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Abstract

Making effective use of multiple data sources is a major challenge in modern bioinformatics. 

Genome-wide data such as measures of transcription factor binding, gene expression, and 

sequence conservation, which are used to identify binding regions and genes that are important to 

major biological processes such as development and disease, can be difficult to use together due to 

the different biological meanings and statistical distributions of the heterogeneous data types, but 

each can provide valuable information for understanding the processes under study. Here we 

present methods for integrating multiple data sources to gain a more complete picture of gene 

regulation and expression. Our goal is to identify genes and cis-regulatory regions which play 

specific biological roles. We describe a graphical mixture model approach for data integration, 

examine the effect of using different model topologies, and discuss methods for evaluating the 

effectiveness of the models. Model fitting is computationally efficient and produces results which 

have clear biological and statistical interpretations. The Hedgehog and Dorsal signaling pathways 

in Drosophila, which are critical in embryonic development, are used as examples.
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1 Introduction

Individual types of genomic data give only an incomplete picture of the mechanisms of 

regulation and expression; multiple data sources are necessary to understand the process of 
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expression from transcription factor (TF) binding to transcription. For example, binding data 

tell us where DNA-binding proteins such as TFs are bound to the genome, but not how, 

which, or even whether genes are regulated by these proteins. Expression data provides 

direct evidence of gene regulation, but does not reveal the mechanisms of that regulation. 

Sequence conservation indicates possible functional conservation, but not the specific 

function being conserved. Taking advantage of the information present in all of these data 

sources should produce a high-quality list of genes whose products are critical to a particular 

pathway or phenotype.

We present here a method with explicit statistical models for univariate and multivariate data 

sources, good computational efficiency, and easily interpretable results. Our motivating 

examples involve embryonic development in Drosophila melanogaster, using data for TF 

binding, gene expression, and DNA sequence conservation. For the first example, we wish to 

identify genes in the hedgehog (Hh) pathway which are targets of the cubitus interruptus 

(Ci) TF involved in regulation of almost all Hh-responsive genes (Von Ohlen et al., 1997). 

For the second example, we wish to identify targets of the dorsal (Dl) TF, which controls 

dorsal-ventral patterning in early embryogenesis. We intend our method to be generally 

applicable to a wide variety of problems and data sources.

Our method fits layered and chained graphical mixture models, which are special cases of 

Bayesian belief networks, to the data. Model fitting is simultaneous, estimating the 

parameters of the model from all available data, as opposed to a sequential or filtering 

approach in which portions of data of one type are discarded based on analysis using data of 

another type. Because no non-target genes are definitively known, we use an unsupervised 

approach. We show that our combined models are more effective than models using a single 

data source at identifying target genes, and are also more effective than other combined-data 

models.

2 Related work

The general approach of hierarchical mixture modeling, which we apply here to genomic 

data, has been applied in other contexts, usually to represent a random- or fixed-effects 

model. For example, Vermunt and Magidson (2005) present a model for categorical data and 

apply it to employee-satisfaction surveys from nursing home and home-care employees. 

Here groups of employees are nested within clusters of teams; the model fitting procedure 

finds the appropriate number of classes at each level and estimates the characteristics of each 

class. Lourme and Biernacki (2013) present a model for continuous data and apply it to 

classification of shearwaters (a type of seabird) from geographically dispersed populations 

using morphological data, and show that clusters of birds within each population have 

similar characteristics. In the bioinformatics realm, Jörnsten and Keleş (2008) study the 

relationships between clusters of time-series gene expression data from different cell lines, 

while Li et al. (2010) discuss protein identification from mass spectrometry data with a 

nested model in which observed spectra are generated by hidden peptide data, which are in 

turn generated by hidden protein data.
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A characteristic of all these models is that although the groups are heterogeneous, the data 

are homogeneous; that is, each mixture component, at each level of the hierarchy, represents 

a grouping of the same type of observations. The use of hierarchical mixture models in 

which the lower level of the hierarchy is heterogeneous, representing groups of different 

types of data, as described here in Section 3, does not appear to be common in genomics or 

elsewhere. A broad overview of existing approaches to genomic data integration is given in 

Hawkins et al. (2010), and specific applications abound. We give here a few examples in 

domains related to the problem at hand.

Integration of binding and expression has been successfully applied to finding TF targets in 

Qin et al. (2011). Sequence-based data, although it provides less direct functional evidence 

than do binding and expression, is often a useful addition to other data types. DNA sequence 

conservation is used in Ortiz-Barahona et al. (2010) for TF target prediction. De Bie et al. 

(2005) and Xie et al. (2010) integrate binding site motif scores with binding and expression 

for the same purpose. Multiple sequence-based measures are used in Seringhaus et al. (2006) 

for essential gene prediction. Expression and copy number are integrated in Tyekucheva et 

al. (2011) for functional gene set analysis. Of these, only Xie et al. (2010) present a mixture 

model approach. Our approach is conceptually similar to theirs, but extends the modeling 

strategy for multivariate data with more flexible choices of topology, and is computationally 

less complex. We discuss the difference between the approaches in more detail in Section 

3.3.

An important conclusion from these works is that integrated analysis is more effective than 

looking at data sources in isolation. In particular, simultaneous approaches are preferred to 

the sequential or filtering approach (De Bie et al., 2005; Hoffman et al., 2012). Simultaneous 

approaches provide more insight into the biological processes which generate the joint 

distribution of the data (Lemmens et al., 2006) and help reduce the effect of noise and 

increase power to detect signal (Tyekucheva et al., 2011).

