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Abstract

Identification of genome-wide epigenetic changes, the stable changes in gene function without a 

change in DNA sequence, under various conditions plays an important role in biomedical research. 

High-throughput epigenetic experiments are useful tools to measure genome-wide epigenetic 

changes, but the measured intensity levels from these high-resolution genome-wide epigenetic 

profiling data are often spatially correlated with high noise levels. In addition, no formal statistical 

method was developed to compare genome-wide epigenetic changes across multiple conditions. In 

this study, we consider ANOVA models with spatially varying coefficients, combined with a 

hierarchical Bayes approach, to explicitly model spatial correlation caused by location-dependent 

biological effects (i.e., epigenetic changes) and borrow strength among neighboring probes to 

compare epigenetic changes across multiple conditions. Through simulation studies and 

applications in drug addiction and depression models, we find that our approach compares 

favorably with competing methods; it is more efficient in estimation and more effective in 

detecting epigenetic changes. In addition, it can provide biologically meaningful results.
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1 Introduction

Epigenetics can be defined as the study of stable changes in gene function without a change 

in DNA sequence. Such changes, including histone modifications (methylation or 

acetylation) and DNA methylation, may have long-lasting effects in cells and cause many 

diseases such as cancer, depression and drug addiction, to name a few. Identification of 

genome-wide epigenetic changes under various conditions plays an important role in 

biology, medicine and evolution research [1–3]. Genome-wide Chromatin 

Immunoprecipitation (ChIP) experiments including ChIP on microarray chip (ChIP-chip) 

and ChIP-sequencing (ChIP-seq) are powerful high-throughput methods for analyzing 

epigenetic modifications and genomic regions bound to regulatory proteins [4–10].
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One feature associated with such epigenetic data is that the measured intensity levels are 

often spatially correlated with high noise levels. Various approaches have been used to 

incorporate the neighboring dependency of epigenetic data, including sliding window 

methods combined with certain test statistics (e.g., MAT[11] and ChIPOTle[12]), local 

regression fitting methods across moving windows (e.g., [6, 13]), hidden Markov models 

(e.g., [14–16]), and Bayesian (hierarchical) methods (e.g., [17–22]). All of the methods 

show that accounting for spatial dependence can greatly enhance detection efficiency. 

Although many statistical methods have been developed to process epigenetic data and 

identify binding sites of transcription factors (e.g., [19, 20, 22–27]), relatively fewer methods 

have been developed to identify genome-wide epigenetic changes. For example, ChIPDiff 

[28] used a hidden Markov model to identify the chromosome regions with epigenetic 

changes; Tilemap [29] provides options to use either the moving windows or hidden Markov 

models; and Taslim et al [30] proposed a statistical method that uses mixture models to 

identify positive and negative differential binding sites. These existing methods were 

developed to identify epigenetic changes or differential binding sites among different 

groups. However, some recent epigenetic studies used more complex designs, such as two-

way ANOVA settings (see the second motivating example) or time course measurements (for 

example, modENCODE project measures the epigenetic profiles at different time points or 

growth stages), and the existing methods could not handle the complex designs efficiently. In 

this study, we incorporate spatial correlation into a hierarchical Bayesian linear regression 

model, which can offer great flexibility to study the epigenetic changes under complex 

experimental designs. More specifically, we consider linear models with spatially varying 

regression coefficients in spirit of Gelfand et al. [31], where location-dependent epigenetic 

changes (represented by the coefficients) are modeled by a simple autoregressive model.

The paper is arranged as follows. Section 2 describes the research background. In Section 3, 

we propose a Bayesian approach for detecting epigenetic changes, ANOVA with spatially 

varying coefficients, in which we set up a hierarchical Bayes model, specify prior 

distributions and discuss posterior computation and inference. In Section 4, we present 

numerical results for both one-way and two-way ANOVA settings, where we examine the 

performance of our approach using simulated data with the first-order autocorrelation (AR1) 

structures and data that mimic realistic patterns (for the purpose of robustness checking). 

Section 5 applies the proposed approach to two genome-wide epigenetic data sets and shows 

its effectiveness and usefulness. Section 6 concludes the paper with a brief discussion.

2 Motivating Examples

Our work is motivated by studies of molecular mechanisms of drug addiction and depression 

[32–34], which are two of the most common illnesses in the world. Although drug addiction 

and depression involve many psychological and social factors, they also represent a 

biological process: repeated exposure of stress or a drug of abuse causes stable changes at 

molecular and cellular levels in brain, and alters the functioning of individual neurons and 

larger neural circuits [35]. Increasing evidence suggests that gene expression changes in 

brain nucleus accumbens regions (NAc, a major brain reward region), which contribute to 

the pathogenesis and persistence of depression and drug addiction, are mediated in part by 

epigenetic mechanisms [36, 37]. To better understand how the brain responds to repeated 
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perturbations (under normal and pathological conditions), epigenetic profiling data were 

generated from mouse NAc using NimbleGen promoter arrays. The distance between two 

consecutive probes within same promoter region is only 100 ~ 200 base pairs, while that 

between probes from different promoter regions (of two distinct genes) are relatively far 

away, typically at least several hundred kilo-base pairs. Because of this feature, it is 

reasonable to believe that the epigenetic changes from the same promoter region are 

spatially dependent, while those of different genes are spatially independent.

