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Abstract

One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA 

(vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides 

for efficient viral gene expression as well as for the segregation of the viral genomes to daughter 

cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected 

with HIV-1 can resist the action of potent antiretroviral drugs and remain dormant for decades. 

Intensive research has been dedicated to understanding the catalytic mechanism of integration, as 

well as the viral and cellular determinants that influence integration site distribution throughout the 

host genome. In this review we summarize the evolution of techniques that have been used to 

recover and map retroviral integration sites, from the early days that first indicated that integration 

could occur in multiple cellular DNA locations, to current technologies that map upwards of 

millions of unique integration sites from single in vitro integration reactions or cell culture 

infections. We further review important insights gained from the use of such mapping techniques, 

including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene 

therapy vectors, or AIDS patients on suppressive antiretroviral therapy (ART). These insights span 

from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of 

integration, to the roles of host cellular proteins in mediating global integration distribution, to the 

potential relationship between genomic location of vDNA integration site and retroviral latency.
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Retroviruses are parasites that exploit the replication machinery of their hosts to form stable 

genetic domains, allowing their consistent replication throughout the lifespan of the infected 

host cell. Retroviral infection is currently incurable for multiple reasons. First, compounds 

developed to inhibit specific steps in the viral replication cycle lose potency over time due to 

the emergence of resistance mutations within the drug target. Second, even under pressure 

from suppressive ART, a latent reservoir of infected cells persists – the origin of which is not 
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fully recognized. Latently infected cells are capable of persisting primarily because the 

integrated provirus is not expressed, making it invulnerable to current treatment 

methodologies. Therefore, the process of integration underlies the current incurability of 

retroviral infection. Over the last four decades, a wealth of knowledge has been uncovered 

about the catalytic process of integration, the involvement of host cells in facilitating this 

process, and the virus genus-specific distributions of integration sites in animal cell 

genomes. The key to developing this knowledge has been the ability to specifically recover 

and characterize retroviral integration sites from the bulk of background host genomic DNA 

(gDNA). Methodologies to accomplish this feat have been exponentially optimized through 

time. Initial success was gained by detecting proviruses in different locations within infected 

tissue culture cells, whereas the current state of technology can resolve millions of 

integration events from a single infection experiment. In this review we summarize the 

historical improvement of integration site detection techniques, as well as important insights 

about the mechanics of the integration process. These insights have significantly impacted 

not only antiretroviral efforts, but also the understanding of cancer gene networks and the 

development and improvement of gene therapy vectors.

The catalytic process of retroviral integration

Soon after entering a susceptible target cell, the viral enzyme reverse transcriptase replicates 

the two plus-sense copies of the viral RNA (vRNA) genome into a linear, double stranded 

DNA molecule containing a copy of the viral long terminal repeat (LTR) at each end (Hu 

and Hughes, 2012). The INs catalyze two separate activities, which are known as 3′-

processing and DNA strand transfer, to accomplish vDNA integration (Craigie and 

Bushman, 2012). The catalytic process (depicted for HIV-1 in Figure 1) begins as units of IN 

within the viral preintegration complex (PIC) multimerize upon the nascent vDNA termini 

to form the intasome, the IN-vDNA complex from wherein IN catalyzes integration (Chen et 

al., 1999, Li et al., 2006, Hare et al., 2010, Hare et al., 2012). The X-ray crystal structure of 

the prototype foamy virus (PFV) intasome has revealed the active configuration of this IN to 

be a tetramer (Hare et al., 2010, Maertens et al., 2010, Hare et al., 2012), and HIV-1 (Wang 

et al., 2001, Faure et al., 2005, Li et al., 2006, Bera et al., 2009, Krishnan et al., 2010, Kessl 

et al., 2011) and α-retroviral avian sarcoma-leukosis virus (ASLV) (Yang et al., 2000, Bao et 

al., 2003) IN have also been proposed to function as tetramers. IN cleaves the LTR ends of 

the vDNA adjacent to conserved 5′-CA-3′ dinucleotides during 3′-processing to yield 

recessed, chemically reactive CAOH-3′ hydroxyl groups (Fujiwara and Mizuuchi, 1988, 

Roth et al., 1989, Brown et al., 1989, Pauza, 1990, Lee and Coffin, 1991, Hare et al., 2012). 

Once inside the cell nucleus, the intasome docks with host cellular tDNA to form the pre-

catalytic target capture complex (TCC), with the recessed CAOH ends of vDNA poised for 

chemical attack (Hare et al., 2012, Maertens et al., 2010). During DNA strand transfer, the 

CAOH-3′ termini are used by IN to cleave the complementary strands of tDNA in a 

staggered fashion and simultaneously join the vDNA ends to the tDNA 5′-phosphates 

(Engelman et al., 1991). Due to the nature of the staggered tDNA cleavage, the resulting 

DNA recombination intermediate contains single stranded tDNA gaps adjacent to the joined 

vDNA ends (Fujiwara and Mizuuchi, 1988, Brown et al., 1989). These single stranded gaps 

are repaired by host cell enzymes subsequent to disassembly of the strand transfer complex 

Serrao and Engelman Page 2

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(STC), which for HIV-1 yields a 5-bp target site duplication (TSD) flanking the stably 

integrated provirus (Vincent et al., 1990, Vink et al., 1990). The spacing between staggered 

top and bottom tDNA strand cuts during strand transfer differs depending on the type of 

retrovirus, and TSDs accordingly range in length from 4-bp for spumaviruses and γ-

retroviruses to 6-bp for α-, β-, and δ-retroviruses (Shimotohno et al., 1980, Dhar et al., 1980, 

Hughes et al., 1981, Majors and Varmus, 1981, Neves et al., 1998, Kim et al., 2010). The 

size of the TSD that is generated by ε-retroviral integration is currently unknown.

The lentiviruses, which include HIV-1, can efficiently infect non-dividing target cells 

whereas other types of retroviruses, typified by the γ-retrovirus Moloney murine leukemia 

virus (Mo-MLV), cannot (Lewis et al., 1992, Roe et al., 1993, Lewis and Emerman, 1994). 

This biology is reflective of the mechanisms used by different types of retroviruses to access 

the nuclear environment: whereas HIV-1 PICs are actively transported through the nuclear 

pore complex (NPC) (Bukrinsky et al., 1992), Mo-MLV PICs require the dissolution of the 

nuclear membrane in order to access the chromosomal targets for vDNA integration 

[reviewed in: (Matreyek and Engelman, 2013)]. The ability to usurp the nuclear transport 

system of the cell is apparently shared by additional types of retroviruses. For examples, the 

β-retrovirus mouse mammary tumor virus (MMTV) has been reported to transduce growth-

arrested cells as efficiently as HIV-1 (Konstantoulas and Indik, 2014), whereas ASLV 

possesses a phenotype that is intermediary to those of Mo-MLV and HIV-1 (Hatziioannou 

and Goff, 2001, Katz et al., 2002). HIV-1 integration tends to occur into chromatin that is 

affiliated with the nuclear periphery, indicating that PIC transport through the NPC and 

integration may be mechanistically linked (Di Primio et al., 2013, Marini et al., 2015, Lelek 

et al., 2015).

