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Abstract

Background—MicroRNAs (miRNAs) act as post-transcriptional regulators of gene expression. 

Genetic variation in miRNA-encoding sequences or their corresponding binding sites may affect 

the fidelity of the miRNA-messenger RNA interaction and subsequently alter risk of cancer 

development.

Methods—This study expanded the search for miRNA-related polymorphisms contributing to the 

etiology of colorectal cancer (CRC) across the genome using a novel platform, the Axiom® 

miRNA Target Site Genotyping Array (237,858 markers). After quality control, the study included 

596 cases and 429 controls from the Molecular Epidemiology of Colorectal Cancer study, a 

population-based case-control study of CRC in northern Israel. The association between each 

marker and CRC status was examined assuming a log-additive genetic model using logistic 

regression adjusted for sex, age, and two principal components.

Results—Twenty-three markers had p-values less than 5.0E-04, and the most statistically 

significant association involved rs2985 (chr6:34845648; intronic of UHRF1BP1; OR=0.66; p-

value=3.7E-05). Further, this study replicated a previously published locus, rs1051690 in the 3’-

untranslated region of the insulin receptor gene INSR (OR = 1.38; p = 0.03), with strong evidence 

of differences in INSR gene expression by genotype.

Conclusions—This study is the first to examine associations between genetic variation in 

miRNA target sites and CRC using a genome-wide approach. Functional studies to identify allele-

specific effects on miRNA binding are needed to confirm the regulatory capacity of genetic 

variation to influence risk of CRC.

Corresponding Author: Stephen B. Gruber, MD, PhD, USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, 8302L 
Ezralow Tower, Los Angeles, CA 90089, Phone: (323)865-0816, sgruber@usc.edu, Fax: (323)865-0102. 

Conflicts of Interest
The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2016 May 15.

Published in final edited form as:
Cancer Epidemiol Biomarkers Prev. 2015 January ; 24(1): 65–72. doi:10.1158/1055-9965.EPI-14-0219.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Impact—This study demonstrates the potential for a miRNA-targeted genome-wide association 

study to identify candidate susceptibility loci and prioritize them for functional characterization.
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Introduction

In addition to protein-coding messenger RNAs (mRNAs), other classes of small RNA 

molecules exist with specialized regulatory and processing functions. Among these types of 

regulatory RNAs are microRNAs (miRNAs), short (18–24 nucleotide) non-protein-coding 

molecules that act as post-transcriptional regulators of gene expression (1). The biogenesis 

of a miRNA begins with transcription from a small, stand-alone gene or an intron or exon of 

a known protein-coding gene and transitions through a series of conversion steps from 

hairpin precursors to duplexed pre-miRNA intermediates to mature, single-stranded 

miRNAs (2, 3). MiRNAs exert their regulatory effects via binding to complementary ~6–8 

nucleotide target seed sites in the 3’ untranslated regions (3’-UTRs) of one or more mRNAs. 

Depending on the fidelity and context of the interaction, this binding acts to repress 

translation of the messenger into protein or to signal for degradation of the targeted mRNA 

(1, 4, 5). Each miRNA typically binds multiple, even thousands, of messenger targets, 

offering the potential for widespread downstream effects (6, 7).

Deregulated miRNA profiles have been described across a range of cancers including 

colorectal cancer (CRC) (8, 9). Further, some suggest that miRNA biology can be integrated 

into the molecular sub-typing of colorectal tumors and into the traditional model of genetic 

alterations accompanying progression from normal mucosa to carcinoma, particularly 

among tumors that develop through the chromosomal instability pathway (7, 10–13). As an 

extension of this work, several miRNAs have been proposed as biomarkers for CRC early 

detection, prognosis, and progression (14–16).