2.1 Cocaine addiction study

The first motivating dataset was generated from a cocaine addiction study [32] which 

contains histone H3 methylation (dimethylK9/K27) data measured by ChIP-chip 

experiments using NimbleGen MM8 mouse promoter arrays. The experiments were 

performed on both cocaine and saline treated mice to detect cocaine induced changes in 

histone modifications. In the experiments, fresh nucleus accumbens (NAc) punches were 

processed for ChIP as described in [34]. The samples were amplified and labeled , and then 

hybridized to the promoter arrays with three biological replicates per condition. Each 

biological replicate was prepared by NAc punches pooled from ten mice to reduce the 

biological variability. The goal of the study is to identify histone modification changes 

between cocaine and saline treated samples.

2.2 Depression study

The second motivating dataset was generated from a depression study [33], which also used 

NimbleGen MM8 mouse promoter arrays to characterize histone H3 methylation 

(dimethylK9/K27) that occur in the NAc in response to chronic stress with and without 

antidepressant treatment. In the experiment, the choonic stress is introduced by a “social 

defeat” mouse model. When housed with an unfamiliar mouse in a wire mesh cate, the 

undefeated control mice spent most of time interacting socially with an unfamiliar target 

mouse, while the defeated mice spent less time in close proximity to the target mouse, which 

is a depression-like symptom. The mice were then divided into treatment groups. For each 

group (defeated or control), one-half of the animals received imipramine, an antidepressant 

drug; and the other half in each group received saline as the control.

Under this two-way ANOVA design, we want to study histone methylation in the NAc 

induced by social defeat and imipramine treatment. Because previous studies have shown 

that imipramine treatment reverses the social interaction deficit in defeated animals [38, 39], 

we are particularly interested in identifying genes with significant interactions between the 

two factors (i.e., defeated/control mice, imipramine/saline treatment).

2.3 Exploratory data analysis

Before applying any formal statistical analysis to the datasets, we first did exploratory 

analysis on several studies to show data features. Figure 1 presents examples of genes (i.e., 

CART and CDK5) with signals of cocaine-induced histone methylation and acetylation 

changes in the NAc from our previous study[34]. The fold changes of these signals (between 

cocaine and saline treated conditions) in histone H4 acetylation (measured by NimbleGen 

MM5 promoter arrays) and methylation of histone H3 at K9 and K27 (measured by 
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NimbleGen MM8 promoter arrays) are plotted by red and blue colored lines, respectively. It 

clearly shows that the changes occur over specific segments of the chromosome rather than 

on isolated points, and so they are spatially correlated. More examples can be found in 

Figure 1B of Renthal et al. [34]. This observation is consistent with the previous studies that 

epigenetic changes have spatial patterns. To further explore these spatial patterns in the 

cocaine addiction dataset [32], we calculated the first order autocorrelation function (ACF1) 

in the histone methylation for all the genes in that dataset [32], including those without 

signals of epigenetic modifications. For the genes with no signals, the autocorrelation might 

not exist. Figure 2 plots the histograms of ACF1 after the saline and cocaine treatment, 

respectively. Overall, it indicates positive autocorrelation among adjacent probes, which 

probably comes from those genes with the biological effects. Currently, most existing 

statistical methods for ChIP-chip data focus on analysis of transcription factor (TF) binding 

to identify the binding sites. The TF binding happens at a specific point (several base pairs) 

on a chromosome. By contrast, the histone modifications take place on a specific segment of 

the chromosome so that spatial dependence is very likely to occur in regions wherever such 

real biological effects exist. This is consistent with our observations from the datasets. There 

is currently a lack of methods to identify the spatially correlated changes in such 

methylation or acetylation profiles.

Due to the complexity of the NAc region, with respect to its cellular heterogeneity, as for 

virtually all brain regions, it is extremely difficult to separate the brain regions affected by 

the psychiatric disorders from the unaffected regions. As a result, dissected brain tissues are 

usually a mixture of the affected and unaffected tissues, and the measured intensity levels in 

these in vivo studies exhibit very larger variability. Even though NAc punches pooled from 

multiple mice were used for each biological replicate, the signal to noise ratio is still low. In 

addition, the experiments were all performed with small sample sizes (3 replicates for each 

group), and so some important genes might be overlooked because of the lack of statistical 

power using conventional statistical analysis. Thus, modeling spatial dependence explicitly 

may offer a great advantage in these studies.

In summary, the goals of cocaine addiction and depression studies are to identify epigenetic 

changes across multiple conditions. The measurement variability is large for the datasets due 

to the complexity of the sample preparation, and there is strong spatial correlation in 

epigenetic changes across the chromosome. Incorporating such correlation into statistical 

modeling may reduce variability and increase statistical power for the analysis. Motivated by 

these two examples, next we develop Bayesian linear models with spatially varying 

coefficients to analyze such epigenetic data.