Early techniques for detecting retroviral integration

Techniques for retrieving proviral DNA from infected cells and mapping the integration sites 

have matured greatly over the last four decades, leading to exponential increases in the 

efficiencies through which sites were recovered (Figure 2). The capacity of cellular gDNA 

fragments that were made by restriction endonuclease digestion to form infectious virus was 

established in some of the earliest work (Battula and Temin, 1977, Battula and Temin, 

1978). As activity mapped to several gDNA fragments, these studies importantly proved that 

integration could occur at more than a single site in the host genome. Experimental 

resolution was incrementally increased in subsequent studies when the digested and 

electrophoretically separated gDNA was subjected to Southern blotting using vDNA probes 

(Keshet and Temin, 1978, Steffen and Weinberg, 1978, Bacheler and Fan, 1979, Cohen et 

al., 1979, Ringold et al., 1979, Peters et al., 1986). The increased sensitivity of these 

experiments further solidified the understanding that retroviruses can integrate into multiple 

gDNA locations, but distinguishing between random integration and integration into a large 

number of preferred sites was not possible at this point. Preliminary insight into integration 

distribution was gleaned as host gDNA was fractionated based on various parameters such as 

length or GC content prior to Southern blotting (Franklin et al., 1983, Salinas et al., 1987). 

This for the first time allowed assignment of integration sites to certain chromosomes or 

GC-rich gDNA regions.
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The ultimate marriage of next-generation sequencing and ligation-mediated 

PCR

DNA sequencing technology was obviously critical to obtain integration site sequences. 

Initial sequences of retroviral integration sites were determined by Maxam Gilbert chemical 

cleavage (Maxam and Gilbert, 1977) or dideoxy sequencing (Sanger et al., 1977, Maat and 

Smith, 1978) using fractionated gDNA fragments following restriction endonuclease 

digestion (Shimotohno et al., 1980, Shimotohno and Temin, 1980, Dhar et al., 1980, Hughes 

et al., 1981, Fitts and Temin, 1983). These studies laid important groundwork for the 

classification of different retroviral TSDs, and for the first time highlighted that integration 

was related to DNA transposition as transposition was known to generate short TSDs 

flanking these mobile genetic elements (Calos et al., 1978, Johnsrud et al., 1978, Kleckner, 

1979). The subsequent development of the polymerase chain reaction (PCR) provided a 

boon for the burgeoning field of retroviral integration site selection, as the technique greatly 

simplified the recovery and characterization of specific vDNA-gDNA junctions (Figure 2). 

Inverse PCR (Ochman et al., 1988, Triglia et al., 1988) was an early application of the 

technique to integration site sequencing. Specifically, it was used to amplify self-ligated 

gDNA fragments using outward-facing primers complementary to a known sequence, for 

example the viral LTR, prior to molecular cloning and dideoxy sequencing (Silver and 

Keerikatte, 1989, Jin et al., 2002). Using forward and reverse PCR primers that annealed to 

two different known sequences afforded linear amplification of vDNA-gDNA junctions. An 

early example of this approach included providing Mo-MLV with a characterized tDNA 

substrate by co-infecting cells with the SV40 polyomavirus that reaches high copy number 

as an unintegrated episome in cell nuclei (Pryciak et al., 1992). SV40-specific primers could 

be used in tandem with Mo-MLV LTR primers to amplify integration sites that occurred into 

this excess tDNA source. An alternative to viral co-infection involved designing primers to 

pseudo-randomly prime off of gDNA sequences when integration happened to occur within 

range (Sorensen et al., 1993, Butler et al., 2001, Gentner et al., 2003). Such work formed the 

basis of the so-called Alu real-time PCR assays for determining the bulk level of HIV-1 

integration in cell culture and in patient samples (Brussel et al., 2005, De Spiegelaere et al., 

2014). However, the major breakthrough in recovery efficiency of individual integration sites 

occurred with the development of ligation-mediated PCR, or LM-PCR (Rosenthal and 

Jones, 1990, Cavrois et al., 1995). In this method gDNA is digested with restriction 

enzymes, and then an oligo-cassette (also called linker) containing a compatible “sticky” end 

is ligated to all digestion fragments. PCR amplification of integration sites is then 

accomplished using primers complementary to the viral LTR and the linker sequence 

(Vandegraaff et al., 2001, Schroder et al., 2002, Wu et al., 2003). Along with the completion 

of the human, mouse, and other host genome reference sequences, this marriage of library 

construction and DNA sequencing led to a wealth of insights into the integration site 

distribution patterns of different types of retroviruses (Schroder et al., 2002, Wu et al., 2003, 

Mitchell et al., 2004).

The combination of LM-PCR amplification with powerful next-generation sequencing 

(NGS) platforms such as pyrosequencing from 454 Life Sciences (Margulies et al., 2005, 

Wang et al., 2007) and DNA cluster-based sequencing from Illumina (Gillet et al., 2011) 
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sent the number of recoverable integration sites skyrocketing, from the low hundreds prior to 

the use of NGS to ultimately hundreds of thousands and millions (LaFave et al., 2014, De 

Ravin et al., 2014, Maskell et al., 2015) (Figure 2). Substituting sonication for restriction 

endonuclease digestion as the way to fragment gDNA (Gillet et al., 2011) has additionally 

afforded the monitoring of identical retroviral integration sites from unique gDNA sources. 

With NGS, it can be difficult to ascertain if the repeated determination of a unique 

integration site was due to preferential PCR amplification during library construction or 

something more interesting, for example the presence of the exact same integration site 

among different cells in the queried population. Sonication, which cleaves gDNA in a 

relatively sequence-independent manner, has afforded the identification of unique linker 

attachment points on multiple sequence reads with the identical integration site (Gillet et al., 

2011, Maldarelli et al., 2014, Wagner et al., 2014).

Retroviruses integrate at multiple gDNA locations

As the initial details of retroviral replication were being uncovered (Temin, 1971, Bishop, 

1975, Vogt, 1977) it became a point of interest to determine where in the host genome 

integration occurred and whether the distribution of proviral DNA was random, biased 

toward certain genomic regions, or perhaps targeted to a limited set of loci. Southern 

blotting as mentioned provided some insight, as digested gDNA exhibited multiple different 

restriction patterns when queried with virus-specific probes (Kettmann et al., 1979, Gilmer 

and Parsons, 1979). The detection of differently sized restriction fragments implied 

integration into unique regions of the genome, and therefore integration was clearly not 

always directed to the same place. But did this mean that integration occurred randomly, or 

rather that specific regions or annotations were favorable? A primer extension-based assay 

that queried the frequency of integration into a handful of regions of the chicken cell genome 

indicated that most of that genome was accessible for integration (Withers-Ward et al., 

1994), but numerous studies using finer mapping techniques have since determined that 

distribution is nonrandom by uncovering virus-specific preferences for particular tDNA 

sequences and chromosomal annotations.