Despite extensive miRNA profiling in colorectal tumors, the factors driving aberrations in 

miRNA expression and their impact on CRC development and progression are not yet well 

defined. One hypothesis proposes that single nucleotide polymorphisms (SNPs) in genes 

encoding the miRNA sequence or 3’-UTR regions of the corresponding binding sites affect 

miRNA transcription, miRNA processing, and/or the fidelity of the miRNA-mRNA 

interaction. Any of these alterations could plausibly impact target mRNA translation into 

proteins critical for cellular differentiation and proliferation. Evidence from studies of 

candidate miRNA-related genetic alterations supports this hypothesis and suggests that such 

SNPs may alter expression of some miRNAs in CRC(17) and increase or decrease the risk of 

tumor development (18). Target site polymorphisms that confer risk in specific populations 

have been identified in INSR (18), CD86(18), IL16(19), RPA2(20), and GTF2H1(20); 

however, replication of these findings has been limited with the exception of rs1051690 in 

INSR and rs17281995 in CD86 (21). To date, published studies have not comprehensively 

investigated polymorphisms implicated in the miRNA regulatory pathway across the 

genome.
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In this study, we expanded the search for miRNA-related genetic variants important in the 

etiology of CRC across the genome and investigated the association between thousands of 

genetic variants in miRNA target sites in 3’-UTR regions and miRNA-encoding genes and 

CRC risk using a novel genotyping platform. In contrast to a classical genome-wide 

association study (GWAS) approach that relies on haplotype-tagging SNPs, we leveraged 

genotyping of SNPs bioinformatically predicted to have functional implications specific to 

the miRNA regulatory pathway. We then characterized the predicted miRNA binding 

consequences of our most significantly associated SNPs and further explored these 

associations with expression quantitative trait loci (eQTL) analyses. This study was designed 

to evaluate the feasibility of a targeted GWAS approach for identifying lead candidates and 

prioritizing them for functional characterization based on biologically relevant hypotheses. 

The genetically homogeneous founder population of Ashkenazi Jewish individuals 

experiences a high burden of CRC and served as the focus of this study (22).

Materials and Methods

Study population: Molecular Epidemiology of Colorectal Cancer (MECC) Study

MECC is a population-based, case-control study of pathologically-confirmed, incident cases 

of CRC recruited from a geographically-defined region of northern Israel (23). Subject 

recruitment began in 1998 and remains on-going. Individually-matched controls with no 

prior history of CRC are selected from the same source population that gave rise to cases 

based on the Clalit Health Services database. Matching factors include age, sex, Jewish 

ethnicity (Jewish versus non-Jewish), and primary clinic site. Subjects are interviewed to 

obtain demographic data, clinical information, family history, and dietary habits. 

Biospecimens including blood, paraffin blocks, and snap frozen tumors are collected. Based 

on resource limitations, 1,266 cases and controls (approximately 15% of all MECC 

participants) were initially selected for genotyping. Following sample quality control (see 

Supplementary Figure 1 for details), genome-wide analysis was performed on 596 cases and 

429 controls enriched for Ashkenazi Jewish ancestry (Table 1). Informed consent was 

obtained according to Institutional Review Board-approved protocols at Carmel Medical 

Center (Haifa) and the University of Southern California.

Genotyping and Quality Control

Germline DNA was extracted from peripheral blood samples, purified, quantified by 

nanodrop and Qubit fluorometric quantitation, and genotyped by Affymetrix on a novel 

Axiom® miRNA Target Site Genotyping array with 237,858 SNPs and indels 

(Supplementary Table 1). Markers were selected for the microarray from four online 

bioinformatic databases: PolymiRTS (86,340), dPORE (10,400), Patrocles (1,200), and 

microRNA.org (158,400). These databases were leveraged to select polymorphic loci for the 

array that overlap genes encoding miRNAs, miRNA gene regulatory regions, proteins 

important for miRNA processing, and/or target seed sites (24–28). For microRNA.org, 

Affymetrix used the database’s high quality predictions of miRNA binding sites (both 

conserved and non-conserved) and intersected microRNA.org’s predicted sites with the 1000 

Genomes Phase 1 (March 2012) release to identify markers. In addition, the array included a 

panel of n =4,470 ancestry informative markers (AIMs) and loci with known complex trait 
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associations from the August 16, 2011 National Human Genome Research Institute 

(NHGRI) GWAS Catalog (29). In an ancillary study, MECC samples were also genotyped 

on a custom Affymetrix Axiom® platform with ~1.3 million SNPs and indels as part of the 

ColoRectal Transdisciplinary (CORECT) Study, and concordance was compared across the 

genotyping platforms. IMPUTE2 v2.2.2 was used to impute missing genotypes based on 

reference haplotypes from Phase I of the 1000 Genomes Project (March 2012 release; n = 

1092) (30, 31).

