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Abstract

We propose a high dimensional classification method that involves nonparametric feature 

augmentation. Knowing that marginal density ratios are the most powerful univariate classifiers, 

we use the ratio estimates to transform the original feature measurements. Subsequently, penalized 

logistic regression is invoked, taking as input the newly transformed or augmented features. This 

procedure trains models equipped with local complexity and global simplicity, thereby avoiding 

the curse of dimensionality while creating a flexible nonlinear decision boundary. The resulting 

method is called Feature Augmentation via Nonparametrics and Selection (FANS). We motivate 

FANS by generalizing the Naive Bayes model, writing the log ratio of joint densities as a linear 

combination of those of marginal densities. It is related to generalized additive models, but has 

better interpretability and computability. Risk bounds are developed for FANS. In numerical 

analysis, FANS is compared with competing methods, so as to provide a guideline on its best 

application domain. Real data analysis demonstrates that FANS performs very competitively on 

benchmark email spam and gene expression data sets. Moreover, FANS is implemented by an 

extremely fast algorithm through parallel computing.
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1 Introduction

Classification aims to identify to which category a new observation belongs based on feature 

measurements. Numerous applications include spam detection, image recognition, and 

disease classification (using high-throughput data such as microarray gene expression and 

SNPs). Well known classification methods include Fisher’s linear discriminant analysis 

(LDA), logistic regression, Naive Bayes, k-nearest neighbors, neural networks, and many 

others. All these methods can perform well in the classical low dimensional settings, in 

which the number of features is much smaller than the sample size. However, in many 

contemporary applications, the number of features p is large compared to the sample size n. 

For instance, the dimensionality p in microarray data is frequently in thousands or beyond, 

while the sample size n is typically in the order of tens. Besides computational issues, the 

central conflict in high dimensional setup is that the model complexity is not supported by 

limited access to data. In other words, the “variance” of conventional models is high in such 

new settings, and even simple models such as LDA need to be regularized. We refer to 

Hastie et al. (2009) and Bühlmann and van de Geer (2011) for overviews of statistical 

challenges associated with high dimensionality.

In this paper, we propose a classification procedure FANS (Feature Augmentation via Non-

parametrics and Selection). Before introducing the algorithm, we first detail its motivation. 

Suppose feature measurements and responses are coded by a pair of random variables (X, 

Y), where X ∈  ⊂ ℝp denotes the features and Y ∈ {0, 1} is the binary response. Recall 

that a classifier h is a data-dependent mapping from the feature space to the labels. 

Classifiers are usually constructed to minimize the risk P(h(X) ≠ Y).

Denote by g and f the class conditional densities respectively for class 0 and class 1, i.e., (X|

Y = 0) ~ g and (X|Y = 1) ~ f. It can be shown that the Bayes rule is 1I(r(x) ≥ 1/2), where r(x) 

= E(Y|X = x). Let π = P(Y = 1), then

Assume for simplicity that π = 1/2, then the oracle decision boundary is

Denote by g1, ⋯, gp the marginals of g, and by f1, ⋯, fp those of f. Naive Bayes models 

assume that the conditional distributions of each feature given the class labels are 

independent, i.e.,

(1.1)

Naive Bayes is a simple approach, but it is useful in many high-dimensional settings. Taking 

a two class Gaussian model with a common covariance matrix, Bickel and Levina (2004) 

showed that naively carrying out the Fisher’s discriminant rule performs poorly due to 
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diverging spectra. In addition, the authors argued that independence rule which ignores the 

covariance structure performs better than the Fisher’s rule in some high-dimensional 

settings. However, correlation among features is usually an essential characteristic of data, 

and it can help classification under suitable models and with relative abundance of the 

sample. Examples in bioinformatics study can be found in Ackermann and Strimmer (2009). 

Recently, Fan et al. (2012) showed that the independence assumption can lead to huge loss 

in classification power when correlation prevails, and proposed a Regularized Optimal 

Affine Discriminant (ROAD). ROAD is a linear plug-in rule targeting directly on the 

classification error, and it takes advantages of the un-regularized pooled sample covariance 

matrix.

Relaxing the two-class Gaussian assumption in parametric Naive Bayes gives us a general 

Naive Bayes formulation such as (1.1). However, this model also fails to capture the 

correlation, or dependence among features in general. On the other hand, the marginal 

density ratios are the most powerful univariate classifiers and using them as features in 

multivariate classifiers can yield very powerful procedures. This consideration motivates us 

to ask the following question: are there advantages of combining these transformed features 

rather than untransformed feature? More precisely, we would like to learn a decision 

boundary from the following set

(1.2)

(All coefficients are 1 in the Naive Bayes model, so optimization is not necessary.) For 

univariate problems, properly thresholding the marginal density ratio delivers the best 

classifier. In this sense, the marginal density ratios can be regarded as the best transforms of 

future measurements, and (1.2) is an effort towards combining those most powerful 

univariate transforms to build more powerful classifiers.

This is in a similar spirit to the sure independence screening (SIS) in Fan and Lv (2008) 

where the best marginal predictors are used as probes for their utilities in the joint model. By 

combining these marginal density ratios and optimizing over their coefficients βj ’s, we wish 

to build a good classifier that takes into account feature dependence. Note that although our 

target boundary  is not linear in the original features, it is linear in the parameters βj ’s. 

Therefore, any linear classifiers can be applied to the transformed variables. For example, 

we can use logistic regression, one of the most popular linear classification rules. Other 

choices, such as SVM (linear kernel), are good alternatives, but we choose logistic 

regression for the rest of discussion.

Recall that logistic regression models the log odds by log

where the βj’s are estimated by the maximum likelihood approach. We should note that 

without explicitly modeling correlations, logistic regression takes into account features’ joint 
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effects and levels a good linear combination of features as the decision boundary. Its 

performance is similar to LDA, but both models can only capture decision boundaries linear 

in original features.