3 ANOVA with Spatially Varying Coefficients

3.1 Model specification

Let Yijk be the centralized log ratio of red channel (IP-enriched) vs. green channel 

(background) intensities for probe k of gene j in array i, for i = 1, . . . , I, j = 1, . . . , J and k = 

1, . . . , Kj, where I is the number of arrays, J is the number of genes, and Kj is the number of 

probes for gene j (about 30~50). Here, centralization means that , where 
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is the raw log ratio observed and , so that for each gene j, the 

average of Yijks is 0. We consider ANOVA in the form of linear models for gene j, which 

connects the response to the treatments, conditions or blocks,

(1)

where k indexes the order of probes of the gene.

,  is an I × (L + 1) design matrix with Xi,0 ≡ 1, 

, and , where L is the total number of the explanatory 

variables/covariates under consideration. Assume . Let 

 and  be a (L + 1) × Kj matrix. Then 

is a column vector and  is a row vector. Let 

.

The model in (1) can be used in ChIP-chip experiments under ANOVA setups. In an one-

way ANOVA setting, for example, let Xi,1 equal 1 for the cocaine treatment and 0 for the 

saline treatment. The regression parameter βjk,1 is the difference in some epigenetic 

modification induced by the cocaine treatment. We are interested in whether any βjk,1 is 

significantly different from 0 so that we can further infer which genes have a significant 

difference between the cocaine and saline-treated conditions. In a two-way ANOVA setup, 

for example, in a depression-related study [33], we have a dataset with two different mice 

groups: N (normal) and D (“depressed,” i.e., chronically stressed), and two types of 

treatment: C (saline, i.e., control) and T (chronic antidepressant drug administration). So 

there are 2 × 2 groups: NC, NT, DC, and DT, with replicates within each group. Here, Xi,1 = 

1 for the depressed (stressed) mice and 0 for the normal mice; and Xi,2 = 1 for the 

antidepressant treated mice and 0 for the control mice. We want to study the cross effect of 

depression and drug on the methylation measurements; that is, for a specific gene, whether 

the two groups of mice react differently to the drug (as opposed to the control) in its 

epigenetic profiles. So we need an interaction term Xi,3 = Xi,1 × Xi,2 and testing the 

corresponding coefficient βjk,3 = 0 is our main interest.

For gene j, there often exists significant spatial correlation in real biological effects (such as 

changes in epigenetic profiles) among its probes. As mentioned in the Introduction, this is 

because the probes belong to the same promoter region and are arranged in close physical 

proximity along the chromosome. Thus, to construct the covariance structure, we consider a 

linear neighboring structure and use a first-order autoregressive model for . That is, for j 
= 1, . . . , J, and l = 0, . . . , L,

(2)
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Here, the covariance matrix Bj,l has an AR1 structure: , namely

(3)

where  is the conditional variance of βjk,l given βj,k–1,l.

We should mention that our model uses the idea of spatially varying coefficients, which is 

not new [31]. However, accommodating this idea for use with high-volume and high-density 

epigenetic data under an ANOVA framework is novel. Also, the partial ACF plots from our 

data suggest that the first order autocorrelation dominates higher-order ones so that AR1 

structure appears to be adequate in our applications. In other applications, one may consider 

second or higher order autoregressive models for the regression coefficients. However, in our 

other studies, we find that improvement from using higher-order models is small but the 

computing time may increase substantially.

3.2 Bayesian Framework

Below we describe our Bayesian approach for a specific gene j, and hence subscript j is 

omitted for notational brevity (e.g, Y represents Yj, β represents βj, K represent Kj, etc.). Let 

Θ = (β, σ2, ρ, τ2) be the collection of all (hyper)parameters, where  and ρ = 

(ρ0, . . . , ρL) are introduced by the AR(1) covariance structure of , as discussed in (2). 

Assuming that , ,  and pls are a priori independent for all l or k, the full probability 

model is given by

where π's are prior distributions. For all the variance components, we specify conjugate 

inverse gamma priors, that is, , , where the 

hyperparameters are chosen to make the prior very vague, for example, IG(0.01,0.01). For 

correlation coefficients, it would be natural to consider noninformative uniform priors : 

. Note that all the (hyper)prior distributions are proper, and so the 

posterior distribution p(Θ|Y), which is proportional to p(Y, Θ), is proper.
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We use Markov chain Monte Carlo (MCMC) to draw samples from p(Θ|Y). Under the 

conjugate priors for  and 's, we can show that the full conditionals of 's, 's and 's, 

except for those of ρls, are available in closed forms, and so can be sampled directly. Thus, 

we adopt a Gibbs sampler, in which values of ρl's can be drawn by a built-in Metropolis-

Hastings (M-H) algorithm. Let Θθ denote the collection of all the parameters in Θ except for 

θ. The full conditional posterior distributions of β, σ2, ρ, τ2 are given below.