Mechanism of retroviral tDNA base preferences

Retroviruses exhibit reproducible tDNA nucleotide preferences at integration sites (Shih et 

al., 1988, Chou et al., 1996, Bor et al., 1996, Stevens and Griffith, 1996, Leclercq et al., 

2000, Holman and Coffin, 2005, Wu et al., 2005, Valkov et al., 2009, Ballandras-Colas et al., 

2013, Serrao et al., 2015). Although these base preferences are relatively weakly conserved, 

the mechanics behind their selectivity has been resolved for different retroviruses. The 

groundbreaking crystallization of PFV TCC and STC structures revealed that IN 

accommodates tDNA with a severe central kink, which facilitates strand transfer by 

unstacking the base pair at the very center of the targeted stretch of DNA to place scissile 

phosphodiester bonds at the IN active sites for strand transfer (Maertens et al., 2010). 

Alignment of PFV integration sites accordingly revealed preference for the most flexible 

dinucleotides (pyrimidine/purine, or YR) – and selection against the most rigid dinucleotides 

(purine/pyrimidine, or RY) – at the central position. Target DNA distortion did not involve 

IN interactions with the flexible, unstacked central base pair, but rather with distal 
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nucleotides at either end of the 4-bp TSD region. PFV IN residues Ala188 and Arg329 

mediated side chain-specific contacts with the tDNA, and the sequencing of in vitro 
integration reaction products that were generated using IN mutant proteins resulted in tDNA 

base preferences that were altered in ways predicted by the nucleoprotein interactions 

observed in the crystal structures (Maertens et al., 2010).

HIV-1 IN-tDNA interactions analogous to those illuminated in the PFV intasome crystal 

structures have been shown to similarly motivate the selection of specific, flexible 

dinucleotides at the centers of these integration sites (Serrao et al., 2014). As mentioned 

previously, HIV-1 integration generates 5-bp TSDs, which a dinucleotide step analysis 

revealed to on average be composed of RYXRY (where X is any base). As was determined 

for PFV, this specific signature enforces for flexible YR dinucleotides at the two center 

positions of the 5-bp TSD while selecting against rigid RY dinucleotides at these positions. 

The structural mechanics of HIV-1 base preferences also resembled those of PFV, as HIV-1 

IN residue Ser119 (analogous to PFV IN residue Ala188) was responsible for determining 

analogous base preferences relative to the points of vDNA insertion (Serrao et al., 2014). 

This finding was in line with prior (Appa et al., 2001, Harper et al., 2001, Nowak et al., 

2009) and subsequent (Demeulemeester et al., 2014) studies that implicated Ser119 in the 

process of HIV-1 tDNA site selection. The analogous residue in Mo-MLV IN, Pro187, plays 

the same role as Ala188 in PFV IN and Ser119 in HIV-1 in determining tDNA base 

selectivity (Aiyer et al., 2015).

A meta-analysis of thousands of integration sites generated by 12 different retroviruses has 

revealed significant enrichment for flexibility signatures at the central positions of 

integration sites across the studied viruses (Serrao et al., 2015). The extent of central tDNA 

flexibility was moreover inversely proportional to TSD length. The examined viruses 

harbored a neutral, compact amino acid at the position analogous to Ala188 in PFV, and the 

polarity of the amino acid side chain correlated with the positioning of base preference 

significance relative to the points of vDNA insertion – a finding that was since confirmed by 

analyzing the behavior of mutants of the non-polar Pro187 side-chain in Mo-MLV IN (Aiyer 

et al., 2015). Taken together these studies imply that, though retroviral INs have structurally 

evolved to target unique nucleotide signatures, the common functional purpose of integration 

site base preferences may be to generate strand transfer-facilitating central tDNA distortion 

within the TCC. In this vein, the degenerate nature of tDNA base preference conservation at 

retroviral integration sites in large part reflects the multitude of nucleotide combinations that 

on average spawn central (YR) flexibility signatures. Moreover, retroviruses that generate 6-

bp TSDs may need to bend tDNA less rigorously to facilitate strand transfer than the viruses 

that generate 4-bp and 5-bp TSDs (Serrao et al., 2015).

Integration is favored within flexible, nucleosome-bound tDNA

Some of the earliest reports of linkage between integration sites and genomic features 

involved the association of Mo-MLV and ASLV integration with DNase I hypersensitive 

sites and actively transcribed regions of the genome (Robinson and Gagnon, 1986, Vijaya et 

al., 1986, Rohdewohld et al., 1987, Scherdin et al., 1990, Mooslehner et al., 1990, Lewinski 

et al., 2006, Roth et al., 2011). The level of cellular gene transcriptional activity has since 
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been demonstrated to positively correlate with the integration targeting of additional 

retroviruses (Zoubak et al., 1994, Jordan et al., 2001, Schroder et al., 2002, Mack et al., 

2003, Mitchell et al., 2004, Lewinski et al., 2005, Trobridge et al., 2006, Monse et al., 2006, 

Kang et al., 2006, Moalic et al., 2006, Hacker et al., 2006). Bent DNA – and specifically 

DNA bent around nucleosomes – is a highly favored substrate for integration (Milot et al., 

1994, Pruss et al., 1994a, Muller and Varmus, 1994, Pruss et al., 1994b, Wang et al., 2007, 

Roth et al., 2011, Serrao et al., 2015, Naughtin et al., 2015). This may seem counterintuitive, 

as on the one hand DNase I hypersensitivity and gene transcription are both correlated with 

open, accessible chromatin (which would be logical for IN to be attracted to), while 

nucleosomes on the other hand are found with the highest density in heterochromatin [see 

(Bell et al., 2011) for review]. Also intriguing is that chromatin density in the regions 

surrounding integration sites can negatively modulate the DNA strand transfer activity of 

some retroviral INs, while having the opposite effect on other proteins (Taganov et al., 2004, 

Lesbats et al., 2011, Benleulmi et al., 2015). It nonetheless appears that, regardless of viral 

preferences for chromatin density in the region surrounding the average integration site, 

distorted phosphodiester bonds are generally favored by IN at the points of integration 

(Maertens et al., 2010, Serrao et al., 2014, Serrao et al., 2015, Aiyer et al., 2015), and 

nucleosomes provide for natural sources of DNA distortion. The mechanism of how 

nucleosome structure could accommodate the natural propensity to integrate into flexible 

tDNA sequences was recently revealed through the cryo-electron microscopy structure of the 

PFV intasome in complex with a bound nucleosome (Maskell et al., 2015). The structure 

revealed novel interactions between IN amino acids and one H2A-H2B heterodimer, as well 

as a secondary gyre of wrapped tDNA that was separate from where integration occurred. 