On the other hand, logistic regression might serve as a building block for the more flexible 

FANS algorithm. Concretely, if we know the marginal densities fj and gj, and run logistic 

regression on the transformed features {log(fj(xj)/gj(xj))}, we create a decision boundary 

nonlinear in the original features. The use of these transformed features is easily 

interpretable: one naturally combines the “most powerful” univariate transforms (building 

blocks of univariate Bayes rules) {log(fj(xj)/gj(xj))} rather than the original measurements. 

In special cases such as the two-class Gaussian model with a common covariance matrix, the 

transformed features are not different from the original ones. Some caution should be taken: 

if fj = gj for some j, i.e., the marginal densities for feature j are exactly the same, this feature 

will not have any contribution in classification. Deletion like this might lose power, because 

features having no marginal contribution on their own might boost classification 

performance when they are used jointly with other features. In view of this defect, a variant 

of FANS augments the transformed features with the original ones.

Since marginal densities fj and gj are unknown, we need to first estimate them, and then run 

a penalized logistic regression (PLR) on the estimated transforms. Note that some 

regularization (e.g., penalization) is necessary to reduce model complexity in the high 

dimensional paradigm. This two-step classification rule of feature augmentation via 

nonparametrics and selection will be called FANS for short. Precise algorithmic 

implementation of FANS is described in the next section. Numerical results show that our 

new method excels in many scenarios, in particular when no linear decision boundary can 

separate the data well.

To understand where FANS stands compared to Naive Bayes (NB), penalized logistic 

regression (PLR), and the regularized optimal affine discriminant (ROAD), we showcase a 

simple simulation example. In this example, the choice is between a multivariate Gaussian 

distribution and some componentwise mixture of two multivariate Gaussian distributions:

Class 0: ,

Class 1: , where p = 1000, ◦ is the 

element-wise product between matrices, Σii = 1 for all i = 1, ⋯, p, Σij = 0.5 for all i, j = 

1, ⋯, p and i ≠ j, and w = (w1, ⋯, wp)T, in which wj ~iid Bernoulli(0.5).

The median classification error with the standard error shown in the error bar for 100 

repetitions as a function of training sample size n is rendered in Figure 1. This figure 

suggests that increasing the sample size does not help NB boost performance (in terms of the 

median classification error), because the NB model is severely biased in view of significant 

correlation presence. It is interesting to compare PLR with ROAD. ROAD is a more efficient 

approach when the sample size is small; however, PLR eventually performs better when the 

sample size becomes large enough. This is not surprising because the underlying true model 

is not two class Gaussian with a common covariance matrix. So the less “biased” PLR beats 

ROAD on larger samples. Nevertheless, even if ROAD uses a misspecified model, it still 
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benefits from a specific model assumption on small samples. Finally, since the oracle 

decision boundary in this example is nonlinear, the newly proposed FANS approach 

performs significantly better than others when the sample size is reasonably large. The 

above analysis seems to suggest that FANS does well as long as we have enough data to 

construct accurate marginal density estimates. Note also that ROAD is better than FANS 

when the training sample size is extremely small. Figure 1 shows that even under the same 

data distribution, the best method in practice largely depends on the available sample 

abundance.

A popular extension of logistic regression and close relative to FANS is the additive logistic 

regression, which belongs to the generalized additive model (Hastie and Tibshirani, 1990). 

Additive logistic regression allows (smooth) nonparametric feature transformations to 

appear in the decision boundary by modeling

(1.3)

where hj’s are smooth functions. This kind of additive decision boundary is very general, in 

which FANS and logistic regression are special cases. It works well for small-p-large-n 
scenarios, while its penalized versions adapt to high dimensional settings. We will compare 

FANS with penalized additive logistic regression in numerical studies. The major drawback 

of additive logistic regression (generalized additive model) is the heavy computational 

complexity (e.g., the backfitting algorithm) involved in searching the transformation 

functions hj(·). Moreover, the available algorithms, e.g., the algorithm for penGAM (Meier 

et al., 2009), fail to give an estimate when the sample size is very small. Compared to FANS, 

the generalized additive model uses a factor of Kn more parameters, where Kn is the number 

of knots in the approximation of every additive components . While this reduces 

possible biases in comparison with FANS, it increases variances in the estimation and results 

in more computation cost (see Table 2). Moreover, FANS admits a nice interpretation of 

optimal combination of optimal building blocks for univariate classifiers.

Besides the aforementioned references, there is a huge literature on high dimensional 

classification. Examples include principal component analysis in Bair et al. (2006) and Zou 

et al. (2006), partial least squares in Nguyen and Rocke (2002), Huang (2003) and 

Boulesteix (2004), and sliced inverse regression in Li (1991) and Antoniadis et al. (2003). 

Recently, there has been a surge of interest for extending the linear discriminant analysis to 

high-dimensional settings including Guo et al. (2007), Wu et al. (2009), Clemmensen et al. 

(2011), Shao et al. (2011), Cai and Liu (2011), Mai et al. (2012) and Witten and Tibshirani 

(2012).

The rest of the paper is organized as follows. Section 2 introduces the FANS algorithm. 

Section 3 is dedicated to simulation studies and real data analysis. Theoretical results are 

presented in Section 4. We conclude with a discussion in Section 5. Longer proofs and 

technical results are relegated to the Appendix.
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2 Algorithm

In this section, an efficient algorithm (S1 – S5) for FANS will be introduced. We will also 

describe a variant of FANS (FANS2), which uses the original features in addition to the 

transformed ones.

2.1 FANS and its Running Time Bound

S1 Given n pairs of observations D = {(Xi, Yi), i = 1, ⋯, n}. Randomly split the 

data into two parts for L times: Dl = (Dl1, Dl2), l = 1, ⋯, L.