For l = 0, . . . L,

(4)

where

(5)

For k = 1, . . . , K,

For l = 0, . . . , L,

and

Note that due to the mathematical convenience of using the AR1 structure, sampling the 

regression parameters βk,ls can be simplified from (4) and (5) without using any matrix 

inverse operation that may be very computational intensive for large K. That is, for l = 

0, . . . , L, and k = 1, . . . , K,
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where

3.3 Posterior Inference

Once we obtain posterior draws from p(Θ|Y), we are primarily interested in statistical 

inference based on βjk,ls or their linear functions. For example, in an one-way ANOVA 

experiment, suppose there are L+1 groups in total, of which the reference group is labeled 

by 0. For probe k in gene j, the mean epigenetic profile of the reference group is given by 

βjk,0 and that of Group l is given by βjk,0 + βjk,l for l = 1, . . . L. To compare Group l with the 

reference group in epigenetic profile, we first compute the posterior probability at the probe 

level using samples drawn from the posterior distribution, qjk,l ≡ Pr(|βjk,l| > δ | Data) for 

each probe in gene j, where δ is a cutoff value that can be chosen according to biological 

relevance in applications. For inference at the gene level (i.e., to infer which genes are 

epigenetically different between the two groups), we use the largest value of the posterior 

probabilities among the Kj probes to measure the significance of gene j, that is, 

. The genes having the largest qj,ls are regarded as epigenetically different 

genes between Group l and the reference group. Here, our choice of measuring the 

significance of gene j is made because we are more interested in identifying large local 

jumps than stable changes across the entire promoter region of the gene in the motivating 

studies. Obviously, other choices, such as a p-value from some testing procedure or Bayes 

factor, could be chosen according to biological relevance in other applications. To compare 

any two nonreference groups (say l1 and l2, l1 ≠ l2 ≠ 0), we only need to define the posterior 

probability qjk(l1, l2) ≡ Pr(|βjk,l1 – βjk,l2| > δ | Data) at the probe level and probability qjk(l1, 

l2) ≡ Pr(|βjk,l2| – βjk,l2| < δ | Data) at the level and then as proceed before at the gene level.

For a multi-way ANOVA experiment, we may define epigenetically changed genes 

accordingly, depending on what we are interested in (e.g., main effects, interaction effects, 

or epigenetic difference between two specific groups).
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4 Simulation

To evaluate the performance in detecting epigenetically changed genes, we compared our 

proposed method (with spatially varying coefficients, labeled SVC) to three other methods, 

labeled ANV, ANV-s, SAM and Tilemap, respectively. The first is the regular ANOVA 

method that completely ignores the spatial dependence among probes, which fits the linear 

model (1) for each probe separately; the second is the ANOVA method applied to smoothed 

data using sliding windows of size 5; and the SAM (Significance Analysis of Microar-rays) 

method [40], where the SAM t statistic has been widely used to identify statistically 

significant genes in practice. The last is the Tilemap method [29] using the option of hidden 

Markov Models, which is commonly used for detecting epigenetic changes among groups. 

We conducted two sets of simulation studies, under one-way and two-way ANOVA settings, 

respectively. Within each set of studies, we first examined the performance using data 

generated from AR1 correlation structures. Then we generated data using patterns that are 

similar to what we observe in real data.

4.1 One-Way ANOVA

Settings for Simulation I1-I4—Here, we consider one-way ANOVA models, yijk = βjk,0 

+ βjk,1 + Xi + ∈ijk, where , Xi = 0 for the control group and 1 for the 

treatment group, i = 1, . . . , 6, j = 1, . . . , 2000, and k = 1, . . . 50 (i.e., 3 replicates for each 

group; 2000 genes, each with 50 probes). Out of the 2000 genes, 80% are not epigenetically 

different between the two groups and the corresponding βjk,1's are set to 0.

We conducted four simulation studies (I1-I4) for one-way ANOVA models. In the first study 

I1, we assumed AR1 structures for the spatial correlation in , l = 0, 1. We 

simulated  from  for all the genes. For the 20% epigenetically 

changed genes, we simulated the corresponding  from . We set ρ 

to be 0, 0.5 and 0.75.

In the next two simulation studies, we considered non-AR1 structures for the differences 

between the two groups; that is, βjk,1s for those epigenetically different genes were generated 

to follow simple geometric patterns. Though the true spatial pattern within a gene remains 

unknown, we observed from real data that, for many genes, it was either first increasing and 

then decreasing or nearly flat in some regions. We therefore simulated data using triangle 

and rectangle patterns to roughly approximate such situations. In Simulation I2, we used the 

triangle pattern (the left panel of Figure 3), in which the middle probes (probes 16-35) have 

nonequa βjk,1s with the peak height h = 1.5. In Simulation I3, we used the rectangle pattern 

(the right panel of Figure 3), in which the middle 30 probes have nonzero flat βjk,1s with 

height h = 1. All the βjk,0s were simulated as in Simulation I1 with ρ = 0.5.

In Simulation I4, we generated data from more complex spatial patterns to represent certain 

realistic situations. Environmental changes can induce different types of epigenetic alteration 

profiles. We considered four patterns, corresponding to distinct types of such alterations. For 

the purpose of illustration, we describe them in the context of chronic cocaine-induced 
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alterations in the methylation of lysine 4 of histone 3 (K4) (a transcription factor that plays a 

key role in the NAc reward pathway) (Figure 4 A-D). Figure 4(A) represents a gene at which 

cocaine blocked methylation: the gene is only methylated in saline treated mice (black line), 

but not in cocaine treated mice (red line). Figure 4(B) represents a gene with cocaine 

induced methylation: it is only methlated in the cocaine condition, but not in the saline 

condition. Figure 4(C) represents a gene where cocaine treatment decreases the methylation. 