MECC genotype data was filtered based on quality control metrics at the individual subject 

and SNP levels (Supplementary Figure 1). Samples with >5% missing genotypes, sex 

mismatches (between self-reported and genotypic predicted sex), and duplicate samples 

were identified and subsequently removed. Monomorphic markers and markers with <95% 

call rate were excluded. Further, SNPs that were not consistent with Hardy Weinberg 

Equilibrium (HWE) in controls were excluded. Principal components analysis (PCA) was 

conducted using a panel of AIMs and the pcaMethods Bioconductor package (32) in R to 

identify ethnic outliers for removal and to later adjust for population stratification. Principal 

component (PC) definitions of ancestry were used to exclude ethnic outliers and non-

Ashkenazi Jewish individuals from the analysis. Thus, all individuals in the final analysis 

dataset (described in Table 1) were genetically of Ashkenazi Jewish descent, regardless of 

their self-reported ethnicity.

Gene expression quantification

Gene expression levels from 419,473 probe sets derived from two Affymetrix expression 

arrays were quantified on RNA isolated from snap frozen tumors of 331 MECC CRC cases. 

Of these 331 cases, 135 also had high-throughput genotype data available (63 on the 

Affymetrix Axiom® CORECT custom array and 72 on the Illumina HumanOmni 2.5S-v1 

BeadChip). Methods for gene expression quantification via hybridization to GeneChip® 

Human Genome U133A 2.0 and Human Genome U133 Plus 2.0 Arrays have been described 

elsewhere (33). Briefly, expression was measured in two batches (one for each array) 

followed by quantile normalization and log2 transformation of MAS 5.0-calculated signal 

intensities. Data from the two batches were aligned after individual batch preprocessing and 

quality control. These microarray data have been deposited in the Gene Expression Omnibus 

(GEO) database (accession number GSE26682) to comply with Minimum Information 

About a Microarray Gene Experiment (MIAME) guidelines.

Statistical Analysis

Logistic regression was employed to examine the marginal association between each marker 

on the miRNA target site array with MAF>=1% (nmarker = 55,208) and CRC risk assuming a 

log-additive genetic model. Here, each additional copy of the minor allele was assumed to 

confer the same magnitude of risk or protection. Each model was run both unadjusted and 

adjusted for sex, age, and the first two PCs. We calculated beta coefficients, standard errors, 

odds ratios (OR) with associated 95% confidence intervals, and p-values from unconditional 

logistic regression. The Bonferroni-corrected alpha level was set at 9.0×10−7 (0.05/55,406 

SNPs). After taking this genome-wide approach, we then examined previously published 
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SNPs from three studies in the candidate miRNA-related polymorphism literature to assess 

our ability to replicate purported risk loci (18–20).

To begin the bioinformatic characterization of functional consequences of our most 

significantly associated SNPs, we investigated predicted changes in miRNA binding using a 

combination of databases: microrna.org, miRBase, PolymiRTS, and dPORE (24, 25, 28, 34–

37). MicroSNiPer was also used to identify the potential disruption or creation of miRNA 

binding sites for the following 3’-UTR SNPs in Table 2: rs3180466, rs1972820, and rs2985 

(38). A seed site of a minimum of either 7 or 8 bases was specified for each of these SNPs. 

In addition, we conducted analysis of variance (ANOVA) to compare differences in gene 

expression by genotype for all SNPs with association p-values less than 5 × 10−4 as well as 

for a previously published risk locus, where expression and genotype data permitted. 

Expression of the gene nearest to each SNP was considered.