S2 On each Dl1, l ∈ {1, ⋯, L}, apply kernel density estimation and denote the 

estimates by f̂ = (f̂1, ⋯, f̂p)T and ĝ = (ĝ1, ⋯, ĝp)T.

S3 Calculate the transformed observations Ẑi = Zf̂, ĝ(Xi), where Ẑij = log f̂j(Xij) − 

log ĝj(Xij), for each i ∈ Dl2 and j ∈ {1, ⋯, p}.

S4 Fit an L1-penalized logistic regression to the transformed data {(Ẑi, Yi), i ∈ 

Dl2}, using cross validation to get the best penalty parameter. For a new 

observation x, we estimate transformed features by log f̂j(xj)−log ĝj(xj), j = 1, 

…, p, and plug them into the fitted logistic function to get the predicted 

probability pl.

S5 Repeat (S2)–(S4) for l = 1, ⋯, L, use the average predicted probability 

 as the final prediction, and assign the observation x to class 1 

if prob ≥ 1/2, and 0 otherwise.

A few comments on the technical implementation are made as follows.

Remark 1

i. In S2, if an estimated marginal density is less than some threshold ε (say 10−2), we 
set it to be ε. This Winsorization increases the stability of the transformations, 
because the estimated transformations log f̂j and log ĝj are unstable in regions 
where true densities are low.

ii. In S4, we take penalized logistic regression, but any linear classifier can be used. 
For example, support vector machine (SVM) with linear kernel is also a good 
choice.

iii. In S4, the L1 penalty (Tibshirani, 1996) was adopted since our primary interest is 
the classification error. We can also apply other penalty functions, such as SCAD 
(Fan and Li, 2001), adaptive LASSO (Zou, 2006) and MCP (Zhang, 2010).

iv. In S5, the average predicted probability is taken as the final prediction. An 
alternative approach is to make a decision on each random split, and listen to 
majority vote.

In S1, we split the data multiple times. The rationale behind multiple splitting lies in the 

two-step prototype nature of FANS, which uses the first part of the data for marginal 

nonparametric density estimates (in S2) and (transformation of) the second part for 
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penalized logistic regression (in S4). Multiple splitting and prediction averaging not only 

make our procedure more robust against arbitrary assignments of data usage, but also make 

more efficient use of limited data. This idea is related to random forest (Breiman, 2001), 

where the final prediction is the average over results from multiple bootstrap samples. Other 

related literature includes Fu et al. (2005) which considers estimation of misclassification 

error with small samples via bootstrap cross-validation. The number of splits is fixed at L = 

20 throughout all numerical studies. This choice reflects our cluster’s node number. 

Interested readers can as well leverage their better computing resources for a larger L. 

However, we observed that further increasing L leads to similar performance for all 

simulation examples. Also, we recommend a balanced assignment by switching the role of 

data used for feature transformation and for feature selection, i.e., D2l = (D(2l−1),2, D(2l−1),1) 

when D2l−1 = (D(2l−1),1, D(2l−1),2).

It is straightforward to derive a running time bound for our algorithm. Suppose splitting has 

been done. In S2, we need to perform kernel density estimation for each variable, which 

costs O(n2p)1. The transformations in S3 cost O(np). In S4, we call the R package glmnet to 

implement penalized logistic regression, which employs the coordinate decent algorithm for 

each penalty level. This step has a computational cost at most O(npT), where T is the 

number of penalty levels, i.e., the number of times the coordinate descent algorithm is run 

(see Friedman et al. (2007) for a detailed analysis). The default setting is T = 100, though we 

can set it to other constants. Therefore, a running time bound for the whole algorithm is 

O(L(n2p + np + npT)) = O(Lnp(n + T)).

The above bound does not look particularly interesting. However, smart implementation of 

the FANS procedure can fully unleash the potential of our algorithm. Indeed, not only the L 
repetitions, but also the marginal density estimates in S2 can be done via parallel computing. 

Suppose L is the number of available nodes, and the cpu core number in each node is N ≥ 

n/T. This assumption is reasonable because T = 100 by default, N = 8 for our 

implementation, and sample sizes n for many applications are less than a multiple of TN. 

Under this assumption, the L predicted probabilities calculations can be carried out 

simultaneously and the results are combined later in S5. Moreover in S2, the running time 

bound becomes O(n2p/N). Henceforth, a bound for the whole algorithm will be O(npT), 

which is the same as that for penalized logistic regression. The exciting message here is that, 

by leveraging modern computer architecture, we are able to implement our nonparametric 

classification rule FANS within running time at the order of a parametric method. The 

computation times for various simulation setups are reported in Table 2, where the first 

column reports results when only L repetitions are paralleled, and the second column reports 

the improvement when marginal density estimates in S2 are paralleled within each node.

2.2 Augmenting Linear Features

As we argued in the introduction, features with no marginal discrimination power do not 

make contribution in FANS. One remedy is to run (in S4) the penalized logistic regression 

1Approximate kernel density estimates can be computed faster, see e.g., Raykar et al. (2010).
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using both the transformed features and the original ones, which amounts to modeling the 

log odds by

This variant of FANS is named FANS2, and it allows features with no marginal power to 

enter the model in a linear fashion. FANS2 helps when a linear decision boundary separates 

data reasonably well.

3 Numerical Studies

3.1 Simulation

In simulation studies, FANS and FANS2 are compared with competing methods: penalized 

logistic regression (PLR, Friedman et al. (2010)), penalized additive logistic regression 

models (penGAM, Meier et al. (2009)), support vector machine (SVM), regularized optimal 

affine discriminant (ROAD, Fan et al. (2012)), linear discriminant analysis (LDA), Naive 

Bayes (NB) and feature annealed independence rule (FAIR, Fan and Fan (2008)).

