length). The optimal sampling
rate was determined using the structures of interest, where
the calculated 0.86 mm or less/pixel size was achieved
by using 950 3 950 resolution on a 775 3 775 mm field.
Column H shows the difference in file size compared with
the optimized setting and reflects a substantial increase in
processing and acquisition time. Compared with the opti-
mal setting needed for reliable quantification, the file size
for the highest resolution was 74 times larger with a
concomitant increase in acquisition time.

In column C, particle counts were obtained from raw
images that were directly binarized without background
correction. In column D, particle counts were determined
after a median filter was applied to the original image before
binarization. In the oversampled images (lines 1–3), the
variability among counts was minor. However, as the target
size range becomes closer to the pixel size, a decrease in
identifiable objects was shown. Column E represents the
particle counts after complete processing of the image by the
proposed method.

The optimized method involves the following steps:
FIJI/ImageJ was used to process each fluorescent channel
from the acquired image uponwhich theGaussian blur filter
was used to create a blurred image representing background,
the result of which was subtracted from the raw image,
thereby reducing a nonuniform background while pre-
serving a low-intensity signal. Objects were then seg-
mented using binarization and watershed algorithms. The 2

FIGURE 4

Quantification outcome is affected by postac-
quisition image processing. The original image
contains an intensity gradient consisting of both
signal and background pixels. A) Raw image
binarized directly. The large circle indicates the
retention of background pixels in the image (see
also Fig. 3C), potentially affecting quantification
(see Table 1). B) Application of a median filter
(radius 2) to the image, the result of which was
binarized with the standard default FIJI/ImageJ

binary algorithm.Note the creationof large artifact fusionparticles indicatedby the large circle. C)Complete processing according to theproposed
protocol. Note the elimination of background (large circle), aswell as preservationof low-intensity particles for quantification (small circle).Original
scale bar, 120 mm.

T A B L E 1

Differences in Termini Counts among Different Micrometers per Pixel and Image Processing Iterations

Line
number

A B C D E F

G

H

Lines/frame
at scanning

Target particle
size (pixel2)

Original image
(counts)

Median filter
(counts)

Optimized method
(counts)

Gaussian filter
(sigma values)

Percent of
counts relative to
highest resolution

Relative data
file size

1 8192 $320 641 558 470 100 100% 743
2 4096 $80 935 584 522 100 111% 18.73
3 2048 $20 1456 578 508 50 108% 4.63
4 950 $4 1915 986 552 50 117% 13
5 512 $1 2307 485 765 25 163% 0.293
6 256 $1 685 70 494 25 105% 0.073
7 128 $1 353 11 248 25 53% 0.023

Seven images, representing an identical tissue area of 7753 775mm,were acquired using a 203/0.7NAobjective lens with varying sampling rates. Imageswere acquired stepwise
with an;4-fold change in pixel area at each step. For every frame size, the lower limit of the particle size was defined according to the micrometer/pixel size of the image, and the
cutoff was set at 2mmwhere applicable. Line 4 represents the optimal lateral resolution, based on the structures of interest. Column A, Sampling rate shown as frame size; column B,
particle size used for quantification; columns C–E, quantification results across several background processing iterations [column C, original image, no processing; column D,
application of amedian filter (radius = 2); column E, application of the proposedmethod]; column F, sigma radius values for the “generate blurred image” step; columnG, percentage
of counts in column E comparedwith the highest resolution image (line 1, column E); columnH, difference in file size comparedwith the optimized setting. Note the increase in false
counts with inappropriate processing when pixel size approaches target structure size.
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fluorescent channels were overlaid, and colocalized particles
were detected and quantified. In fully processed images, a
consistency in counts was observed among optimized
versus oversampled images; however, higher sampling
rates led to larger files (Table 1, column H). Conversely,
images sampled below the calculated optimal sampling
rate demonstrated a decrease in the number of objects
detected. Overall, generation of false structures in non-
processed images was clearly demonstrated; a 407% increase
in counts was shown when comparing the nonprocessed,
optimally sampled image (Table 1, line 4, column C) with
the fully processed, oversampled image (Table 1, line 1,
column E). Although image quality and appearance change
with varying imaging settings (Figs. 1 and 2), it was
demonstrated that quantification results remain consistent
once the imaging parameters are optimized and postacqui-
sition data are processed correctly.

Reliability of the Method

Three slides were quantified for each tissue (spatially sepa-
rated by ;100 mm) from 46 rabbits and from each of 2
aortic locations (e.g., arch and thorax). Nerve termini were
quantified in 2 specific regions of the cross-sectional sample
(i.e., intima and media) and summed to identify the total
number of counts in each sample using the proposed image
acquisition and data processing protocol. Pearson’s corre-
lation coefficients (r) were calculated to examine the linear
relationship between data generated from multiple slides.
Adjacent regions from the same rabbit in the aortic arch and
thoracic aorta were evaluated. Coefficients were high,
ranging from 0.883 to 0.937, P, 0.05, for all comparisons
(Table 2), illustrating the reliability of the currentmethod as
an unbiased, reproducible approach to image processing and
quantification

DISCUSSION

A practical, easy-to-follow protocol for imaging and analyz-
ing small biologic objects was presented, addressing 3
concerns in biologic microscopy: 1) acquisition, 2) noise
and background, and 3) quantification. Relevant theoretical
considerations and data processing options were described
in the context of real-life situations that the user would likely
encounter, while demonstrating how variations in acquisi-
tion or processing parameters impact the data generated.
Pertinent conditions for optimization were suggested and
discussed. A limitation of this object- basedmethod is that it
is insufficient for intensity-based analyses,wherein researchers
will need to use other methods when identifying spectral
overlap and colocalization or quantifying intensity values.
However, the basic image acquisition guidelines can still be
applied with modifications made to data processing (e.g., by
eliminating binarization and watershed steps).

In conclusion, the current method emphasizes the
importance of defining image acquisition parameters based
on the structure(s) of interest. Once defined, the proposed
postacquisitional processing steps effectively remove back-
ground and noise and allow for reliable quantification.
Standardized background correction, data processing, and
quantification techniques were used to eliminate user bias.
Themethod, amenable to quantifying a variety of structures
using readily available tools, was shown to be reliable across
sequentially sampled tissue slides and could serve as a
starting point in other experimental designs or when
analyzing larger volumes of data.
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