Results

Targeted genome-wide association analysis

Plots of the first 3 eigenvalues from MECC PCA indicated that the original samples selected 

for analysis included some non-Ashkenazi Jewish individuals (almost exclusively among 

subjects without CRC) that inhibited our ability to control for confounding due to population 

stratification through PC adjustment (data not shown). However, following the removal of 5 

ethnic outliers and 211 non-Ashkenazis identified based on genetic definitions, the first 2 

PCs were sufficient to control for the remaining population stratification, as indicated by 

genomic control lambda (GC λ) values shown below. The distributions of demographic and 

clinical characteristics of the final analysis dataset were comparable across case and control 

groups (Table 1).

Quantile-quantile (Q-Q) and Manhattan plots visually display –log10(p-values) resulting 

from the logistic regression models adjusted for age, sex, and 2 PCs (Figure 1). The Q-Q 

plot in the left panel plots the rank-ordered observed –log10(p-value) against the rank-

ordered expected –log10(p-value). It demonstrates that, on average, we did not observe SNPs 

with associations more statistically significant than expected under a uniform distribution of 

p-values. The GC λ value of 1 suggests that PCs 1 and 2 were sufficient to control for 

population stratification in our ethnically homogenous study sample. The Manhattan plot 

displays the summary results by ordered chromosomal position and shows that our lowest p-

values are in the 10−5 range with none reaching genome-wide statistical significance after 

correction for multiple testing.

Although none of the individual SNPs achieved genome-wide significance, our top findings 

are detailed in Table 2. Interestingly, seven out of our nine most statistically significant SNPs 

yield a predicted change in miRNA binding in an allele-specific manner. Each of these seven 

significant variants predict either a change from no miRNA binding to one or more miRNAs 

binding or from one set of miRNAs to a different set. None of the most significant miRNA 

SNPs has been previously reported as significantly associated with risk of CRC.
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Gene expression analysis for top association findings

Of the top 25 SNPs that met our p-value threshold of 5 × 10−4 from the association analysis, 

11 corresponding nearest genes had at least 1 matching probe in our gene expression dataset. 

Among the 21 total probes quantifying gene expression from these 11 genes (some genes 

had multiple probes), 13 probes for 6 genes had a corresponding genotype measured in 

MECC cases from the custom Affymetrix CORECT Axiom and/or Illumina Omni 

platforms. ANOVA results for gene expression [log2(normalized intensity)] by genotype for 

the 6 represented nearest genes with appropriate data availability revealed only one 

statistically significant SNP, intergenic rs6827968 that falls downstream of the RAP guanine 

nucleotide exchange factor 2 (RAPGEF2) gene (F=5.71; p-value=0.02). RAPGEF2 
expression levels for two probes plotted against the number of copies of the minor allele at 

this SNP locus in our study sample can be visualized in Figure 2 , which provides evidence 

of an eQTL (probe 215992_s_at: F = 3.6, P = 0.06; probe 203096_s_at: F = 5.7, P = 0.02).

Replication of previously published risk loci

We also examined the CRC association with 19 candidate miRNA SNPs previously 

presented in the literature (8 from Landi et al(18), 5 from Azimzadeh et al(19), and 6 from 

Naccarati et al(20)), of which 6 were statistically significant in the original report. In our 

dataset, we replicated only one of the previously reported findings (Table 3). The replicated 

variant (rs1051690), originally reported in Landi et al (18), is located in the 3’-UTR region 

of the insulin receptor gene INSR (Table 3; OR = 1.38; p = 0.03) and has predicted miRNA 

binding consequences. Our eQTL analysis demonstrated a statistically significant 

association between the rs1051690 variant and expression of the INSR gene, with increasing 

expression tracking with each additional copy of the minor allele (Supplementary Figure 2; 

F = 21.3; p = 8.98×10−6).

Genotype concordance: miRNA targeted array vs. custom GWAS array

Only 14,436 markers were directly measured on both the Affymetrix miRNA Target Site 

Genotyping Array and the CORECT Axiom 1.3M custom array in the same set of samples. 

For the 14,436 overlapping markers, there was a 99.89% overall genotype concordance 

across arrays. However, because the number of directly measured markers shared by both 

arrays was low, we then compared genotypes for directly measured markers on the miRNA 

targeted array with 1000 Genomes imputed genotypes from the Axiom 1.3M custom array. 