In all simulation settings, we set p = 1000 and training and testing data sample sizes of each 

class to be 300. Five-fold cross-validation is conducted when needed, and we repeat 50 

times for each setting (The relative small number of replications is due to the long 

computation time of penGAM, c.f. Table 2). Table 1 summarizes median test errors for each 

method along with the corresponding standard errors. This table omits Fisher’s classifier 

(using pseudo inverse for sample covariance matrix), because it gives a test error around 

50%, equivalent to random guessing.

Example 1—We consider the two class Gaussian settings where Σii = 1 for all i = 1, ⋯, p 

and Σij = ρ|i−j|, μ1 = 01000 and , in which 1d is a length d vector with all 
entries 1, and 0d is a length d vector with all entries 0. Two different correlations ρ = 0 and ρ 

= 0.5 are investigated.

This is the classical LDA setting. In view of the linear optimal decision boundary, the 

nonparametric transformations in FANS is not necessary. Table 1 indicates some efficiency 

(not much) loss due to the more complex model FANS. However, by including the original 

features, FANS2 is comparable to the methods (e.g., PLR and ROAD) which learn 

boundaries linear in original features. In other words, the price to pay for using the more 

complex method FANS (FANS2) is small in terms of the classification error.

An interesting observation is that penGAM, which is based on a more general model class 

than FANS and FANS2, performs worse than our new methods. This is also expected as the 

complex parameter space considered by penGAM is unnecessary in view of a linear optimal 

decision boundary. Surprisingly, SVM performs poorly (even worse than NB), especially 

when all features are independent.
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Example 2—The same settings as Example 1 except the common covariance matrix is an 
equal correlation matrix, with a common correlation ρ = 0.5 and ρ = 0.9.

Same as in Example 1, FANS and FANS2 have performance comparable to PLR and ROAD. 

Although FAIR works very well in Example 1, where the features are independent (or nearly 

independent), it fails badly when there is significant global pairwise correlation. Similar 

observations also hold for NB. This example shows that ignoring correlation among features 

could lead to significant loss of information and deterioration in the classification error.

Example 3—One class follows a multivariate Gaussian distribution, and the other a 
mixture of two multivariate Gaussian distributions. Precisely,

Class 0: ,

Class 1: ,

where Σii = 1, Σij = ρ for i ≠ j. Correlations ρ = 0 and ρ = 0.5 are considered.

In this example, Class 0 and Class 1 have the same mean, but have different marginal 

densities for the first 10 dimensions. Table 1 shows that all methods based on linear 

boundary perform like random guessing, because the optimal decision boundary is highly 

nonlinear. penGAM is comparable to FANS and FANS2, but SVM cannot capture the oracle 

decision boundary well even if a nonlinear kernel is applied.

Example 4—Two classes follow uniform distributions,

Class 0: Unif (A),

Class 1: Unif (B\A),

where A = {x ∈ ℝp : ‖x‖2 ≤ 1} and B = [−1, 1]p. Clearly, the oracle decision boundary is {x 
∈ ℝp : ‖x‖2 = 1}. Again, FANS and FANS2 capture this simple boundary well while the 

linear-boundary based methods fail to do so.

Computation times (in seconds) for various classification algorithms are reported in Table 2. 

FANS is extremely fast thanks to parallel computing. While penGAM performs similarly to 

FANS in the simulation examples, its computation cost is much higher. The similarity in 

performance is due to the abundance in training examples. We will demonstrate with an 

email spam classification example that penGAM fails to deliver satisfactory results on small 

samples.

3.2 Real Data Analysis

We study two real examples, and compare FANS (FANS2) with competing methods.

3.2.1 Email Spam Classification—First, we investigate a benchmark email spam data 

set. This data set has been studied by Hastie et al. (2009) among others to demonstrate the 

power of additive logistic regression models. There are a total of n = 4, 601 observations 

with p = 57 numeric attributes. The attributes are, for instance, the percentage of specific 

words or characters in an email, the average and maximum run lengths of upper case letters, 
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and the total number of such letters. To show suitable application domains of FANS and 

FANS2, we vary the training proportion, from 5%, 10%, 20%, ⋯, to 80% of the data while 

assigning the rest as test set. Splits are repeated for 100 times and we report the median 

classification errors.

Figure 2 and Table 3 summarize the results. First, we notice that FANS and FANS2 are very 

competitive when training sample sizes are small. As the training sample size increases, 

SVM becomes comparable to FANS2 and slightly better than FANS. In general, these three 

methods dominate throughout different training proportions. The more complex model 

penGAM failed to yield classifiers when training data proportion is less than 30% due to the 

difficulty of matrix inversion with the splines basis functions. For larger training samples, 

penGAM performs better than linear decision rules; however, it is not as competitive as 

either FANS or FANS2. Also interestingly, when the training sample size is 5%, Naive 

Bayes (NB) performs as well as the sophisticated method FANS2 in terms of median 

classification error, but NB has a larger standard error. Moreover, the median classification 

error of NB remains almost unchanged when the sample size increases. In other words, 

NB’s independence assumption allows good training given very few data points, but it 

cannot benefit from larger samples due to severe model bias.

3.2.2 Lung Cancer Classification—We now evaluate the newly proposed classifiers on 

a popular gene expression data set “Lung Cancer” (Gordon et al., 2002), which comes with 

predetermined, separate training and test sets. It contains p = 12, 533 genes for n0 = 16 

adenocarcinoma (ADCA) and n1 = 16 mesothelioma training vectors, along with 134 ADCA 

and 15 mesothelioma test vectors.