Much of the work in genomic data integration has focused on supervised (Seringhaus et al., 

2006) or partially supervised (Ortiz-Barahona et al., 2010; Tyekucheva et al., 2011) 

classification approaches which require high-quality training sets with both positive and 

negative controls. However, when available training data sets are small, unreliable, or 

incomplete, unsupervised methods are required (Lemmens et al., 2006; Xie et al., 2010; Qin 

et al., 2011; Hoffman et al., 2012) and this is the approach we follow here.

3 Models

The layered and chained models used for integrating the various data sources are described 

here. We first give an overview of the layered and chained model topologies and discuss the 

desired output of the model. Next, we describe the marginal models which are components 

of the joint model, and model fitting and selection procedures. We then describe the joint 

model fitting procedure and discuss the ways in which it extends the standard EM algorithm 

for mixture model parameter estimation. Finally, we discuss details of interpretation for the 

fitted model.
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3.1 Overview of the joint model

We describe the relationship between target status (for the current problem, target vs. non-

target) and observed data with a hierarchical generative model. Here a “top-level” hidden 

variable generates “intermediate” hidden variables, which in turn generate the observed data. 

In the current model, the hidden variables are categorical, while the observed data are 

continuous; we can also model discrete observed data with the appropriate choice of 

distribution.

Let the top-level hidden random variable  denoting target status, take on integer values 

from 1 to K0 for some integer K0>1. Now for some integer Z>1 denoting the number of 

different data sources, and z=1,…, Z, let the intermediate hidden random variables  take 

on integer values from 1 to Kz for some integer Kz>1. In the current problem, Z=3 and the 

data sources in order are binding (z=1), expression (z=2), and conservation (z=3). Also 

define the observed random variables  (each  may be multivariate) where the 

distribution of  depends only on the value of .

We consider here two topologies for representing the relationships between these variables. 

The first is the layered mixture model shown on the left side of Figure 1, in which 

generates . This model treats all observed variables as equally important to 

estimating the distribution of . The second is the chained model shown on the right side of 

Figure 1, in which the top-level hidden variable  generates the hidden variable , which 

in turn generates the observed variable  and the next hidden variable , etc.

For the current problem, the chained model reflects the flow of biological information, from 

binding to expression to conservation. That is, binding regulates expression, and changes in 

expression lead to phenotypic differences which are subject to selective pressure. More 

generally, the chained model is also appropriate when the data types can be arranged in 

order of specificity to the problem at hand – here, for example, binding data is the most 

specific to TF target identification and conservation the least specific, with expression in the 

middle.

Note that the chained model is a heterogeneous hidden Markov chain, in contrast to the more 

common homogeneous variety; that is, the  are not all drawn from a single alphabet. 

Generally, the sample spaces  when i≠j, nor does equality of sample space 

imply equality of distribution.

The distributions of the  depend – directly or indirectly, depending on the model 

topology – on the value of . In the problem at hand, K0=2 with  indicating target and 

 indicating non-target. Given N genes, for n=1,…, N the estimated posterior 

probability that the nth gene is a target is  Here y0, n is the nth hidden 

target status variable, that is, a realization of . Similarly, x., n=(x1, n,…, xz, n) is the 

observed data for the nth gene, with xz, n being a realization of . Finally,  denotes the 

estimated parameters of the model.
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The interpretation of the  depends on the value of Kz for each z. In the current problem, 

if K1=2, then  indicates a bound cis-regulatory region while  indicates unbound; 

if K2=3, then  indicates over-expression,  no differential expression, and 

underexpression; and if K3=2, then  indicates high conservation while  indicates 

low conservation. The distribution of  given  reflects these interpretations: for 

example, in the case of binding, , as seen in Figure 2. 

Supplementary Figure 1 shows similar distributions for the other data sources.

3.2 Marginal models

For each data source, we may fit a standard mixture model to that data source alone. This is 

referred to as the “marginal model” because it deals only with one data source at a time, as 

opposed to the “joint model” described in Section 3.1. We do this to choose the number of 

components Kz and marginal distribution for each data source, which are then used in the 

joint model fitting procedure discussed in Section 3.3. Here we describe the marginal 

modeling procedure in detail and introduce notation used in following sections.

A natural choice for modeling data of dimension D≥1 on (−∞, ∞)D is a mixture of 

(multivariate) normal distributions, in which all the genes have the same mean and variance 

within each component, but different means and variances across components. Let mixture 

component membership be represented by , a categorical random variable taking on values 

from 1 to some integer K>1 (the number of components) with distribution parameter p=(p1,

…, pk) being the component probabilities, such that Σkpk=1 for k=1,…, K. Here  may 

represent target status or some more specific categorization such as bound vs. unbound, etc. 

Then the component-specific distribution of  is fy(x|θ) = ϕ(x|μy, Σy), where ϕ is the 

normal density. The joint distribution of  and  is therefore

(1)

From this, for a sample X=(x1,…, xN), we use the EM algorithm (Dempster et al., 1977; 

McLachlan and Krishnan, 2008, pp. 61–66) to estimate the parameters and find the posterior 

probabilities . Specifically, the EM algorithm finds the maximum 

likelihood estimate  by iterative maximization of the “Q-function,” or the conditional 

expected log-likelihood

(2)

where θ(i−1) is the previous iteration’s estimate for the parameters. For the model given in 

Equation (1),

(3)

where
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(4)

For the problem at hand, wn, 1 is the probability that the nth gene is a target (yn=1) based on 

the particular data source (binding, expression, or conservation) being used.