Figure 4(D) represents a gene in which themethylation occurs at different sites in cocaine 

and saline conditions..

In the fourth study I4, we simulated 2000 genes again, 20% with real changes (5% for each 

of the four patterns above) and 80% without any cocaine induced epigenetic changes 

(Pattern E). In Pattern A and B, the true nonzero epigenetic profiles were both generated 

from 10 times the normal density function fN(μ = 35, σ2 = 9); in Pattern C, they were 

generated from 20 × fN(μ = 35, σ2 = 9) and 10 × fN(μ = 35, σ2 = 9), respectively; in Pattern 

D, the two curves were from 10 × fN(μ = 15, σ2 = 9) and 10fN(μ = 35, σ2 = 9); and in Pattern 

E, the true epigenetic profiles under the two conditions were all set to zero.

Results for I1-I4—For detection of epigenetically changed genes between the treatment 

and control groups, we drew receiver operation characteristics (ROC) curves for the 

proposed method based on qj,1s, where  and , 

as defined in Section 3.3. We set the cutoff δ to be 1. In our pre-liminary numerical 

experiments, we tried different values of δ (i.e., 0.2, 0.5, 1, 1.5, 2), and found selection of the 

cutoff was not crucial for the purpose of comparison since the ROC curves changed little as 

δ varies. For the Tilemap method, we used the largest posterior probability among all the 

probes of a gene to measure the probability of the gene with epigenetic changes. For the 

other three methods ANV, ANV-s and SAM, we used the smallest p–value of the 

corresponding test statistic (for testing βjk,1 = 0) among all the probes of a gene to measure 

the significance of the gene, and then drew ROC curves.

Figure 5 compares the five methods, ANV, ANV-s, SAM, Tilemap and SVC based on ROC 

curves under our one-way ANOVA settings. It is easy to see that ANV is the worst in all the 

settings, except for the first case (AR1 with g=r = 0), where ANV outperforms ANV-s. This 

indicates that simply smoothing data over adjacent probes would hurt the performance in 

detection when data have no autocorrelation. For data with AR1 correlation structures, as ρ 

increases, the performance of ANV-s and Tilemap get better while that of SAM becomes 

worse. The performance of SVC seems to be quite stable at different ρ levels and 

outperforms the others in general. In the next two studies (I2-I3) involving simple patterns of 

the main effect (i.e, triangle and rectangle), we observe the order SVC >SAM 
>Tilemap,ANV-s>ANV in performance consistently. In the last study I4, which perhaps is 

the one simulated to resemble the realistic situation most, SAM performs worse than ANV-s, 
Tilemap and SVC, though it is still much better than ANV. The methods ANV-s and SVC, 
come across each other when the false positive rate is around 0.3. However, SVC is better 

than ANV-s in the left lower corner, which is the region of primary interest for detection 

since researchers often want to control the false positive rate to be reasonably low. In 
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addition, the performance of SVC appears to be better than or comparable to that of Tilemap 
in Study I4.

Table 1 reports the computed mean squared errors (MSEs, averaged over all the probes) for 

estimating the regression parameters of the one-way ANOVA models using ANV, ANV-s 
and SVC. For data with the AR1 correlation structures, SVC can improve ANV in 

estimating both the intercept and main effect for all the three ρ values. For the case ρ = 0, the 

gain is from information borrowing among probes through a hierarchical Bayes setup (i.e., 

Bayesian shrinkage). For ρ > 0, it is from both information borrowing and spatial smoothing. 

By contrast, when estimating the intercept, ANV-s improves ANV only for ρ = 0.75 

(moderately high), and it is worse than ANV for ρ = 0 or 0.5, meaning that smoothing data 

among adjacent probes may hurt the performance in estimation when the autocorrelation 

does not exist or is weak. When estimating the main effect, ANV-s improves ANV for all the 

three ρ values; but the gain is not as big as that of SVC. For ρ = 0, the gain of ANV-s over 

ANV in estimating the main effect (0.300 vs. 0.662 in MSE) is from those non-

epigenetically changed genes (0.141 vs. 0.663) since these genes have zero-valued βjk,1's and 

spatial smoothing is helpful for them. This offsets the loss from smoothing data over the 

probes of epigenetically changed genes with no autocorrelation (0.933 vs. 0.666). For data 

with non-AR1 structures, again, the proposed method is consistently the best in both 

estimating the intercept and main effect, showing that spatial smoothing (even via a simple 

AR1 model for rough approximation) and strength borrowing (via Bayesian shrinkage) 

among probes can greatly improve the efficiency of estimation. Note that ANV-s improves 

estimation of the main effect, but not as much as SVC.

4.2 Two-way ANOVA

Settings for Simulation II1-II3—Now we proceed to consider two-way ANOVA models, 

yijk = βjk,0 + βjk,1 Xi,1, + βjk,2Xi,2 + βjk,3Xi,1Xi,2 + ∈ijk, where , Xi,1 and Xi,2 

represent two factors, each with two levels (e.g., Xi,1 = 0 for the normal condition and 1 for 

the deceased condition; and Xi,2 = 0 for the control and 1 for the treatment); i = 1, . . . , 12, j 
= 1, . . . , 2000, and k = 1, . . . 50 (i.e., 3 replicates for each of the four group; 2000 genes, 

each with 50 probes). Suppose our primary interest is to study the interaction between Xi,1 

and Xi,2; that is, we want to first infer whether any βjk,3 is significantly different from 0 so 

that we can further infer, for which genes, the two factors interact in the epigenetic profiles. 