These interactions afforded a ~7 Å separation of the tDNA sequence from the histone 

surface, allowing the formation of the severe central bend in tDNA that was observed in the 

X-ray crystal structure of the TCC with naked tDNA (Maskell et al., 2015).

It is noteworthy that the propensity to integrate into nucleosomal tDNA may not be shared 

among all retroviruses. In particular, tDNA sequences surrounding the sites of porcine 

endogenous retrovirus (PERV) and MMTV integration did not exhibit characteristics of 

nucleosomal DNA, indicating that these two viruses on average select for sites that are not 

associated with chromatinization (Serrao et al., 2015). While MMTV integration yields 6-bp 

TSDs, PERV generates 4-bp TSDs. PERV accordingly seems to seek out optimally distorted 

tDNA without the assistance of nucleosome docking, possibly due to unique IN-tDNA 

contacts mediated by this intasome.

Retroviruses exhibit unique preferences for genomic annotations

The answer to the question of “why” some retroviruses (Mitchell et al., 2004, Narezkina et 

al., 2004, Faschinger et al., 2008, de Jong et al., 2014, Konstantoulas and Indik, 2014) favor 

integration in or nearby genes that exhibit relatively high expression levels is not completely 

understood, though enhancement of viral transcription is a logical assumption (Jahner and 

Jaenisch, 1980, Fincham and Wyke, 1991, Zoubak et al., 1994, Jordan et al., 2001, Jordan et 

al., 2003, Bushman, 2003, Lewinski et al., 2005, Meekings et al., 2008). Despite this, a lot 

has been learned about the question of “how” integration targeting is accomplished. Cellular 

cofactors that engage viral PICs can guide integration to distinct areas of the host genome 
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[recently reviewed in (Kvaratskhelia et al., 2014, Craigie and Bushman, 2014, Debyser et al., 

2015)]. Dating back to the initial discoveries that HIV-1 and Mo-MLV integration sites 

cluster within gene bodies (Schroder et al., 2002) and promoters (Wu et al., 2003), 

respectively, measurements of integrations within RefSeq genes or in proximity to promoter-

associated features such as transcription start sites (TSSs) and CpG islands have been used 

as traditional metrics to quantitatively compare integration site distribution phenotypes 

among different viruses. Figure 3 provides a summary of the genomic integration site 

preferences of multiple retroviral genera with respect to the structure of an average 

transcription unit. Gammaretroviruses such as Mo-MLV exhibit the greatest extent of TSS 

and CpG targeting of all viral genera (Scherdin et al., 1990, Wu et al., 2003, Mitchell et al., 

2004, Moalic et al., 2006, Tsukahara et al., 2006, Dong et al., 2007, Kim et al., 2008, Moalic 

et al., 2009, De Ravin et al., 2014, LaFave et al., 2014, Serrao et al., 2015), while the 

lentiviruses target RefSeq transcription units and gene-dense regions of the genome more so 

than other retroviruses (Schroder et al., 2002, Mack et al., 2003, Mitchell et al., 2004, Crise 

et al., 2005, Hacker et al., 2006, Kang et al., 2006, Monse et al., 2006, Marshall et al., 2007). 

The majority of gene-tropic lentiviral integrations occur within introns (Han et al., 2004, 

Ikeda et al., 2007, Shan et al., 2011, Maldarelli et al., 2014, Wagner et al., 2014, Cohn et al., 

2015), presumably due to the fact that introns are generally much larger than exons. The α-, 

β-, and δ-retroviruses display more random distributions relative to genes and promoter-

associated annotations than do either the lenti- or γ-retroviruses (Mitchell et al., 2004, 

Narezkina et al., 2004, Derse et al., 2007, Faschinger et al., 2008, Konstantoulas and Indik, 

2014), while the spumavirus PFV displays the unique phenotype to preferentially avoid gene 

bodies yet target promoters at a level that is intermediate to the γ- and lentiviruses 

(Trobridge et al., 2006, Nowrouzi et al., 2006, Maskell et al., 2015). Thus, it is apparent that 

different cellular forces help to govern the integration site targeting of different classes of 

retroviruses.

The involvement of LEDGF/p75 in tethering lentiviral integration to genes

Integration site targeting by host factors is most thoroughly understood at present for the 

lentiviruses. A variety of cellular proteins have been characterized for their ability to bind 

HIV-1 IN, stimulate its catalytic activity in vitro, and to potentially play a role in HIV-1 

infection [reviewed in (Van Maele et al., 2006, Engelman, 2007)], but none more so than 

lens epithelium-derived host factor/p75 (LEDGF/p75). LEDGF/p75 was originally 

discovered to associate with ectopically expressed HIV-1 IN in HEK293T cells and to 

stimulate HIV-1 IN catalytic activity in vitro (Cherepanov et al., 2003). Subsequent work 

revealed that the binding of LEDGF/p75 to IN is lentivirus-specific (Llano et al., 2004, 

Busschots et al., 2005, Cherepanov, 2007) and that LEDGF/p75 is critical for efficient 

lentiviral replication (Llano et al., 2006a, Vandekerckhove et al., 2006, Shun et al., 2007, 

Schrijvers et al., 2012a, Fadel et al., 2014).

LEDGF/p75 functions as a bimodal tether to target the lentiviral intasome to specific regions 

of chromatin. On one side of the tether is the N-terminal region of LEDGF/p75, which 

contains a PWWP (Pro-Trp-Trp-Pro) domain – a type of Tudor domain – as well as charged 

regions and a pair of AT-hook DNA binding motifs that work together to confer constitutive 

chromatin association (Turlure et al., 2006, Llano et al., 2006b). The PWWP domain in 
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particular recognizes histone 3 tails that are tri-methylated on Lys-36 (H3K36me3) 

(Pradeepa et al., 2012, Eidahl et al., 2013), an epigenetic mark that positively correlates with 

transcriptional elongation (Bannister et al., 2005) and sites of HIV-1 integration (Roth et al., 

2011). The C-terminal side of the tether contains the IN-binding domain (IBD), which is 

necessary and sufficient to bind HIV-1 IN in vitro (Cherepanov et al., 2004). Single amino 

acid substitutions at either end of the tether, for example the W21A change in the PWWP 

domain or the D366N change in the IBD, are sufficient to effectively break tethering 

function and render the mutant LEDGF/p75 protein unable to support HIV-1 integration 

(Cherepanov et al., 2005, Llano et al., 2006a, Shun et al., 2007, Shun et al., 2008, Botbol et 

al., 2008).

The involvement of LEDGF/p75 in genic integration distribution was validated by depleting 

the protein from cells prior to lentiviral infection using either RNA interference (Ciuffi et al., 

2005) or gene knockout (Shun et al., 2007, Marshall et al., 2007, Schrijvers et al., 2012a). 