To allow greater flexibility in modeling, we also consider the situation in which each gene 

has its own variance, with only the component means being common between the genes. 

The gene-specific variance model leads to the heavy-tailed Pearson Type VII (PVII) 

distribution, a generalization of the t-distribution. Let  be a gamma-distributed random 

variable with shape αy>0 and rate 1, representing a scaling factor applied to the variance of 

the individual gene within each component. That is, let  given  and  have the normal 

distribution with mean μy and variance . The usefulness of this distribution in 

mixture modeling is shown in Sun et al. (2010), in which marginal distributions and methods 

for distribution-specific parameter estimation are also discussed.

To choose the the value of K (number of mixture components) and the distribution family 

(normal or PVII) which best models the observed data for each data source, we use the ICL-

BIC criterion of Biernacki et al. (2000). Where the BIC of Schwarz (1978) is defined as 

, with  being the log-likelihood of the estimated parameters 

given the observed data and |Θ| being the size of the parameter space, ICL-BIC is defined as 

 with  being the maximum a posteriori (MAP) estimate 

of the value of the hidden data. Thus ICL-BIC may be interpreted as the most probable value 

of BIC if all data were observed. All other things being equal, the model with the higher 

(often “less negative”) ICL-BIC is preferred. See Ji et al. (2005) for an application of this 

criterion to models of gene expression, and Viroli (2010) for an extensive comparison to 

other model selection criteria, where it is found that ICL-BIC generally outperforms AIC, 

BIC, and other criteria in selecting the correct mixture model. Note that with respect to the 

joint model, the marginal model selection procedure is only used to choose the Kz’s and 

distribution families, and does not imply any categorization of the observed data before 

fitting the joint model. The investigator may, of course, choose the numbers of components 

and the distribution families a priori to answer specific questions rather than relying on the 

model selection procedure.

3.3 Joint model specifics

In both the layered and chained models, the unconditional target status probability is 

. In the layered model,  generates the distribution for the , and the 

component probability given target status is . In the chained 

model,  generates the distribution for , which then generates the distribution for , etc., 

and the component probability for  given  is . 

Given parameters θ(i−1), denote the nth element of the zth hidden component data vector by 

yz, n and the conditional probabilities for the hidden variables by
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(5)

with  for the layered model and  for the chained model. For observed data 

X=(X1,…, Xz) where Xz=(xz,1,…,xz,n), and hidden data Y=(y1,…,yz) where yz=(yz, 1,…, 

yz, n) with y0=(y0, 1,…, y0, n), the complete data log-likelihood is

(6)

where (k) denotes k0 in the layered model and kz−1 in the chained model. Similarly, let I( ) 

denote the indicator function which returns 1 when proposition  is true and 0 when  is 

false, and (I) denotes I(y0, n=k0, yz, n=kz) in the layered model, I(yz−1, n=kz−1, yz, n=kz) in 

the chained model. The Q-function is thus

(7)

Then the steps of the model fitting procedure, including the EM algorithm as adapted for the 

model topologies, are

1. Marginal model selection: for each z=1,…, Z, choose the best distribution and Kz 

for the zth data source as described in Section 3.2. (We could fit all possible choices 

to the layered and chained joint models, but this is combinatorially explosive.) Then 

initialize the parameters for the joint model based on the selected marginal models.

2. E-step: for the ith iteration, using the previous iteration’s parameter estimates θ(i−1), 

estimate the conditional probabilities defined in Equation (5). In the layered model, 

these are

Dvorkin et al. Page 7

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2016 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(8)

where . Estimation in the chained model uses a version of 

the Baum-Welch algorithm (Baum et al. 1970; McLachlan and Krishnan 2008, pp. 

290–293) modified to handle the heterogeneity of the . See Appendix B in the 

Supplementary Materials for details.

3. M-step: estimate the current iteration’s parameters, θ(i)=argmaxθ Q(θ|θ(i−1)). This is 

a straightforward maximum likelihood estimation for the p’s and q’s, and a 

weighted MLE for the parameters relating to the observed variables, using weights 

 and data Xz.

4. Repeat steps 2 and 3 until convergence.

5. Report the final estimated parameters  and posterior target probabilities , the 

N×K0 matrix of which the (n, y0)th element is . 

Specifically,  is the estimated probability, given the data and the final estimated 

parameters, that the nth gene is a target.

Simulation testing (Section 4) indicates that BIC is more effective than ICL-BIC for 

choosing between the layered and chained topologies. As with marginal model selection, the 

desired topology may also be selected a priori if one topology is clearly more applicable to 

the problem at hand; however, the results discussed in Sections 4 and 5 indicate that using a 

formal model selection procedure to choose between the topologies will generally give 

better results.

As mentioned in Section 1, of the previous models for similar applications, ours is most 

similar to that of Xie et al. (2010). Our model differs from theirs in two major ways. First, 

their model is fully Bayesian, with prior distributions on all parameters, and uses MCMC for 

model fitting, leading to what they describe as an “extensive computation load” even for a 

fairly small data set. Second, their model topology is similar to our chained model, but uses 

the estimated “internal” posterior weight matrix  for some z∈[1,…, Z} as the reporting 

variable in the chained model, rather than  as in our method. We show in Section 4 that the 

use of  as the reporting variable is generally preferred.