Out of the 2000 genes, 80% are assumed to have no interaction and the corresponding βjk,3's 

are set to .

We conducted three simulation studies (II1-II3) for two-way ANOVA models. In the first 

study (II1), we assumed AR1 correlation structures for all the parameters. We simulated 

,  and  from  for all the genes. For the 20% genes with 

interactions, we simulated the corresponding  from . We set ρ = 

0.5 again.

In the next two studies, we considered non-AR1 spatial patterns for the nonzero interactions 

of the 20% genes. In Simulation II2, we used the triangle pattern in which the middle probes 
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(probes 16-35) have nonequal βjk,3s with the peak of height h = 1.25 or 1.5. In Simulation 

II3, we used the rectangle pattern, in which the middle 30 probes have flat βjk,3s with height 

h = 0.75, 1, 1.25. All the other parameters were simulated as in Simulation II1.

Results for II1-II3—Table 2 reports the computed MSEs (averaged over all the probes) for 

estimating regression parameters of the two-way ANOVA models using SVC, ANV and 

ANV-s. Note that the two main effects β1 and β2 have the same theoretical MSE since they 

were simulated in the same way under a balanced design. So we combined the results for β1 

and β2 by taking the average. For estimating both the main effects and interaction, we find 

that the performance has the order ANV < ANV -s< SVC in all the two-way settings. As to 

the estimation of the intercept, we can observe ANV-s< ANV < SVC. Clearly, SVC is the 

winner, especially in estimating the interaction, which has substantial improvement over 

ANV and ANV-s.

For identifying genes with interactions, Figure 6 reports ROC curves under our two-way 

settings to compare the methods ANV, ANV-s, and SVC based on the posterior probabilities 

or p-values related to βjk,3s, defined similarly to those for βjk,1s in Section 4.1. Here, SAM is 

excluded for comparison since it is not directly applicable to detect the interaction effects. 

Again, the order in performance is given by ANV < ANV -s< SVC in all the studies. In II2 

and II3 involving the triangle and rectangle patterns, we can observe that as h increases (i.e., 

h reflects the effect size of the interaction term), the performance of the proposed method 

SVC gets better, approaching the upper right corner. By contrast, ANV -s is not as sensitive 

to h as SVC, though it gets a bit better, too. It appears that ANV does not change much with 

h, and the performance in detecting the interaction is poor, only slightly better than the 

method of purely random selection.

5 Applications

5.1 Cocaine addiction study

As mentioned in Section 2.1, the cocaine addiction study used a one-way ANOVA design. 

The histone H3 methylation data were measured by Nimblegen MM8 Mouse Promoter 

arrays and normalized by model-based analysis of two-color arrays (MA2C) software[41]. 

Using our proposed method, we can identify 26 genes (summarized in Table 3) whose 

methylation levels were decreased after the cocaine treatment with posterior probabilities 

greater than 0.90. Using the same criterion, Tilemap with the option of Hidden Markov 

models only identified 3 genes and Tilemap with the option of moving average identified no 

genes when controlling FDR less than 50%. Among these 26 genes identified by our 

proposed method, several of them are biologically interesting and cannot be identified using 

the ordinary ANOVA or SAM t test. For example, chronic ciliary neurotrophic factor 

(CNTF) is a gene that plays an important role in cocaine addiction [42]. Using the SAM t 

test, the CNTF gene ranks 843, while using our proposed method, it ranks 14. In this 

example our proposed method can detect the methylation changes in CNTF which would be 

likely missed by the SAM method. Furthermore, Figure 7, the promoter plot of the Hoxb3 

gene, shows that our proposed method can identify a decrease in methylation over a region 

of several adjacent probes, while the results from the SAM method are much more variable. 
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Gene expression data in [34] indicate that Hoxb3 expression is increased after the cocaine 

treatment, which is consistent with the cocaine-induced epigenetic changes found by our 

method. In addition, our proposed method has identified the methylation changes in several 

cocaine addiction associated genes, such as the methylation decrease in CD44 (the cell 

differentiation antigen) [43] and the methylation increase and decrease in different regions of 

Gria4 (the gene encoding the glutamate receptor subunit GluR4) [44].