Under these conditions integration into transcription units was reduced, concomitant with 

increases in integration in the vicinity of normally disfavored promoter-associated features 

such as TSSs and CpG islands. Although lentiviral infectivity could be considerably reduced 

by LEDGF/p75 depletion, significant levels of virus infection remained, and the 

distributions of the residual proviruses were far from random. This implied that although 

LEDGF/p75 plays an important integration co-factor role, it is not essential for lentiviral 

infection or integration, and that additional host cell factors likely play supporting roles in 

directing integration to genic regions. LEDGF/p75 is a member of the hepatoma-derived 

growth factor (HDGF) related protein (HRP) family, which is defined by similarities 

amongst N-terminal PWWP domains (Izumoto et al., 1997). One other HRP family member, 

HRP2, additionally harbors an IBD (Cherepanov et al., 2004), which made it a prime 

suspect for a role in gene-tropic lentiviral DNA integration. Removal of HRP2 from 

LEDGF/p75 knockout cells, either by RNA interference or through its own knockout, added 

to the overall HIV-1 infectivity defect and altered the pattern of integration sites more 

towards random (Wang et al., 2012, Schrijvers et al., 2012b). However, residual targeting of 

integration to genes was still apparent, and knockout of HRP2 on its own failed to negatively 

affect either HIV-1 titer or integration site usage (Wang et al., 2012). The fact that 

LEDGF/p75 needed to be removed from the system to bring out a subsidiary role for HRP2 

indicates that HRP2 normally plays little if any role in determining the sites of HIV-1 

integration. At the same time, it became clear that IN is not the only viral determinant of 

HIV-1 integration site selection, as the interplay among the viral capsid (CA) and CA-

binding host proteins has also been shown to play a significant role.

The role of HIV-1 CA-binding host factors in integration targeting

CA forms the protective core that encases retroviral vRNA genomes in association with 

nucleocapsid protein within the virus particles. Though the core is likely to partially dissolve 

during the early phase of infection to enable reverse transcription (Hulme et al., 2011, Yang 

et al., 2013) and trafficking to the nucleus, it is apparent that some fraction of HIV-1 CA 

remains associated with the PIC as it enters into the cell nucleus (Hulme et al., 2015, Peng et 

al., 2015). A number of host cell factors that associate with CA, for example cyclophilin A 

(CypA), the β-karyopherin transportin 3 (TRN-S2 or TNPO3), and nucleoporins (NUPs) 358 
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and 153, can influence the distribution of HIV-1 integration. Whereas depletion of TNPO3, 

NUP358, or NUP153 preferentially reduced integration targeting to gene dense regions of 

chromosomes, disrupting the CA-CypA interaction – either through the addition of a small 

molecule cyclosporine inhibitor or by genetically altering the CA protein by G89V or P90A 

mutation – yielded the opposite effect; that is, these manipulations increased the targeting of 

the virus to gene dense regions (Ocwieja et al., 2011, Schaller et al., 2011, Koh et al., 2013, 

Di Nunzio et al., 2013). A separate CA mutation, N74D, which rendered HIV-1 resistant to 

the negative effects of TNPO3, NUP153, or NUP358 depletion (Lee et al., 2010), on its own 

steered integration to regions of significantly less gene density than the wild-type (WT) 

control virus (Schaller et al., 2011, Koh et al., 2013). Thus, the N74D mutation in large part 

phenocopied the effects of depleting TNPO3, NUP358, or NUP153. The N74D virus also 

mildly resisted the depletion of LEDGF/p75, as it retained relatively efficient infectivity 

while exhibiting less genic integration targeting than the WT virus (Koh et al., 2013). It has 

recently been observed that NUP153 and translocated promoter region (TPR), which 

together comprise the NPC basket (Umlauf et al., 2013), seem to cooperate to maintain 

chromatin architecture that is favorable for HIV-1 replication by helping to arrange actively 

transcribed chromatin proximal to the NPC (Marini et al., 2015, Lelek et al., 2015). 

However, it is currently unclear whether TPR exerts this effect by binding to the PIC through 

a viral component or perhaps a known cellular binding partner, such as LEDGF/p75. All 

together, this work underscores the complexity of the interactions that lentiviral PICs utilize 

to guide integration to favored sites, which are predominantly if not exclusively mediated 

through interactions of the viral CA and IN proteins with host factors. Additional work that 

co-depletes CA- and IN-binding cellular factors from cells may reveal whether random or 

near-random HIV-1 integration distribution is achievable under these circumstances.

BET proteins influence γ-retroviral integration target site selection

As discussed above, lentiviruses are not alone in utilizing interactions with host cell proteins 

to target integration to specific gDNA features. Additional examples include the 

retrotransposons Ty5 and Tf1 from yeast, which are directed by host proteins to target 

heterochromatin (Xie et al., 2001, Zhu et al., 2003) and promoters (Leem et al., 2008), 

respectively. Also, the catalytic activities of γ-retroviral INs are stimulated through the 

binding of bromodomain and extraterminal (BET) proteins, with BET-mediated bimodal 

tethering underlying the characteristic predilection of these viruses to integrate adjacent to 

promoter-associated annotations (Sharma et al., 2013, Gupta et al., 2013, De Rijck et al., 

2013, Larue et al., 2014, Aiyer et al., 2014, El Ashkar et al., 2014, Serrao et al., 2015). 

Unlike the LEDGF/p75 bimodal tether and lentiviral DNA integration, small molecules exist 

that compete for BET protein binding to chromatin, and these compounds have been shown 

to diminish Mo-MLV infectivity and integration targeting without preventing the BET-IN 

interaction (Sharma et al., 2013, Gupta et al., 2013, De Rijck et al., 2013). This observation 

has potential implications for the future of ART, as small molecules that reduce infectivity 

by binding to and modulating the activity of cellular factors at positions that are distinct 

from the locations of cell-virus factor interaction sites would be expected to remain potent in 

the face of viral mutations. Readers are directed to several comprehensive reviews that have 

been recently published on the role of host proteins in directing lentiviral and γ-retroviral 
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integration for additional details (Kvaratskhelia et al., 2014, Craigie and Bushman, 2014, 

Debyser et al., 2015).

Towards safer vector integration profiles

Understanding the mechanisms that govern the targeting of retroviral integration to specific 

regions of gDNA has far-reaching implications for the development and improvement of 

gene therapy technologies. Gene therapy has faced several hurdles over the years, including 

the integration of Mo-MLV-based vectors into unintended genomic sites that led to oncogene 

activation in an unacceptable number of cases (Marshall, 2002, Marshall, 2003, Hacein-Bey-

Abina et al., 2003, Howe et al., 2008, Hacein-Bey-Abina et al., 2008). Gammaretrovirus- 

and lentivirus-based vectors display the integration site profiles described above for the 

parental viruses (Hematti et al., 2004, Laufs et al., 2006, Deichmann et al., 2007, 

Schwarzwaelder et al., 2007, Cattoglio et al., 2007, Mantovani et al., 2009, Wang et al., 

2010), so customizing vector integration profiles to target “safe” regions of the genome is a 

current topic of interest. The design of completely safe vectors is not within reach at present, 

but knowledge of retrotransposon, lentivirus, and γ-retrovirus tethering mechanisms has 

been exploited to create prototype vectors with redirected, potentially less dangerous 

insertion profiles. For example, Mo-MLV vectors with lowered propensity to target 

promoter-proximal regions have been generated by mutating the C-terminal tail of IN to 

prevent the BET protein interaction (Aiyer et al., 2014, El Ashkar et al., 2014), and the 

mutant IN viruses generated similar distribution profiles as those observed using small 

molecules that block the BET-chromatin association. However, the distributions of the IN 

mutant viruses were still significantly different from random, with residual promoter 

proximal targeting evident.