Of the 88,205 directly genotyped, post-quality control markers on the miRNA targeted array, 

63,407 were imputed with high quality from the Axiom 1.3M custom array. A comparison 

of the 63,407 miRNA targeted array genotypes and the corresponding best call genotypes 

derived from the Axiom 1.3M custom array imputation showed that heterozygote genotype 

concordance was severely depressed for SNPs with MAF<=5%. That is, consistent with 

prior GWAS studies using imputed genotypes, imputation did not perform well for the less 

common alleles important in the miRNA pathway and did not accurately reflect the directly 

measured genotypes.
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Discussion

To our knowledge, this is the first study to examine associations between genetic variations 

in miRNA genes or target seed sites and CRC risk using a genome-wide approach informed 

by bioinformatic miRNA prediction algorithms. While we did not identify any genome-wide 

significant associations meeting the traditional threshold of 5×10−8, this study did highlight 

suggestive variants with predicted miRNA binding implications. These findings led us to 

replicate a previously reported association between rs1051690 in INSR and CRC risk and to 

demonstrate variability in INSR gene expression by genotype at this locus. While limited 

with respect to power, our initial study of only 596 cases and 429 controls demonstrated the 

potential for a targeted miRNA GWAS approach to identify candidate susceptibility loci and 

to prioritize them based on biological insights for further functional characterization.

Alterations of expression from miRNA targets may be mediated by seed site polymorphisms 

that strengthen or weaken the miRNA-mRNA interaction. We illustrate a relevant example in 

this study from an association finding through eQTL analysis, and more generally, 

demonstrate our novel approach (Figure 3). The INSR 3’-UTR variant (rs1051690) 

association with CRC had previously been detected in both Czech Republic and Spanish 

case-control studies assuming a co-dominant model (18, 21). We were able to replicate this 

risk locus based on a log-additive genetic model assumption. To date, few studies have 

examined the functional consequences miRNA-related SNPs. However, INSR is a notable 

exception. The same group that originally identified the INSR association later conducted in 

vitro luciferase reporter assays to show that the minor allele differentially regulates reporter 

gene expression (21). Evidence from our eQTL analysis corroborates this finding and 

provides an example of how such a target site polymorphism could influence that same 

gene’s expression in a dose-response manner (Supplementary Figure 2). A link between 

insulin resistance and CRC has long been recognized (39). It is possible that each additional 

copy of the minor/risk allele reduces miRNA-mRNA binding to the point of inhibiting 

mRNA degradation, which is what may lead to the increased INSR gene expression 

observation. It is also possible that the SNP exerts an effect analogous to haploinsufficiency, 

such that one copy of the major allele is not sufficient to appropriately repress INSR protein 

expression. Further functional work is necessary to elucidate this particular SNP’s 

mechanism of action.

Another illustrative example for the success of our approach lies with rs6827968, our third 

most statistically significant finding from the targeted GWAS that also showed evidence as a 

cis eQTL. Although rs6827968 is highly unlikely to exert a direct regulatory influence via 

the miRNA pathway on the nearest gene since it is an AIM, RAPGEF2 encodes a protein 

that could plausibly be linked to CRC etiology. RAPGEF2 activates RAS through promotion 

of the active GTP-bound state in a GTP/GDP-regulated signal transduction switch (40).

Sethupathy and Collins suggested in 2008 that studies elucidating the role of miRNA-related 

polymorphisms in complex diseases such as CRC should focus on three domains: genetic, 

functional (testing altered miRNA targeting mediated by genetic variation), and mechanistic 