5.2 Depression study

Recall that the depression study, as described in Section 2.2, used a two-way ANOVA 

design. The histone H3 methylation data were also measured by Nimblegen MM8 Mouse 

Promoter arrays and normalized by MA2C. We applied the proposed method to the dataset 

and identified 22 genes, all with the posterior probabilities greater than 0.99 for significant 

interactions. Although evaluating the results in real data applications is difficult, we find 

here that the two genes with the highest posterior probabilities of significant interactions, 

Nxph1 and Accn2, are of great interest. They are the top two ranked by our method, while 

they rank much lower using the other methods (e.g., Nxph1 and Accn2 rank 157 and 407, 

respectively, by the regular ANOVA approaches). The Nxph1 gene encodes neurexophilin 1 

α-neurexins; and it has been shown in several studies to be associated with neuroticism and 

severe psychiatric disorders such as suicidal behavior (e.g., [45]). In this study, Figure 8 

shows that, for the Nxph1 gene, the mean diffierences in H3 methylation between the 

imipramine-treated mice and the saline-treated mice are totally different for defeated mice 

(red line) and control mice (black line), with increased H3 methylation seen under defeat 

conditions. There exists a strong interaction between the imipramine and social defeat 

exposures with respect to the epigenetic profiles of Nxph1, which indicates the gene may be 

one of the relevant targets for treatment. The Accn2 gene (which encodes the amiloride-

sensitive cation channel 2, neuronal) is ubiquitously expressed in the nervous system. Our 

data show that H3 methylation at this gene increases after imipramine treatment under defeat 

conditions. Links between Accn2 and anxiety-related behavior have been found in mouse 

models [46]. Further, a recent study has shown that Accn2 knockout mice exhibit reduced 

depression-related behavior [47] so that inhibition of Accn2 could be a novel strategy for the 

treatment of depression [48].

6 Discussion

Motivated by important epigenetic studies in drug addiction and depression fields, we have 

developed ANOVA models with spatially varying coeffients, to analyze epigenetic profiling 

data with spatial correlation existing in biological effiects of interest instead of measurement 

errors. Through simulation studies, we have shown that the proposed method SVC can offer 

better efficiency in both parameter estimation and gene detection than the competing 

methods. This is not surprising. As mentioned before, the regular ANOVA method (ANV) 
analyzes data for different probes of the same gene in a completely separate way, hence no 

strength borrowing or spatial smoothing is done here. ANV-s offers one step forward from 

ANV, by smoothing the observed data over adjacent probes of the same gene via sliding 

windows, to take into account the spatial dependence. SAM is a variant of two-sample t-test 

with a variance stabilizing factor, which borrows information from other relevant probes for 
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error estimation. However, it ignores the spatial correlation. By contrast, our method SVC 
does both. First of all, through a Bayesian hierarchical approach, SVC can borrow 

information from the other probes of the same gene, which is much better than modeling 

each probe independently. Secondly, SVC can conduct spatial smoothing by modeling the 

spatial dependence among neighboring probes explicitly through the AR1 correlation 

structure. Though AR1 can only provide a rough approximation to real spatial patterns, SVC 
is clearly better than regular hierarchical Bayes models using an identity correlation matrix 

in (2), the latter of which offers the advantage of information borrowing through shrinkage 

but no spatial modeling of the probes. Through real data examples, we have shown that our 

method can identify epigenetic changes that might be overlooked by other methods and also 

provide biologically meaningful results.

In our applications, we used the AR1 model to account for the spatial patterns among 

neighboring probes. The AR1 model assumes the measurements from adjacent probes are 

autocorrelated, i.e., the adjacent probes tend to have more similar values than would be 

expected by random chance. The histograms of the ACF1 in Figure 2 demonstrate that there 

is positive correlation between adjacent probes, and the means of ACF1 are 0.25 and 0.24 in 

saline and cocaine-treated conditions, respectively. In addition, we also plotted the 

histograms of partial autocorrelation of lag 2 (PACF2), to check whether the first-order auto-

correlation structure is adequate to capture the spatial patterns. The PACF2 is the correlation 

in the measurements between a probe and its second neighbor with the linear dependence of 

its first neighbor removed. The PACF2 histograms (not shown here) indicate that the partial 

autocorrelations of lag 2 are symmetric around 0, with means equal to −0.02 and −0.03 in 

saline and cocaine-treated conditions respectively. So the AR1 model is adequate in our 

applications. However, depending on real data, the higher-order autocorrelation structure, 

such as AR2, might fit other applications better. In those cases, our model can be easily 

extended to accommodate the higher-order structures.

A typical characteristic of high throughput data is the existence of significant spatial 

correlation caused by underlying biological processes. Also, ANOVA designs are frequently 

used in many scientific experiments to avoid bias in comparison. With (or even without) 

slight modification or straightforward extension, our method could be generally purposed 

and provide a useful tool to analyze spatially correlated data from biomedical studies using 

ANOVA designs. For example, our method, motivated by the applications using promoter 

arrays, can be applied to whole genome tilling arrays, too. In this case, we would fit the 

regression model in (1) for all the probes in each chromo-some instead of probes in each 

promoter region. In principle, the model could also be generalized to ChIP-seq data, if we 

use Poisson or Negative Binomial distribution instead of normal distribution to model the 

involved count data. However, due to enormous amounts of data generated from ChIP-Seq 

experiments, the computation of Bayesian MCMC could be much more intensive for ChIP-

Seq data. Therefore, further development is needed to modify the proposed model and 

algorithm to analyze ChIP-seq data efficiently.
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Figure 1. 
Cocaine-induced epigenetic changes including H4 acetylation and H3methylation at the 

promoter regions of (A) Cart and (B) Cdk5 genes (reproduced from [34])
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Figure 2. 
Cocaine addiction study: the histograms of the ACF1 of methylation levels in the promoter 

regions for genes in saline (left panel) and cocaine (right panel) treated mice.
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Figure 3. 
Illustration of the triangle and rectangle patterns in Simulation I2-I3 under one-way 

ANOVA. The red line represents the true epigenetic changes (between the treatment and 

control groups) and red dots represent the simulated data (truth plus error term) for 

epigenetically changed genes, while the black line and dots are for genes not epigenetically 

changed.