A different approach to potentially safer retroviral-based gene therapy includes the 

development of self-inactivating (SIN) vectors, whereby the LTR U3 promoter and enhancer 

region is deleted (Schambach et al., 2006, Thornhill et al., 2008). A recent clinical trial 

employing Mo-MLV-based SIN vectors to correct X-linked severe combined 

immunodeficiency revealed that, though the genomic distribution of the vector integration 

sites was indistinguishable from that of enhancer-containing Mo-MLV-based vectors, 

integrations adjacent to proto-oncogenes and genes associated with adverse events in earlier 

trials was significantly reduced (Hacein-Bey-Abina et al., 2014). It is not fully understood 

why a SIN vector would exhibit selective reductions in integration near proto-oncogenes 

without a noticeable global change in integration site distribution, but a potential explanation 

is that the Mo-MLV LTR enhancer sequence contributed to the in vivo selection of engrafted 

cells containing such integrations, possibly through stimulating gene expression and 

ultimately cell growth rate. As the above-mentioned trial was comprised of only eight 

subjects, it will be informative to study the utility of SIN vectors to correct human genetic 

ailments using larger sample sizes moving forward.

Retargeting integration with customized chromatin tethers

The development of custom-targeted vectors is another option to avoid integration in 

genomic areas that promote unwanted side effects. Such customization research studies were 
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originally conducted in vitro, employing HIV-1 or ASLV IN fused to DNA binding proteins 

such as λ-repressor (Bushman, 1994) or bacterial LexA (Goulaouic and Chow, 1996, Katz et 

al., 1996). The catalytic activity of these fusions resembled that of the WT INs, and 

integration into λ-repressor- and LexA-binding sequences was observed, thus providing 

optimism that IN protein hybrids could eventually be useful in vivo. Such experiments did in 

large part prove successful in the context of tissue culture infection, as vectors containing IN 

fused to zinc finger proteins (Bushman and Miller, 1997, Tan et al., 2006) displayed 

evidence for the expected altered integration distribution profile. However, while fusions of 

IN to large proteins or protein domains can exhibit WT-like levels of IN catalysis in vitro, 

the infectivity of vectors carrying such fusions is significantly diminished in cell culture 

(Bushman and Miller, 1997, Tan et al., 2006), thus limiting their potential clinical utility. An 

alternative approach to redirect retroviral integration targeting is to alter the chromatin 

binding activity of the IN-binding chromosomal DNA tether rather than the IN protein itself. 

Such approaches have been successfully developed for both LEDGF/p75 (Ciuffi et al., 2006, 

Ferris et al., 2010, Gijsbers et al., 2010, Silvers et al., 2010) and BET (De Rijck et al., 2013) 

fusion proteins. The fusion protein construct in these cases was expressed in target cells 

rather than packaging within the cargo-size-limited virion, thus permitting efficient 

redirection of integration into altered gDNA regions. Despite these promising results, the 

clinical utility of these constructs is complicated by the fact that these hybrids would have to 

compete with ubiquitously expressed endogenous LEDGF/p75 or BET proteins in target 

cells. An approach to circumvent this limitation has been developed by altering IN and 

LEDGF/p75 amino acid side chains that mediate the protein-protein interaction. The 

interaction between the IBD and the N-terminal domain of lentivirus IN is in particular 

mediated through salt-bridge contacts (Hare et al., 2009), and reversing the charge of the 

side chains (from acidic to basic for IN, and vice-versa for the complementary interacting 

LEDGF/p75 mutant) afforded selective IN mutant viral infection and integration in cells 

expressing the reverse-charge LEDGF/p75 variant (Hare et al., 2009, Wang et al., 2014). 

Although intriguing, the methodology has the disadvantage of requiring expression of the 

customized LEDGF/p75 partner in target cells.

Given the slow pace at which potential translational applications have evolved, interest in 

developing directed integration targeting vectors through modifying either IN or host 

cofactors may very well wane due to the development of other more promising gene editing 

technologies. The basis of the prokaryotic adaptive immune system that recognizes and 

degrades exogenous genetic elements (the CRISPR/Cas system) has been manipulated and 

applied toward customized editing in a variety of species including human embryos and non-

human primates (Jinek et al., 2012, Niu et al., 2014, Liang et al., 2015, Chen et al., 2015, 

Wan et al., 2015). The details of this system involve a customized guide RNA directing a 

CRISPR-associated (Cas) nuclease to genomic DNA in a sequence-specific fashion, leading 

to a double-stranded DNA cut at virtually any desired location in the genome (Cong et al., 

2013). Although the CRISPR/Cas system is particularly promising for eventual clinical 

applications, similar to the zinc finger protein and transcription activator-like effector 

nuclease/TALEN (Miller et al., 2011) technologies that preceded it, the threat of low-

frequency off-target events remains a potential hurdle (Pattanayak et al., 2011, Mussolino et 

al., 2011, Cho et al., 2014, Fu et al., 2014). Lentiviral vectors have notably been designed to 
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introduce CRISPR/Cas system components into target cells (Kabadi et al., 2014, Albers et 

al., 2015).

Retroviruses as tools to identify cancer genes through insertional 

mutagenesis

Although retroviruses preferentially target particular tDNA nucleotides and genomic 

annotations for integration, the bulk of the nucleotides and genes within the host genome are 

available as insertion targets (Carteau et al., 1998). The tendency of retroviruses to integrate 

at innumerable gDNA locations has been harnessed to identify cancer-related genes through 

insertional mutagenesis [reviewed in (Mikkers and Berns, 2003, Carlson and Largaespada, 

2005, Ranzani et al., 2013)]. Initial observations that tumors from multiple different birds 

contained evidence of ASLV integration adjacent to a specific cellular gene (c-myc) 

suggested that insertion of the viral promoter adjacent to this gene resulted in its enhanced 

expression, thereby leading to neoplastic transformation and positive selection for the 

provirus-harboring cells (Neel et al., 1981, Hayward et al., 1981, Fung et al., 1981, Noori-

Daloii et al., 1981, Robinson and Gagnon, 1986). It was subsequently shown that retrovirus-

mediated activation of additional genes could also stimulate tumor formation (Nusse and 

Varmus, 1982, Peters et al., 1983, Seiki et al., 1984, Sorensen et al., 1996), which led to the 

realization that retroviruses could be used as tools to probe entire genomes for theoretically 

all regions relevant to cancer. With completion of the Mouse Genome Project and 

development of powerful integration site sequencing methodologies, it became possible to 

conduct in vivo genetic screens using insertional mutagenesis, which is also referred to as 

retroviral tagging (Li et al., 1999, Hansen et al., 2000, Lund et al., 2002, Mikkers et al., 

2002, Suzuki et al., 2002). These original high-throughput screens recovered hundreds of 

recurrent integration sites in different tumor samples (Akagi et al., 2004), thus leading to the 

classification of oncogenesis-relevant signaling pathways. The ability to focus on large 

networks of proteins as potentially being associated with cancer allowed for comprehensive 

follow-up biochemical studies, thus representing a major strength of the technique. One 

procedural limitation, however, has been the underrepresentation of identified tumor 

suppressor genes (TSGs), which are arguably as important for study as proto-oncogenes. 