3.4 Fitted model interpretation

The simplest interpretation of the fitted model is as a MAP classifier: if . in 

the marginal model, assume xn was generated by the yth component, and similarly for 

. and the y0th component in the joint model. However, we may wish to 
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consider subsets of the components as “alternative” and “null,” as in the current case in 

which y0=1 indicates target status and y0=2 indicates non-target. Thus the classification of 

the nth gene may be viewed as a hypothesis test,  (the nth gene is a target) vs. 

 (the nth gene is not a target). This interpretation requires a multiple testing 

approach.

Various approaches to false discovery rate (FDR) control which are applicable to mixture 

model classification have been proposed in the literature, including the empirical method of 

Newton et al. (2004), the resampling-based method of Storey (2002), and the 

semiparametric method of Strimmer (2008). However, the “local false discovery rate” of 

Efron (2007), denoted “fdr,” provides a particularly elegant parametric solution in the 

mixture model case. The local false discovery rate for the nth gene is simply defined as

(9)

for some test statistic ξn. If we take ξn = xn, that is, we use the nth observation itself as the 

test statistic, then this is

(10)

Then for whatever is the desired false discovery rate cutoff q*, we classify as targets 

whatever genes have  in the marginal model or  in the joint 

model. As shown in Section 4, this approach outperforms the others given above.

4 Simulation

Here we use simulated data with known characteristics to assess the validity of BIC for 

topology selection, to show that performance is best when the correct model is chosen, and 

to show that both joint models are superior to the marginal models for target detection. We 

also examine the effectiveness of the marginal model selection procedure and the 

computational complexity of the joint model fitting algorithm. In each of 300 simulation 

runs, we generate data from both topologies for N=10,000 genes, with 300 genes being 

targets and the remainder being non-targets (p0, 1=0.03). For simplicity, we simulate all data 

sources from the normal model, that is,  for each z=1,…, Z. Recall 

that here Z=3, with z=1 corresponding to binding, z=2 to expression, and z=3 to 

conservation, in keeping with the Ci and Dl data sets.

Like both the Ci and Dl data sets, the simulated data contains a mix of univariate and 

multivariate data sources. Binding and conservation are both simulated as univariate data 

with the simulation parameters given in Supplementary Table 1, which are chosen to give 

similar results to the model fits to the Ci data. Expression data are simulated as multivariate 

data, and the simulation parameters (Supplementary Table 1) are also chosen to give similar 

results to the model fits to the Ci data, but are simpler than the fitted model parameters (see 

Section 5.2). For example, the simulated expression data has only three dimensions and a 

simple covariance matrix in which the first dimension has fairly strong positive correlation 
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with the second and weak negative correlation with the third, and the second and third are 

uncorrelated. This is similar to, but simpler than, the Ci data in which each of the four 

dimensions of the expression data represents the log-ratio of wild-type expression to 

expression in a particular type of mutant. The purpose of the simulation parameters is not to 

simulate a specific data set but to enable simulation of the general type of data set we have 

developed our methods to address.

BIC for layered and chained fits to data generated from the layered and chained topologies is 

shown in Table 1a. As expected, BIC tends to select the “native” topology, that is, the same 

topology from which the data are generated. Table 1b and the first row of Figure 3 show 

receiver operating characteristic (ROC) area under the curve (AUC) for layered, chained, 

and marginal fits to the simulated data. Again, the best performance is found with the joint 

model fitted to its native topology. The chained model seems to be somewhat more sensitive 

to topological misspecification than is the layered model; that is, the chained fit to data 

generated from the layered topology performs worse than does the layered fit to data 

generated from the chained topology. In all cases, each of the joint models is superior to any 

of the marginal models.

The chained model is preferred when a meaningful order exists among the individual data 

sources, for example in terms of problem specificity or information flow; otherwise the 

layered model provides a robust alternative, and is preferred if no clear order exists. In the 

chained model, dependence is stronger between  and those  with lower values of z, 

while in the layered model, the dependence between  and all of the  is roughly the 

same. This can be seen by comparing the ROC AUC values for the marginal fits.

Although we can see from Table 1a and b that means for measures of both model selection 

(BIC) and model performance (ROC AUC) are highest with the native topology, in many 

cases the difference is fairly small. We therefore wish to know how reliably the model 

selection procedure will choose the correct topology. The first two columns of Table 1c 

show the proportion of correct choices – that is, the proportion of cases in which the layered 

fit is superior with layered data, and the chained fit is superior with chained data – for BIC 

and ROC AUC. These results show that both model selection (BIC) and model performance 

(ROC AUC) are quite likely to favor the correct topology.

We also wish to know how frequently the selected topology will outperform the alternative. 

The “conditional” column of Table 1c shows the proportion of cases in which a particular 

topology is superior by ROC AUC given that it is superior by BIC, or in other words, the 

probability that the selected topology will provide better prediction of target status, 

regardless of the topology from which the data are actually generated. We see here that BIC 

is very likely to select the best-performing topology, as measured by ROC AUC, whatever 

the underlying model.

Including all data sources, rather than using only a partial subset of the data such as only 

binding and expression, leads to stronger predictions, as seen in the second row of Figure 3. 

This is particularly the case when the strongest marginal predictor, which here is binding, is 

left out of the model. However, the inclusion of even the weakest marginal predictor, which 
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here is conservation, noticeably improves overall performance when the correct topology is 

chosen.