Xiao et al. Page 20

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2016 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Illustration of four different types of epigenetic changes in Simulation I4 under one-way 

ANOVA. Black and red lines represent the true epigenetic profiles under the saline (control) 

condition and the cocaine (treatment) condition, respectively; while black dots and red dots 

represent the simulated data (truth plus error terms) under saline and cocaine conditions 

respectively.
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Figure 5. 
One-way ANOVA settings: ROC curves for detecting epigenetically changed genes using 

ANV (regular ANOVA), ANV-s (ANOVA with smoothed Y), SAM, SVC (the proposed 

method) and Tilemap. “AR1” represents the first-order autocorrelation and the number after 

“-” indicates the value of the correlation ρ. “Tr” represents triangle and “Re” represents 

rectangle, and the number after “-” indicates the height. “Mix” represents the mixed five 

patterns A-E in I4.
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Figure 6. 
Two-way ANOVA settings: ROC curves for detecting genes with interactions using ANV 
(regular ANOVA), ANV-s (ANOVA with smoothed Y), SVC (the proposed method). “AR1” 

represents the first-order autocorrelation with ρ = 0.5. “Tr” represents triangle and “Rec” 

represents rectangle, and the number after “-” indicates the height.
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Figure 7. 
Cocaine addiction study: promoter plot for Hoxb3. In the left panel, the red and blue dots 

represent the histone modifications for triplicates in the saline and cocaine treatment, 

respectively, while the red and blue dotted lines plot the mean values correspondingly. In the 

right panel, the black line plots the posterior probability of decreasing the methylation level 

after the cocaine treatment, the green line plots the SAM t values and the light blue line 

represents the posterior probability from Tilemap.
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Figure 8. 
Depression study: the mean differences in H3 methylation between imipramine- and saline-

treated mice. The black line represents the difference for control animals, and the red line 

represents the difference for defeated animals.
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Table 1

One-way ANOVA settings: MSEs for estimating regression parameters using ANV (regular ANOVA), ANV-s 
(ANOVA with smoothed Y) and SVC (the proposed method). “AR1” represents the first-order autocorrelation 

and the number after “-” indicates the value of the correlation ρ. “Tr” represents triangle and “Rec” represents 

rectangle, and the number after “-” indicates the height. “Mix” represents the mixed five patterns A-E in I4.

Intercept Main Effect

Sim. # Pattern ANV ANV-s SVC ANV ANV-s SVC

I1

AR1-0 0.332 0.856 0.209 0.662 0.300 0.124

AR1-0.5 0.333 0.503 0.234 0.663 0.229 0.111

AR1-0.75 0.333 0.284 0.276 0.666 0.184 0.090

I2 Tr-1.5 0.332 0.502 0.229 0.663 0.140 0.062

I3 Rec-1 0.332 0.504 0.230 0.660 0.142 0.062

I4 Mix 0.330 0.070 0.040 0.660 0.140 0.050
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Table 3

A list of the 26 genes with posterior probabilites greater than 0.90 in the proposed method

SEQ_ID accession Name Probability

chr7:29890930-29893430 NM_009944 Cox7a1 0.990

chr9:62473866-62476366 BC058716 Itga11 0.980

chr16:88639987-88642487 NM_010671 Krtap13 0.970

chr11:96157698-96160358 NM_010458 Hoxb3 0.970

chr9:7556459-7558959 NM_008611 Mmp8 0.960

chr17:37754642-37757142 NM_146831 Olfr133 0.960

chr11:79319714-79322214 NM_019409 Omg 0.960

chr2:86395165-86397665 NM_207674 Olfr1082 0.950

chr19:53651758-53654258 NM_007790 Cspg6 0.950

chr5:65771465-65773965 NM_133697 1110003E01Rik 0.941

chr17:36921935-36924435 NM_001011721 Olfr102 0.941

chr4:119133663-119136163 NM_008190 Guca2a 0.931

chr5:27378179-27380679 NM_207282 B930011P16Rik 0.931

chr2:87170372-87172872 NM_146348 Olfr1121 0.931

chr19:12845472-12847972 NM_053007 Cntf 0.931

chr16:26904707-26907207 NM_001013761 Gm606 0.931

chr9:66847857-66850357 NM_024427 Tpm1 0.931

chr2:102702004-102704504 NM_001039150 Cd44 0.921

chr4:62009729-62013375 NM_021498 Pole3 0.921

chr4:43651034-43653534 BC042470 Npr2 0.921

chr2:11621388-11624200 NM_008358 Il15ra 0.911

chr11:98855349-98857849 NM_010517 Igfbp4 0.911

chr9:4795642-4798142 NM_019691 Gria4 0.901

chr17:37197904-37200404 NM_146287 Olfr114 0.901

chr19:44384636-44387136 NM_183216 Scd4 0.901

chr9:59548114-59550614 NM_027838 Senp8 0.901
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