This drawback results from the fact that powerful enhancer features in retroviral promoters 

cause most integrations to be activating rather than inactivating. Furthermore, whereas 

insertional mutagenesis proceeds via integration nearby one copy of a proto-oncogene, both 

copies of the TSG in general need to be inactivated to promote tumorigenesis (Knudson, 

1971).

Surveillance of repopulating stem cell expansion during gene therapy

Aside from putative oncogene identification, retroviral tagging has been used to follow the 

repopulation dynamics of hematopoietic cells (Williams et al., 1984, Dick et al., 1985, 

Lemischka et al., 1986). It was ultimately discovered that individual retrovirally-transduced 

stem cell clones exhibited extensive variability in terms of lifespan and proliferative capacity 

(Guenechea et al., 2001). The clonal dominance of certain cellular subsets (depicted in 

Figure 4A) may be due to increased fitness caused specifically by integration-mediated 
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transcriptional dysregulation of gene(s) involved in cell survival or self-renewal. Initial 

evidence described that integrations clustering within the transcriptional regulator gene Evi1 
in mice and nonhuman primates were associated with long-term clonal persistence without 

signs of dominance or abnormal proliferation (Barjesteh van Waalwijk van Doorn-

Khosrovani et al., 2003, Kustikova et al., 2005, Calmels et al., 2005), despite the fact that 

Evi1 expression had been correlated with leukemic disease progression (Barjesteh van 

Waalwijk van Doorn-Khosrovani et al., 2003, Buonamici et al., 2004). Surveillance of 

transduced cell engraftment in subsequent human gene therapy trials clarified that not only 

were integrations within EVI1 and other DNA replication- and cancer-related genes like 

PRDM16, SETBP1, CCND2, and HMGA2 recurrently present in recipient patients, but cell 

clones harboring these integrations had extensively expanded to dominate over time (Li et 

al., 2006, Deichmann et al., 2007, Cavazzana-Calvo et al., 2010). Interestingly, a β-

thalassemia gene correction study in mice (Ocwieja et al., 2011), which employed the same 

vector utilized in the above-cited human trial (Cavazzana-Calvo et al., 2010), failed to find 

evidence for clonal expansion of cells harboring vectors integrated near genes involved in 

growth control. Therefore, taken together, it seems possible that species-specific factors play 

tangible roles in determining whether retroviral vector integrations influence host cell 

survival, engraftment, or proliferation. It is noteworthy that recent gene therapy trials 

utilizing optimized lentiviral vectors to correct metachromatic leukodystrophy and Wiskott-

Aldrich syndrome have achieved efficient gene correction in multiple human patients 

without any evidence for clonal expansion among the tens of thousands of integration sites 

analyzed (Aiuti et al., 2013).

Following integrated proviruses to classify host cell clonal expansion

Interestingly, cellular clonal expansion has recently been observed with provirus-harboring 

cells in HIV-1-infected patients undergoing ART, and the most highly expanded clones 

correspondingly exhibited strong integration clustering in cancer-related genes such as 

BACH2 (Ikeda et al., 2007, Maldarelli et al., 2014, Wagner et al., 2014). The presumption is 

that enhancement of cell cycle-regulating gene transcription by HIV-1 proviruses allows 

certain cells to persist in the face of ART for long periods of time and expand at a higher rate 

than cells that harbor less growth-promoting integration events. Accordingly, it has been 

suggested that the clonally expanded cells form a significant component of the latent viral 

reservoir (Maldarelli et al., 2014, Wagner et al., 2014), though a subsequent report failed to 

find supporting evidence for this model (Cohn et al., 2015). Consistent with the suggestion 

that clonally expanded cells can contribute to residual viremia is the fact that during 

suppressive ART the residual HIV-1 virion population shifts from diverse sets of variants to 

one or a small number of persisting clusters with genetic uniformity (Bailey et al., 2006, 

Josefsson et al., 2013, Kearney et al., 2014).

The means by which clonally expanded cells persist in the face of ART while other cells die 

is currently unknown, though there are two likely possibilities (Figure 4B). First, in addition 

to proliferating at a relatively increased rate, these clones could express the virus at an 

extremely low level. In this case the provirus would be duplicated continuously while 

remaining relatively dormant and thereby escaping not only drug treatment but also the 

added dangers of host cell recognition by HIV-specific cytotoxic T lymphocytes and viral 
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protein-induced cytopathic effects. Though not pertinent to clonally expanded cells 

specifically, attempts have been made to quantify the relationship between integration site 

and latent provirus expression, and the results between systems have been inconsistent. In 

some cell culture models “latent” clones selectively harbor proviruses in heterochromatin 

(Jordan et al., 2001, Jordan et al., 2003), suggesting that low proviral transcription is a 

function of the surrounding genomic environment. Alternatively, replication-competent non-

transcribed proviruses from treated patients have been found with high frequency in active 

transcription units (Han et al., 2004, Ikeda et al., 2007, Ho et al., 2013), while still other cell 

culture models failed to detect any chromatin feature that served as better latency predictors 

than pure chance (Sherrill-Mix et al., 2013). Therefore, the extent to which the chromatin 

environment of any given latent provirus contributes to viral transcriptional activity, host cell 

clonal expansion, and persistence is currently unresolved.

A second, equally plausible explanation for clonal cell resilience during ART could be that 

the proviruses that reside within these cells are defective due to inactivating insertions, 

deletions, or other mutations. In this case cells could continue to proliferate during ART 

without virion production while intact, integrated LTRs would still be sensed by integration 

site sequencing methodology. These integration sites would appear to be longitudinally 

enriched, since the bulk of other integrated proviruses would be eliminated over the course 

of time on treatment. Both sides of the coin have landed face-up in this research realm as 

well. Some studies have observed that up to 12% of clonally expanded proviruses are fully 

functional (Ho et al., 2013), while others have reported that every provirus that was analyzed 

contained an inactivating mutation of some sort (Josefsson et al., 2013, Imamichi et al., 

2014, Cohn et al., 2015). Only a relatively low number of full-length proviruses have been 

sequenced when all of these studies are merged, mainly due to the laborious procedures 

required to obtain full HIV-1 genome (~10 kb) sequencing reads. A consensus in this realm 

may be thus reached in the near future when sample sizes are ultimately increased. This is 

becoming a possibility due to promising new technologies such as Single Molecule, Real-

Time (SMRT®) Sequencing from Pacific Biosciences, which allows long and continuous 

DNA sequencing reads in a multiplexed format (Dilernia et al., 2015). The application of 

this particular technology to high-throughput HIV-1 full-genome sequencing is currently 

being optimized, and it holds the promise of becoming an invaluable new tool for following 

HIV-1 population dynamics over time in infected patients.