As mentioned in Section 3.3, although the internal posteriors  of the joint models for 

both univariate and multivariate data sources are better predictors of target status than are the 

marginal posteriors, they are generally less effective than the joint posterior , as can be 

seen in the third row of Figure 3. Here we interpret the internal posteriors in the same way as 

the joint posteriors: for the zth internal posterior , we predict target status for the nth 

gene using  just as we use  in the joint posterior. (In the chained model, the special 

case of  is equivalent to  because  depends on  only through ) Using the 

internal posteriors from the chained model as the reporting variable corresponds to the 

method of Xie et al. (2010). Using the internal posterior from the layered model does not 

correspond to any known method, but results are shown for comparison. For both topologies, 

the joint posterior is generally the better choice as indicated by the simulation results.

We also compare our method to some standard methods for unsupervised learning in which 

we combine all data sources into one wide matrix: the “basic” marginal mixture model with 

K=2 on the combined matrix, and K-means (Hartigan and Wong, 1979) and C-means 

(Bezdek et al., 1984) clustering, each with two clusters. The output of the C-means 

algorithm is a membership matrix analagous to the posterior probability matrix  for the 

basic mixture model, with the same interpretation. For the K-means algorithm, for the nth 

gene and for each estimated cluster center , we calculate the inverse squared Euclidean 

distance , where xn is the nth row of the combined data matrix. Then the 

posterior probability of target status under K-means is  for δn, 1>0, or 1 in 

the event that δn, 1=0. The results shown in the fourth row of Figure 3 indicate that the 

correctly specified joint mixture model strongly outperforms the standards. Furthermore, 

even the joint mixture model with the incorrect topology is generally somewhat better than 

the basic mixture model, which is the best of the standard methods tested.

Table 2 shows that local FDR control (“fdr”) is superior to the other methods discussed in 

Section 3.4. For each method, we control at q*=0.20, and calculate the true false discovery 

rate for those samples called as targets, that is, fp/(tp+fp) where fp is the number of false 

positives and tp is the number of true positives. The ideal method would yield a true FDR of 

0.20 using this approach. All methods other than fdr have much larger false discovery rates; 

fdr is not conservative enough for the layered model, and is slightly too conservative for the 

chained model, but comes closer to the ideal than any of the other methods. The results of 

the other methods are all very similar to each other and quite different from those of fdr.

We perform another set of simulations to test the marginal model selection procedures using 

ICL-BIC as opposed to BIC, as described in Section 3.2. Here we simulate univariate data 

from both the normal and PVII distributions, with two and three well-separated components, 

to compare the effectiveness of these criteria for marginal model selection. Table 3 shows 

that for data generated from the normal distribution, both criteria perform well (with BIC 

being better when K=2 and ICL-BIC being slightly better when K=3) but for PVII data, 
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ICL-BIC far outperforms BIC, which is strongly biased toward the normal model. Thus 

ICL-BIC is our preferred criterion.

Finally, another set of simulations is performed to determine the computational efficiency of 

the method. Here we simulate very simple data from the joint model using both topologies, 

with components of uniform size separated by three standard deviations, and iterate through 

various values of sample size (N), dimensionality (D1=…=Dz=D for some D), number of 

data sources (Z), and number of components (K0=K1=…=Kz=K for some K), while holding 

other values fixed. Results are shown in Figure 4.

Execution times are approximately  and , that is, linear in sample size and 

dimensionality, with the exception of D=1, which may be explained by the fact that different 

estimation procedures are used for univariate and multivariate normal distributions. Times 

are linear in number of data sources for the chained model and approximately  for the 

layered model, although Z has to grow quite large before the layered model is significantly 

slower. The number of components in the mixtures makes the largest difference to 

performance. Execution times are approximately  and increase considerably as K 
grows large. This is unsurprising if we consider that the number of free parameters relating 

to the hidden variables is (K0−1)+K0Σz(Kz−1) in the layered model and 

(K0−1)+ΣzKz−1(Kz−1) for the chained model; with the same K throughout, this simplifies to 

K2Z−KZ+K−1 for both models, and for large values of K the K2 term dominates the number 

of calculations required for each iteration.

The layered model tends to be somewhat faster than the chained model. This may be 

explained by the fact that certain computations in the chained model E-step are necessarily 

sequential, and cannot be performed in parallel as in the layered model. See Appendix B in 

the Supplementary Materials for details.

Overall, the simulation results indicate that the goals of the joint models are met. Our model 

selection procedures are effective at choosing the best model, model fitting is 

computationally efficient, the joint models are superior to the marginal models and to 

standard unsupervised learning methods in identifying targets, and incorporating even fairly 

weak marginal data sources improves joint model prediction.

5 Application to data

Here we describe the application of the techniques developed in Section 3 to the Ci and Dl 

data. We first describe the data in detail and give the preprocessing steps used to prepare the 

data for analysis. We then describe the results of the model selection and model fitting 

procedures. Finally, we interpret the gene lists generated from the fitted models.

5.1 Data and preprocessing

The number of genes used in the Ci analysis is N=10,244. Ci binding data are a univariate 

vector of length N representing log-ratios of Ci binding in the regulatory regions of genes vs. 

background binding. Expression values are multivariate, as a N×D (width D=4) matrix of 

log-ratios of expression in mutant vs. wild-type embryos, mutants being homozygous null 
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for one of four proteins known to affect Ci’s regulatory function. The proteins are 

smoothened (Smo), patched (Ptc), and Ci and Hh themselves. Data are described in Biehs et 

al. (2010) and available from the NCBI GEO database (Barrett et al., 2009; National Center 

for Biotechnology Information, 2013) under accession number GSE24055.