Following Dudoit et al. (2002), Fan and Fan (2008), and Fan et al. (2012), we standardized 

each sample to zero mean and unit variance. The classification results for FANS, FANS2, 

ROAD, penGAM, NB, FAIR and SVM are summarized in Table 4. FANS and FANS2 

achieve 0 test classification error, while the other methods fail to do so.

4 Theoretical Results

In this section, an oracle inequality regarding the excess risk is derived for FANS. Denote by 

f = (f1, ⋯, fp)T and g = (g1, ⋯, gp)T vectors of marginal densities of each class with f0 = 

(f0,1, ⋯, f0,p)T and g0 = (g0,1, ⋯, g0,p)T being the true densities. Let  be i.i.d. 

copies of (X, Y), and the regression function be modeled by

where Z1 = (Z11, ⋯, Z1p)T, each Z1j = Z1j(X1) = log fj(X1j) − log gj(X1j), and m(·) is a 

generic function in some function class ℳ that includes the linear functions. Now, let  = 

{q = (m, f, g)} be the parameter space of interest with constraints on m, f and g be specified 

later. The loss function we consider is
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Let m0 = arg minm∈ℳ Pρ(m, f0, g0). Then the target parameter is q* = (m0, f0, g0). We use a 

working model with mβ(Z1) = βTZ1 to approximate m0. Under this working model, for a 

given parameter q = (mβ, f, g), let

(4.4)

With this linear approximation, the loss function is the logistic loss

Denote the empirical loss by , and the expected loss by Pρ(q) = 

Eρq(X, Y). In the following, we take ℳ as linear combinations of the transformed features 

so that m0 = mβ0, where

In other words, q0 = (mβ0, f0, g0) = q*. Hence, the excess risk for a parameter q is

(4.5)

As described in Section 2, densities f0 and g0 are unavailable and must be estimated. 

Theorem 2 will establish the excess risk bound for the L = 1 base procedure, which implies 

that the logistic regression coefficient and density estimates are close to the corresponding 

true values. Therefore, we expect for each l = 1, ⋯, L, the predicted probability pl is close to 

the oracle πq*(·). This further implies that  is close to πq*(·). Given the above 

analysis, we fix L = 1 in the FANS algorithm (i.e., only one random splitting is conducted) 

throughout the theoretical development.

Suppose we have labeled samples  (used to learn f0) and 

(used to learn g0; theory carries over for different sample sizes), in addition to an i.i.d. 

sample {(X1, Y1), ⋯, (Xn, Yn)} (used to conduct penalized logistic regression). Moreover, 

suppose {(X1, Y1), ⋯, (Xn, Yn)} is independent of  and . A 

simple way to comprehend the above theoretical set up is that the sample size of 2n1 + n has 

been split into three groups. The notations P and E are regarding the random couple (X, Y). 

We use the notation Pn to denote the probability measure induced by the sample {(X1, Y1), 

⋯, (Xn, Yn)}, and notations P+ and P− for the probability measures induced by the samples 

 and .
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The density estimates f̂ = (f̂1, ⋯, f̂p)T and ĝ = (ĝ1, ⋯, ĝp)T are based on samples 

 and :

in which K(·) is a kernel function and h is the bandwidth. Then with these estimated 

marginal densities, we have an “oracle estimate” q1 = (β1, f̂, ĝ), where

It is the oracle given marginal density estimates f̂ and ĝ, and is estimated in FANS by

Let q̂1 = (mβ̂1, f̂, ĝ). Our goal is to control the excess risk ℰ(q̂1), where ℰ is defined by (4.5). 

In the following, we introduce technical conditions for this task.

Let Z0 be the n × p design matrix consisting of transformed covariates based on the true 

densities f0 and g0. That is , for i = 1, ⋯, n and j = 1, ⋯, p. 

In addition, let . Also, denote by |S| the cardinality of the set S, and 

by ‖D‖max = maxij |Dij| for any matrix D with elements Dij.

Assumption 1 (Compatibility Condition)

The matrix Z0 satisfies compatibility condition with a compatibility constant ϕ(·), if for 
every subset S ⊂ {1, ⋯, p}, there exists a constant ϕ(S), such that for all β ∈ ℝp that satisfy 

‖βSc‖1 ≤ 3‖βS‖1, it holds that

A direct application of Corollary 6.8 in Bühlmann and van de Geer (2011) leads to a 

compatibility condition on the estimated transform matrix Ẑ, in which Ẑij = log f̂j(Xij) − log 

ĝj(Xij).

Lemma 1

Denote by E = Ẑ − Z0 the estimation error matrix of Z0. If the compatibility condition is 
satisfied for Z0 with a compatibility constant ϕ(·), and the following inequalities hold

(4.6)
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the compatibility condition holds for Ẑ with a new compatibility constant .

The Compatibility Condition can be interpreted as a condition that bounds the restricted 

eigenvalues. The irrepresentable condition (Zhao and Yu, 2006) and the Sparse Riesz 

Condition (SRC) (Zhang and Huang, 2008) are in similar spirits. Essentially, these 

conditions avoid high correlation among subsets where signals are concentrated; such high 

correlation may cause difficulty in parameter estimation and risk prediction.

To help theoretical derivation, we introduce two intermediate L0-penalized estimates. Given 

the true densities f0 and g0, consider a penalized theoretical solution , where

(4.7)

in which H(·) is a strictly convex function on [0,∞) with H(0) = 0, sβ = |Sβ| is the cardinality 

of Sβ = {j : βj ≠ 0}, and ϕ(·) is the compatibility constant for Z0. Throughout the paper, we 

consider a specific quadratic function2 H(υ) = υ2 / (4c) whose convex conjugate is G(u) = 

supυ{uυ − H(υ)} = cu2. Then, equation (4.7) defines an L0-penalized oracle:

(4.8)

Similarly, with density estimate vectors f̂ and ĝ, we define an L0-penalized oracle estimate 

, where

(4.9)

To study the excess risk ℰ(q̂1), we consider its relationship with  and .