Perspectives

All retroviruses replicate in a similar fashion, reverse transcribing their RNA genome, 

integrating the vDNA product into host cell chromatin, and ultimately budding out of the 

host cell to infect a new target. However, different patterns and preferences evident at many 

steps of the infection process highlight close similarities and major differences among viral 

genera. These patterns are particularly evident at stages surrounding the integration step of 

the life cycle. As one example, γ-retroviruses preferentially target gene promoter and active 

enhancer regions, while viruses like MMTV integrate in a largely random fashion 

throughout the genome. Such differences not only provide an important springboard for 

understanding the dynamics of viral infection, but also for the gradual development of 

clinically applicable gene therapy vectors. Alternatively, the use of retroviruses as tagging 
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agents has led to huge leaps forward in both the recognition of complex gene networks 

involved in cancer, as well as in the understanding of infused stem cell repopulation 

dynamics. And most recently the ability to distinguish clonally expanded proviruses from 

PCR-amplified sequence duplicates has begun to shed light on the elusive components of the 

latent HIV-1 reservoir. This important basic science and translational research has been 

made possible by extremely powerful, specific, and high-throughput integration site 

sequencing methodologies combined with thoroughly annotated reference genomes. These 

techniques have progressed from electrophoretic resolution of a handful of differently sized 

provirus-containing restriction fragments to the precise mapping of millions of unique tDNA 

sequences. To say that the methods have come a long way would be an understatement, but 

there is still ample room for further improvement. One weakness of the current state of 

integration site sequencing technology is that only about 30% of all LTRs within a DNA 

library can be expected to be amplified and recovered in a single sequencing run, even from 

the best of library preparations (unpublished observations). This potential limitation can be 

addressed by repeatedly sequencing the same library preparation and/or by sequencing 

multiple parallel libraries prepared from the same gDNA source. Further improvements in 

assay sensitivity should allow for more translational questions to be asked and answered as 

to the relationship between retroviral integration site and host disease state.
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Figure 1. The mechanism of retroviral integration
The integration process begins in the host cell with formation of the intasome, which 

consists of multimerized IN bound to the viral LTR ends. The LTR is composed of U3, R, 

and U5 sections, each of which contains unique elements responsible for mediating viral 

gene transcription (Pereira et al., 2000). While within the cytoplasm, IN cleaves nucleotides 

(specifically two nucleotides for the depicted HIV-1 integration pathway) from each 3′ end 

of the vDNA adjacent to invariant 5′-CA-3′ dinucleotides during 3′-processing. Completion 

of 3′-processing leaves a recessed and chemically reactive hydroxyl group at each vDNA 3′ 

end. Lentiviral PICs are actively imported into the cell nucleus (denoted by an asterisk in 

figure), while γ-retroviruses can only enter the nucleus after dissolution of the nuclear 

membrane during cell division [reviewed in: (Matreyek and Engelman, 2013)]. Within the 

nucleus, IN binds tDNA and utilizes the reactive vDNA 3′-hydroxyl groups to 

simultaneously cleave the tDNA phosphodiester backbone and insert the vDNA molecule, 

through the process of strand transfer. IN subunits cleave the top and bottom tDNA strands 
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in a staggered fashion. The length of stagger differs among retroviruses; HIV-1 IN cleaves 

tDNA with the depicted 5-bp stagger. After disassembly of the strand transfer complex, host 

cell enzymes repair the DNA recombination intermediate to yield the integrated provirus 

flanked by a host DNA TSD. See main text for descriptions of the roles that other cellular 

factors play in the process of retroviral DNA integration. Please note that a color version of 

Figure 1 is available online.

Serrao and Engelman Page 34

Crit Rev Biochem Mol Biol. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The evolution of techniques used to determine retroviral integration sites
Integration site recovery techniques are listed in chronological order from top to bottom, 

corresponding to a general timeline shown at the left of the figure. The average numbers of 

integration sites recovered in studies employing these techniques, which exponentially 

increased over time, are illustrated on a logarithmic axis at the right side of the figure. The 

initial step of host cell gDNA fragmentation by restriction endonuclease digestion is shared 

by all of the listed techniques, though sonication has recently become a desirable method of 

shearing. Please note that a color version of this figure is available online.
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Figure 3. General integration site preferences of different retroviral genera
Representational integration site patterns with respect to the structure of the average host cell 

gene are depicted by vertical arrows, with each arrow type corresponding to a different viral 

genus (or group of genera in the case of α-, β-, and δ-retroviruses). Gammaretroviruses 

preferentially target active promoters and enhancers (Wu et al., 2003, LaFave et al., 2014, 

De Ravin et al., 2014) while lentiviruses integrate primarily within the bodies of actively 

transcribed genes (Schroder et al., 2002). Spumaviruses avoid genes and rather target 

intergenic regions, while α-, β-, and δ-retroviruses exhibit nearly random distributions. As 

mentioned in the text, additional features not depicted in the figure can also influence the 

integration sites of various viruses, such as gene transcription level, proximity to the NPC, 

and local nucleotide sequence.
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Figure 4. Clonal expansion of provirus-harboring cells
A) General schematic of cellular clonal expansion. From an initially diverse population of 

cells, certain clones can exhibit relatively increased viability or growth rate, thus leading to 

persistence and ultimate enrichment. In this example the orange cell clone is dividing slowly 

or not at all, while the green cell clone exhibits an intermediate rate of expansion, and the 

blue cell clone expands most quickly. Thus in the final cell population, the blue clone 

predominates. B) Host cells harboring a particular integration site(s) can also become 

enriched over time within infected patients. The fact that clonally expanded, provirus-

harboring cells can persist in the face of suppressive ART suggests that additional factors 

beyond integration site-mediated stimulation of cell growth rate contribute to clonal 

persistence. Two suggestions have been that the resident proviruses within the expanded cell 

clones are 1) nonfunctional due to non-tolerable insertions or deletions or 2) are molecularly 
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intact but are expressed at a relatively low level (or not at all). In either case, the clones 

would escape viral replication-associated cytopathic effects and cell lysis (orange clone), as 

well as host cell recognition and purging by HIV-specific cytotoxic T-cells (green clone), 

leading to the enrichment of particular integration sites over time (blue clone). Neither of 

these possibilities, though, has thus far been definitively proven. A color version of this 

figure is available online.
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