In the Dl data, both binding and expression are N×D matrices where N=13,326 and D=2. 

Binding data represent the log-ratios of binding in regulatory regions vs. background for 

dorsal and snail (Sna), a TF which is an early target of Dl and plays an important role in the 

dorsal-ventral patterning process (Zeitlinger et al., 2007). These data are available under 

GEO accession number GSE26285. Expression data represent log-ratios of gene expression 

for different mutant strains with varying levels of Dl throughout the embryo (pipe−/pipe− vs. 

Toll10B and pipe−/pipe− vs. Tollrm9/Tollrm10). They are described in Biemar et al. (2006) 

and are available under GEO accession number GSE5434.

For both the Ci and Dl analyses, cross-species gene sequence conservation is calculated 

from Phast-Cons (Siepel et al., 2005) using 12 fly species with one species each of 

mosquito, honeybee, and beetle as outgroups. The conservation values used in the analysis 

are a univariate vector of length N calculated from the sums of PhastCons highly conserved 

element (HCE) scores for HCEs which overlap genes. These scores are available from the 

UCSC Genome Browser (Fujita et al., 2010; University of California, Santa Cruz, 2013).

The initial preprocessing step for both data sets is to remove genes which do not appear in 

all data sources, leading to the gene counts given above. Next, we impute missing values 

using regression-based imputation as discussed in Hastie et al. (1999). (A small number of 

genes have no conservation values, while about a tenth of the genes in the Ci data set are 

missing one or two expression values.) Finally, all data are standardized to have mean 0 and 

standard deviation 1.

5.2 Main results

Model selection results for both data sets are summarized in Table 4. For the number of 

components for each data source, we choose between Kz=2 and Kz=3. Greater values of Kz 

could of course be evaluated, but it would be difficult to assign biological meaning to these 

groupings. Our choices for Kz are generally supported by the data for the current 

application: in most cases, two components were chosen for the marginal models, although 

the structure of the Ci expression data is sufficiently complicated that it requires a three-

component model. The default normal model is preferred for Dl binding and for expression 

from both data sets, while PVII is preferred for Ci binding and for conservation from both 

data sets.

The topology selection results for the Ci data bear out the idea of information flow and 

specificity inherent in the chained model. On the other hand, the layered model is preferred 

for the Dl data, perhaps because, as the marginal “quasi- ROC” curves discussed below 

indicate, conservation is a particularly strong predictor for Dl target status. We hypothesize 

that because dorsal-ventral patterning is such a fundamental process in the development of 

viable embryos, Dl targets tend to be even more highly conserved than Ci targets or other 

developmental genes.
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From previous literature and annotation, 68 genes are known to be Ci targets (The Gene 

Ontology Consortium, 2000, 2013; Biehs et al., 2010), and 49 genes are known to be Dl 

targets (Biemar et al., 2006; Tomancak et al., 2007; Zeitlinger et al., 2007; Berkeley 

Drosophila Genome Project, 2013). Because true negatives for both data sets are unknown, 

true ROC curve analysis is impossible, but we can assume that the vast majority of genes are 

not targets and plot quasi- ROC curves of the rate of true positives (known targets) vs. all 

positives. That is, if nt is the number of known target genes, nc is the number of genes called 

as targets, and nc, t is the number of known target genes called as targets, then the true 

positive rate is nc, t/nt and the all positive rate is nc/N. These are shown in Figure 5.

As we would expect from the simulation results, the joint models outperform each of the 

marginal models. The plots in the first row of Figure 5 show that the selected joint model 

topologies, chained for Ci and layered for Dl, also outperform the alternate topologies, 

layered for Ci and chained for Dl. The other plots in Figure 5 show comparisons of the 

performance of these selected topologies to various alternative methods of prediction.

Again as expected from the simulation results, inclusion of conservation data very slightly 

improves performance with the Ci data set and more strongly improves performance with 

the Dl data set, as shown in the second row of Figure 5. It is clear that conservation data has 

a part to play in the identification of developmental genes, albeit much more so in some data 

sets than in others. The joint posterior outperforms the internal posteriors for the chained 

model fitted to the Ci data, as shown in the third row of Figure 5. For the layered model 

fitted to the Dl data, the internal posterior for conservation is actually superior to the joint 

posterior. This somewhat surprising result is most likely due to the strength of conservation 

as a predictor for Dl target status; in general, unlike binding and expression, conservation is 

not specific to the problem at hand. Finally, as shown in the fourth row of Figure 5, the joint 

models with the selected topologies outperform the standard methods.

5.3 Interpretation of results

To interpret the model fit results, we wish to analyze gene lists of equal size for each of the 

marginal data sources (binding, expression, and conservation) and for the joint model fitted 

to the entire data set. Arbitrarily, we select the top 200 genes – that is, the 200 genes with the 

greatest posterior probability of being targets – from the marginal and joint fits. (See 

Supplementary Table 7 for the posterior probability cutoffs.) We also select genes by fdr 

with q*=0.20. We then use the DAVID tool (Huang et al., 2009a,b) to find “enriched” Gene 

Ontology (GO) biological process (BP) terms (The Gene Ontology Consortium, 2000, 2013) 

and pathways from the Kyoto Encyclopedia of Genes and Genomes or KEGG (Kanehisa and 

Goto, 2000; Kanehisa et al., 2012) in these gene lists. Here we describe the results.