Assumption 2 (Uniform Margin Condition)

There exists η > 0 such that for all (mβ, f, g) satisfying ‖β − β0‖∞ + max1≤j≤p ‖fj − f0,j‖∞ + 

max1≤j≤p ‖gj − g0,j‖∞ ≤ 2η, we have

(4.10)

where c is the positive constant in (4.8).

The uniform margin condition is related to the one defined in Tsybakov (2004) and van de 

Geer (2008). It is a type of “identifiability” condition. Basically, near the target parameter q0 

= (mβ0, f0, g0), the functional value needs to be sufficiently different from the value on q0 to 

enable enough separability of parameters. Note that we impose the uniform margin 

condition in both the neighborhood of the parametric component β0 and the nonparametric 

components f0 and g0, because we need to estimate the densities, in addition to the 

2The following theoretical results can be derived for a generic strictly convex function H(·) along the same lines.
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parametric part. A related concept in binary classification is called “Margin Assumption”, 

which was first introduced in Polonik (1995) for densities.

To study the relationship between ℰ(q̂1) and , we define

Denote by

Set M* = ε*/λ0 (λ0 to specified in Theorem 1) and

The idea here is to choose λ0 such that the event 1 has high probability.

A few more notations are introduced to facilitate the discussion. Let τ > 0. Denote by ⌊τ⌋ the 

largest integer strictly less than τ. For any x, x′ ∈ ℝ and any ⌊τ⌋ times continuously 

differentiable real valued function u on ℝ, we denote by ux its Taylor polynomial of degree 

⌊τ⌋ at point x:

For L > 0, the (τ, L, [−1, 1])-Hölder class of functions, denoted by Σ(τ, L, [−1, 1]), is the set 

of functions u : ℝ → ℝ that are ⌊τ⌋ times continuously differentiable and satisfy, for any x, x
′ ∈ [−1, 1], the inequality:

The (τ, L, [−1, 1])-Hölder class of density is defined as

Assumption 3

Assume that β1 is in the interior of some compact set p. There exists an ε0 ∈ (0, 1) such 
that for all β ∈ p and fj, gj ∈ Σ(2, L, [−1, 1]), j = 1, ⋯, p, ε0 < π(mβ,f,g)(·) < 1 − ε0.
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Assumption 4

‖Z0‖max ≤ K for some absolute constant K > 0, and ‖β0‖∞ ≤ C1 for some absolute constant 
C1 > 0.

Assumption 5

The penalty level λ is in the range of (8λ0, Lλ0) for some L > 8. Moreover, the following 
holds

where η is as in the uniform margin condition.

Assumption 3 is a regularity condition on the probability of the event that the observation 

belongs to class 1. Since the FANS estimator is based on the estimated densities, we impose 

the constraints in a neighborhood of the oracle estimate β1 (when using f̂ and ĝ). 

Assumption 4 bounds the maximum absolute entry of the design matrix as well as the 

maximum absolute true regression coefficient. Assumption 5 posits a proper range of the 

penalty parameter λ to guarantee that the penalized estimator mimics the un-penalized 

oracle.

Assumption 6

Suppose the feature measurement X has a compact support [−1, 1]p, and f0,j, g0,j ∈ Σ(2, L, 

[−1, 1]) for all j = 1, ⋯, p, where Σ denotes a Hölder class of densities.

Assumption 7

Suppose there exists εl > 0 such that for all j = 1, ⋯, p, εl ≤ f0,j, . Also we truncate 

estimates f̂j and ĝj at εl and .

Assumption 8

and,

for some constant α > 7/15.

Assumption 6 imposes constraints on the support of X and smoothness condition on the true 

densities f0 and g0, which help control the estimation error incurred by the nonparametric 

density estimates. Assumption 7 assumes that the marginal densities and the kernel are 
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strictly positive on [−1, 1]p. Assumption 8 puts a restriction on the growth of the 

dimensionality p in terms of sample size n1.

We now provide a lemma to bound the uniform deviation between f̂j and f0,j for j = 1, ⋯, p.

Lemma 2

Under Assumptions 6–8, taking the bandwidth , for any δ1 > 0, there exists 

 such that if ,

for , and C2 is an absolute constant.

Denote by

where η is the constant in the uniform margin condition. It is straightforward from Lemma 2 

that

The next lemma can be similarly derived as Lemma 2, so its proof is omitted.

Lemma 3

Under Assumptions 6–8, taking the bandwidth , for any δ > 0, there exists 

such that if ,

where E is the estimation error matrix as defined in Lemma 1 and  for 
some absolute constant C3.
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Corollary 1

Under Assumptions 6–8, take the bandwidth . On the event 

 (regarding labeled samples) with P+−( 3) > 1 − δ, 

there exists  and C4 > 0 such that if 

 uniformly for k, l = 1, ⋯, p, where 

. Denote by

On the event 4, the inequality (4.6) holds, and the compatibility condition is satisfied for Ẑ 
if we assume Assumption 1 (by Lemma 1). Moreover, it can be derived from Lemma 3 by 

taking a specific δ,

where Ap = maxS⊂{1,⋯,p}|S|/ϕ(S)2. Combining Lemma 2 and the uniform margin condition, 

we see that for given estimators f̂ and ĝ, the margin condition holds for the estimated 

transformed matrix Ẑ involved in the FANS estimator β̂1. Following similar lines as in van 

de Geer (2008) delivers the following theorem, so a formal proof is omitted.