(testing the mechanism by which altered miRNA leads to tumor development) (41). We 

provide evidence with respect to genetic and functional studies. The next step is to expand 
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our genotyped dataset to increase power for detecting novel risk loci. With respect to 

genotyping platform for future studies, this study highlighted the advantage of this novel 

genotyping array over a traditional GWAS array with imputation based on the 1000 

Genomes Project haplotypes, particularly when rare variants are of interest. A comparison of 

concordance between the Affymetrix miRNA Target Site Genotyping Array genotypes and 

imputed best call genotypes from the CORECT Axiom 1.3M custom array showed that the 

targeted miRNA array has added value over the GWAS array for the thousands of markers 

from this regulatory pathway with MAF<=5%. Also, functional studies are underway to 

identify SNP effects on miRNA binding fidelity (for rs1051690 as well as other top 

association findings) and to find the best in vitro model for allele-specific effects. Further, 

replication and fine-mapping will strengthen our confidence in both novel and previously 

published findings. Finally, this study suggests the benefit of reexamining previously 

published CRC susceptibility regions identified through GWAS for potential functional 

SNPs in miRNA binding sites or other miRNA pathway-related sequences. Given that most 

GWAS risk loci identified to date have MAF>=5%, reanalysis of existing, imputed GWAS 

datasets using the bioinformatic approaches described here has a high probability of yielding 

insights into the functional relevance of these regions.

This study has limitations with respect to power and modeling assumptions. Our sample size 

is limited to 1,025 samples. However, this analysis, which was able to replicate a previously 

identified miRNA risk locus and characterize preliminary functionality, provides 

justification for study in a larger sample. Our lack of genome-wide significant findings is 

likely attributable to a lack of power, and our sample size did not permit the investigation of 

effects for rare variants with MAF<1%. Also, not all SNPs exert their effects according to 

the assumed log-additive genetic model, and this choice made to restrict multiple testing 

could inhibit our ability to identify risk loci that are consistent with a recessive, dominant, or 

co-dominant model. Further, we did not consider interactions between these potentially risk-

conferring variants or variant effects in the context of environmental risk factors. Finally, our 

ability to examine gene expression was limited by data availability and restriction to 

studying the SNP’s nearest gene.

Despite these limitations, we provide evidence that a targeted genome-wide approach for 

studying germline susceptibility can be extended beyond known or purported cancer biology 

pathways to the exploration of a regulatory pathway with widespread post-transcriptional 

effects. A better understanding of the mechanisms by which aberrations in miRNA 

expression and binding impact CRC development and progression may offer insights for 

prevention and targeted therapeutics. Specifically, the INSR variant warrants further 

investigation in a functional setting to elucidate its role in the alteration of CRC risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Quantile-quantile and Manhattan plots of p-values for association between each genetic 

marker and colorectal cancer (CRC) from logistic regression adjusted for sex, age, and 2 

PCs. Minor allele frequency>=1%; nmarker=55,406. Genomic control λ = 1.
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Figure 2. 
RAPGEF2 gene expression [log2(normalized intensity)] in colorectal cancers measured by 

two separate probes in 72 MECC CRC cases by rs6827968 genotype.
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Figure 3. 
Bioinformatic pipeline for predicted impact of statistically significant SNPs on miRNA 

target seed sites and cis gene expression. SNPs identified from the targeted association study 

were evaluated using PolymiRTS, Patrocles, and microRNA.org (in conjunction with 

markers identified by the 1000 Genomes Project) for indications of target seed sites that 

would be disrupted by the presence of the alternate allele for each genetic variant. Markers 

from the PolymiRTS database were further annotated for potential creation of new seed 

sites. Statistically significant markers were further investigated with MicroSNiPER to 

identify additional target seed sites both disrupted and potentially created by the presence of 

the alternate allele. The final step was cis-eQTL analysis where gene expression data was 

available.
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Table 1

Demographic and clinical characteristics of MECC participants (n=1,025) genotyped on the Axiom® miRNA 

Target Site Genotyping Array platform.

Cases (n=596) Controls (n=429)

Age [mean(sd)] 70.9 (10.7) 74.3 (10.6)

Sex (%)

 Male 291 (48.8) 221 (51.5)

 Female 305 (51.2) 208 (48.5)

Self-reported race/ethnicity (%)

 Ashkenazi 595 (99.8) 413 (96.3)

 Ashkenazi/Sephardi 1 (0.2) 4 (0.9)

 Sephardi 0 7 (1.6)

 Ashkenazi/non-Jewish 0 2 (0.5)

 Missing 0 3 (0.7)
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