Analysis of the Ci data reveals several genes ranked highly by the joint list relative to the 

rankings determined by the marginal methods. Most notably, hedgehog (hh) appears very 

near the top of the joint list, while it is much further down in the marginal lists, as shown in 

Table 5.

Hh is a secreted protein and signals non-cell-autonomously to neighboring cells. Activation 

of hh expression via Hh signaling can occur in the eye disk (Heberlein et al., 1995). While 
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not commonly described, activation of the pathway via a positive regulatory loop may be an 

underlying feature of Hh signaling in other organ systems. Other genes in the KEGG 

Hedgehog pathway which are identified by the joint model have similar relative ranks; 

wingless (wg) is perhaps the best-studied Hh target to date and lends validation to our joint 

list.

GO terms and KEGG pathways generated by the DAVID analysis for Ci are given in 

Supplementary Tables 9–14. Because the number of GO terms generated by DAVID analysis 

may be very large, up to several hundred for each list, we show only the top 50 GO terms for 

each list.

The top 200 genes identified from the the joint model fit to all data (Supplementary Table 9) 

are highly enriched in terms having to do with the mechanisms by which Hh signaling exerts 

its influence over the developing animal, as well as terms that describe which organ systems 

require Hh signaling for morphogenesis. For example, “leg disc development” requires 

biological mechanisms such as “regionalization” to set aside tissue that will become the leg 

disc. Thus, the joint model appears valuable in predicting where and how Hh signaling 

functions in the developing animal.

Genes identified from the binding data alone (Supplementary Table 10) are more enriched in 

terms having to do with the mechanisms of development, particularly (and unsurprisingly) 

those involving functions previously ascribed to Hh signaling such as cell fate commitment. 

Genes identified from the expression data (Supplementary Table 11) are highly enriched in 

terms having to do with pattern formation. As expected, genes identified from the 

conservation data are enriched in less specific terms, most of which are not specific to 

development, although in accordance with Siepel et al. (2005), developmental genes do tend 

to be highly conserved and this can be seen in some of the terms in Supplementary Table 12.

234 genes are selected by fdr from the joint model fit. Because these are nearly the same as 

the top 200 genes, enriched terms for the fdr-selected genes, shown in Supplementary Table 

13, are nearly the same as those for the top 200 genes shown in Supplementary Table 9. The 

relevant terms do appear to be slightly more strongly enriched, as measured by p-value, in 

the fdr-selected list than in the top-200 list.

Most interesting are those “overenriched” terms (terms with boldface IDs in Supplementary 

Table 9) which are enriched in the joint list but not in the marginal lists, or are enriched more 

strongly in the joint list. These terms, such as “sensory organ development,” “leg disc 

development,” and “imaginal disc morphogenesis,” reflect the universal nature of Hh 

signaling in the development of organs and match well with curated phenotypes associated 

with hh loss of function mutations (McQuilton et al., 2012; The FlyBase Consortium, 2013). 

This result indicates that the integrated analysis succeeds in its goal of identifying target 

genes better than analysis of any individual data source. Similarly, in the KEGG pathways 

(Supplementary Table 14) genes identified from the integrated analysis are more strongly 

associated with the Hh pathway than are genes identified from analysis of any of the 

individual data sources.
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For the Dl data (Supplementary Tables 15–20) GO terms overenriched in the joint model 

top-200 list (Supplementary Table 15) such as “embryonic morphogenesis,” “blastoderm 

segmentation,” and “embryonic pattern specification” are specific to developmental 

processes in which Dl plays a major role. Interestingly, all of the top 50 terms, including 

very general but relevant terms such as terms “pattern specification process” and “cell fate 

commitment,” are overenriched as compared to the marginal lists in Supplementary Tables 

16–18. The list of enriched terms from fdr-selected genes in Supplementary Table 19 is very 

similar to the list in from top-200 genes in Supplementary Table 15, even though a much 

larger gene list, comprising 1650 genes, is selected by fdr. This indicates that the model 

effectively ranks the genes in order of importance, and that the most significant genes will be 

present in any reasonably sized list of selected genes.

The joint models are also strongest in identification of the KEGG Hh pathway, as seen in 

Supplementary Table 20. Although Dl is not considered part of the Hh pathway, the 

mediating transcription factors of each pathway can be regulated by the same co-activator 

(Bantignies et al., 2002) and may contribute to activation of the same genes during different 

developmental contexts. Similar Hh-pathway enrichment results were found for the lists of 

Dl targets given by Biemar et al. (2006) and Zeitlinger et al. (2007), as shown in 

Supplementary Tables 20(f) and 20(g), where the Hh pathway is the most strongly enriched 

KEGG pathway for both lists. Thus the joint model best identifies the relevant terms and 

pathways overall.

6 Discussion

Mixture models have long been recognized as a powerful tool for unsupervised probabilistic 

classification. We have shown that hierarchical mixture models with flexible topologies, 

using simple, efficient algorithms to fit the models to univariate and multivariate data 

sources, can be an effective addition to the mixture modeling toolbox. The adaptability of 

the method should allow it to be used with any reasonable combination and number of 

biologically relevant data sources, and the results are easily interpreted.