Theorem 1 (Oracle Inequality)

In addition to Assumptions 1–8, assume  and 

. Then on the event 1 ∩ 2 ∩ 3 ∩ 4, we have

Moreover, when  and under the normalization condition that ‖Z1j‖∞ ≤ 1 

for all j = 1, ⋯, p, it holds that

for

where is the probability with regards to all the samples and
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Theorem 1 shows that with high probability, the excess risk of the FANS estimator can be 

controlled in terms of the excess risk of  when using the estimated density functions f̂ and 

ĝ plus a term of explicit order. Next, we will study the excess risk of .

Assumption 9

Let  be the subvector of  corresponding to the nonzero components of β1, and 

. Assume sβ1 ≤ an1 for some deterministic sequence {an1}, and an1 · 

bn1 = o(1). In addition, , for some absolute constant C5.

Assumption 9 allows the number of nonzero elements of β1 to diverge at a slow rate with n1. 

Also, it demands a lower bound of the restricted eigenvalue of the sub-matrix of Z0 

corresponding to the nonzero components of β1.

Lemma 4

Let Q(β) = Pρ(mβ, f̂, ĝ) + λ‖β‖0, and β̄
1 = min{|β1,j| : j ∈ Sβ1}. Under Assumptions 3, 6, 7, 8 

and 9, on the event 3, there exists a constant  such that, if  and the penalty 

parameter , the L0 penalized solution coincides with the unpenalized 

version; that is .

Theorem 2 (Oracle Inequality)

In addition to Assumptions 1–9, suppose , the penalty parameter λ ∈ 

(8λ0, min(Lλ0, 0.5C5ε0(1 − ε0) · minj:β1,j ≠0(|β1,j|))), where C5 is defined in Assumption 9, 

 and . Taking the bandwidth , 

on the event 1 ∩ 2 ∩ 3 ∩ 4 as in Theorem 1, we have

Then in view of Theorem 1, we have

This theorem finale requires quite some conditions. We now de-convolute them by providing 

a high level description of the motivations behind these conditions. Because FANS is 

essentially a two step procedure, we need both steps to do well in order to have the 

theoretical performance guarantee. The first step is to estimate the transformed features. In 
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this step, we need regularity conditions on the class conditional densities f0 and g0, and 

regularity conditions on the kernel density estimate components, such as the kernel K. Also, 

the sample size need to be big enough so that the kernel density estimate is close to the truth. 

The second step is penalized logistic regression using the estimated transformed features. In 

this step, usual conditions on the penalty level, design matrix and signal strength are needed. 

Moreover, some conditions that link nonparametric and parametric components, i.e., the first 

and second steps, such as the uniform margin condition should be in place.

From Theorem 2, it is clear that the excess risk of the FANS estimator is naturally 

decomposed into two parts. One part is due to the nonparametric density estimation while 

the other part is due to the regularized logistic regression on the estimated transformed 

covariates. When both the penalty parameter λ and the bandwidth h of the nonparametric 

density estimates f̂ and ĝ are chosen appropriately, the FANS estimator will have a 

diminishing excess risk with high probability. Note that one can make explicit λ to obtain a 

bound on the excess risk in terms of the sample sizes n and n1, and the dimensionality p. 

Also, it is worth noting that the development of oracle inequality of the FANS procedure β̂
1 

is accomplished via an important bridge of the L0-regularized estimator .

The oracle inequality for FANS2 can be developed along similar lines. In particular, the 

parameter under the working model will be changed to q2 = (m(β,γ), f, g) and the success 

probability given X1 will be modeled by a modified logistic function

(4.11)

where we note that in addition to the transformed features, the original features are also 

included. We would like to emphasize that X1 is observed and therefore there is no need to 

control its estimation error as we did for Z1. The conditions for the theory of FANS can be 

adapted to establish an oracle inequality for FANS2. We omit the details to avoid duplication 

of similar conditions and arguments.

5 Discussion

We propose a new two-step nonlinear rule FANS (and its variant FANS2) to tackle binary 

classification problems in high-dimensional settings. FANS first augments the original 

feature space by leveraging flexibility of nonparametric estimators, and then achieves feature 

selection through regularization (penalization). It combines linearly the best univariate 

transforms that essentially augment the original features for classification. Since 

nonparametric techniques are only performed on each dimension, we enjoy a flexible 

decision boundary without suffering from the curse of dimensionality. An array of 

simulation and real data examples, supported by an efficient parallelized algorithm, 

demonstrate the competitive performance of the new procedures.

To verify our methods’ performance against model misspecification, we evaluate different 

classifiers on the following example that has non-additive optimal decision boundary. 

Similar to Example 4, FANS and FANS2 perform the best among all competing methods 

(penGAM performs slightly worse with a larger standard error).
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Example 5

Non-additive decision boundary. In particular, for x ~ N(0p, Ip), let 

.

One problem in applications we are faced with is whether we should use FANS or FANS2. 

While we do not have a universal rule, a rule of thumb might shed some insight. From the 

simulation examples, we see when the sample size is small and/or decision boundary is 

highly nonlinear, FANS is recommended over FANS2. Otherwise, FANS2 is recommended. 

Admittedly, in real data applications, it is often impossible to know a priori how the oracle 

decision boundary looks like. Data abundance can be a rough guideline in these scenarios.

A few extensions are worth further investigation. For example, an extension to multi-class 

classification is an interesting future work. Beyond a specific procedure, FANS establishes a 

general two-step classification framework. For the first step, one can use other types of 

marginal density estimators, e.g., local polynomial density estimates. For the second step, 

one might rely on other classification algorithms, e.g., the support vector machine, k-nearest 

neighbors, etc. Searching for the best two-step combination is an important but difficult task, 

and we believe that the answer mainly depends on the specific applications.

We can further augment the features by adding pairwise bivariate density ratios. These 

bivariate densities can be approximated by the bivariate kernel density estimates. 

Alternatively, we can restrict our attention to bivariate ratios of features selected by FANS. 

The latter has significantly fewer features.

Dimensions of data sets (e.g., SNPs) in many contemporary applications could be in 

millions. In such ultra-high dimensional scenarios, directly applying the FANS (FANS2) 

approach could cause problems due to high computational complexity and instability of the 

estimation. It will be beneficial to have a prior step to reduce the dimensionality in the 

original data. Notable works towards this effort on the theoretical front include Fan and Lv 

(2008), which introduced the sure independence screening (SIS) property to screen out the 

marginally unimportant variables. Subsequently, Fan et al. (2011) proposed nonparametric 

independence screening (NIS), an extension of SIS to the additive models.
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Appendix

The appendix contains technical proofs and Lemma 5.

Proof of Lemma 2

For any r, m > 0,
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Since we assumed that all f̂j and f0,j are uniformly bounded by , ‖f̂j − f0,j‖∞ is bounded 

by  for all j ∈ {1, ⋯, p}. This coupled with Lemma 1 in Tong (2013), provides a high 

probability bound for ‖f̂j − f0,j‖∞, gives rise to the following inequality,

where δ2 plays the role of ε in Lemma 1 of Tong (2013)(taking constant C = 1 for 

simplicity).

Finding the optimal order for r does not seem to be feasible. So we plug in  and 

, then

where in the last inequality we have used the bandwidth .

The results are derived by taking  (so , and by 

taking Assumption 8. Note that we need to introduce α > 0 because the consistency 

conditions do not hold for α = 0. In fact, we need at least α > 7/15. Under this assumption, 

there exists a positive integer  such that if ,
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Therefore, for ,

Lemma 5

For any vector θ0 = (θ0,1, ⋯, θ0,p)T, let Sθ0 = {j : θ0,j ≠ 0}, and let the minimum signal level 

be θ0̄ = min{|θ0,j| : j ∈ Sθ0}. Let g(θj) = cj(θj − θ0,j)2 + λ‖θj‖0, where cj > 0. If , g(θj) 

achieves the unique minimum at θj = θ0,j.

Proof of Lemma 5

For θ0,j = 0, the result is obvious. For θ0,j ≠ 0, we have j ∈ Sθ0 and

If ,

Since g(θ0,j) = λ‖θ0,j‖0, the lemma follows.

Proof of Lemma 4

Denote Q0(β) = Pρ(mβ, f̂, ĝ). Then we have β1 = arg minβ∈ℝp Q0(β): Since ∇Q0(β1) = 0 and

By Taylor’s expansion of Q0(β) at β1,

(6.12)

where β̃ lies between β and β1. Let M̂ = P{Ẑ1(β1)Ẑ1(β1)T}, where Ẑ1(β1) is the subvector of 

Ẑ1 corresponding to the nonzero components of β1, and , where 

 is the subvector of  corresponding to the nonzero components of β1. Let F = M̂ − 

M (a symmetric matrix). From the uniform deviance result of Lemma 3, with probability 1 − 

δ regarding the labeled samples, there exists a constant C4 > 0 such that |Fkl| ≤ C4bn1 

uniformly for k, l = 1, ⋯, sβ1, where .

Hence, ‖F‖2 ≤ ‖F‖F ≤ C4sβ1bn1 ≤ C4an1bn1. For any eigenvalue λ(M̂), by the Bauer-Fike 

inequality (Bhatia, 1997), we have min1≤k≤sβ1
 |λ(M̂) − λk(M)| ≤ ‖F‖2 ≤ C4an1bn1, where 
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λk(A) denotes the k-th largest eigenvalue of A. In addition, in view of Assumption 9, there 

exists k ∈ Sβ1 such that

Since an1bn1 = o(1), there exists  such that when , we have λmin(M̂) > 0.

Let  be the subvector of β1 consisting of the nonzero components. Then by (6.12) and 

Lemma 5 for each j ∈ Sβ1 with λ < 0.5C5ε0(1−ε0)β̄
1
2, we have

(6.13)

where βj and β1,j are the j-th components of β and β1, respectively. For ,

By (6.12), we have

Therefore, β1 is a local minimizer of Q(β). It then follows from the convexity of Q(β) that β1 

is the global minimizer .

Proof of Theorem 2

For simplicity, denote by ρ(m(Z1), Y1) the loss function ρq(X1, Y1) = −Y1m(Z1) + log(1 + 

exp(m(Z1)). Note that

and

By the second order Taylor expansion, we obtain that
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(6.14)

where m* lies between mβ(Ẑ1) and . Since

(6.15)

and 0 < ∂2ρ(m*, Y1)/[∂mβ(Z1)]2 < 1, taking the expectation we obtain that

Hence, from Corollary 1, on the event 3,

where sβ = |Sβ| is the cardinality of Sβ = {j : βj ≠ 0}. Naturally, 

.

In addition, by definition of β1, Pρ(mβ1(Ẑ1), Y1) = minβ Pρ(mβ (Ẑ1), Y1). As a result, 

Pρ(mβ1(Ẑ1), Y1) ≤ Pρ(mβ0 (Ẑ1), Y1). Thus, we have

(6.16)

In addition, by (6.14) and (6.15), for any β we have . 

Then, setting β = β1 on the left side leads to

(6.17)

Combining (6.16) and (6.17) leads to

(6.18)

As a result, we have

(6.19)

(6.19) combined with Lemma 4  leads to
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(6.20)

Recall the oracle estimator

Then by Theorem 1,

(6.21)

Therefore, by (6.20) and (6.21),
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Figure 1. 
The median test errors for Gaussian vs. mixture of Gaussian when the training data size 

varies. Standard errors shown in the error bars.
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Figure 2. 
The median test classification error for the spam data set using various proportions of the 

data as training sets for different classification methods.
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