Our method is particularly useful when the relevance of the various data sources to 

answering the biological question of interest is not known in advance. For example, the 

performance improvement made by including sequence conservation in the model, 

particularly with the Dorsal data, shows that data not specific to the problem domain may 

provide a considerable amount of useful information. Both the layered and chained models 

perform well when the appropriate topology is unknown, and steadily improve in 

performance as more data sources are added. Furthermore, the selection procedure is quite 

effective at finding the strongest model.

There are several opportunities for future methodological work, among which is extending 

the range of marginal distributions available for modeling observed data. An increasing 

amount of genomic data is not continuous, but discrete; “next generation” methods such as 

RNA-seq produce data which are most effectively modeled with discrete distributions 

(Kvam et al., 2012). We will therefore incorporate multivariate discrete distributions, such as 

those given by Xu (1996), which allow modeling dependence structures. We will also 
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consider additional continuous distributions such as those reviewed in Azzalini (2005) to 

allow more flexible modeling of a wide variety of data. We may add Bayesian methods for 

estimation of the posterior distribution of the parameters so long as the computational 

efficiency of the current approach, important for dealing with ever-growing volumes of data, 

can be maintained.

Another avenue will be the development of semi-supervised models, as suggested by 

Alexandridis et al. (2004) for cases where a partial training data set is available, as in the 

case of the known targets for Ci and Dl discussed here. Early testing for the marginal models 

suggests this may be an effective approach for the problem at hand, with significant 

improvement over the unsupervised models but with a lesser penalty for training set error 

than is found in fully supervised approaches. Future work will involve applying this 

approach to the joint models.

We will also apply our method to other questions of biological and medical interest. The 

overall approach we have developed here is intended and expected to be generally applicable 

to many problems in data modeling and analysis.

The R package lcmix is available at http://r-forge.r-project.org/projects/lcmix/ and 

implements the methods described. Code for analysis and simulations specific to the paper is 

available from the corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The layered (left) and chained (right) mixture models. The general model is shown in the 

upper row. Ovals indicate hidden variables, while rectangles indicate observed variables. 

Arrows show generative relationships, which account for all dependencies between 

variables. The specific model is shown in the lower row, with binding corresponding to z=1, 

expression to z=2, and conservation to z=3. Names of hidden data are in italics, while 

upright typeface indicates observed data.
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Figure 2. 
Nonparametric density estimates for binding data, for known Ci target genes and genes of 

unknown target status (see Section 5.1 and Supplementary Figure 1).
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Figure 3. 
ROC curves for joint models compared to alternatives, for data simulated from the chained 

(left) and layered (right) topologies. Compare to Figure 5.
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Figure 4. 
Mean execution times across simulations for layered (black) and chained (red) data, for 

various model specifications. Error bars show 95% confidence bounds based on standard 

error. Default values are N=10,000, D=1, Z=3, and K=2, unless otherwise specified. Note 

that the y-axis scale for the “number of components” plot differs from the others.
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Figure 5. 
Quasi-ROC curves for joint models compared to alternatives, for Ci (left) and Dl (right) 

data. Compare to Figure 3.

Dvorkin et al. Page 25

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2016 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dvorkin et al. Page 26

Table 1

BIC and ROC AUC results for joint model fits to simulated data. Compare to Supplementary Table 2.

(a) Mean (and standard error) of BIC for layered and chained fits to data generated from layered and chained topologies. Higher (less 
negative) values are preferred. The “difference” row shows the difference between BIC s for correct vs. incorrect fit topologies.

Layered gen. Chained gen.

Layered fit –145970.6 (21.9) –145429.8 (22.6)

Chained fit –145995.9 (21.9) –145414.3 (22.6)

Difference 25.3 (0.8) 15.5 (2.0)

(b) Mean (and standard error) of ROC AUC for layered and chained fits, joint fit selected by BIC, and marginal fits to data generated 
from layered and chained topologies. See also the first row of Figure 3.

Layered gen. Chained gen.

Layered fit 0.881 (0.0007) 0.854 (0.0009)

Chained fit 0.838 (0.0009) 0.877 (0.0008)

Selected fit 0.881 (0.0007) 0.875 (0.0009)

Binding only 0.727 (0.0010) 0.820 (0.0009)

Expression only 0.737 (0.0011) 0.753 (0.0010)

Conservation only 0.715 (0.0010) 0.671 (0.0009)

(c) Proportions of correct choices for layered and chained fits to data generated from the corresponding topologies (BIC, ROC AUC) 
and of the fit selected by BIC being best by ROC AUC (“conditional”).

BIC ROC AUC Conditional

Layered fit 0.997 1.000 0.917

Chained fit 0.910 0.993 0.989
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Table 2

Means (and standard errors) of true false discovery rate by various methods of FDR control at q*=0.20.

Local (fdr) Empirical Resampling Semiparametric

Layered 0.255 (0.0045) 0.408 (0.0034) 0.399 (0.0034) 0.400 (0.0034)

Chained 0.185 (0.0020) 0.319 (0.0023) 0.318 (0.0022) 0.318 (0.0023)
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Table 3

Proportions of correct marginal model selection choices, by BIC and ICL-BIC, for data generated from 

various models. Simulation component probabilities are (0.05, 0.95) for K=2 and (0.05, 0.90, 0.05) for K=3, 

with components having equal variance, and means separated by three standard deviations.

Normal, K=2 Normal, K=3 PVII, K=2 PVII, K=3

BIC 0.973 0.897 0.110 0.000

ICL-BIC 0.670 0.933 0.990 0.843
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Table 4

Joint model topologies, marginal distribution families, and marginal numbers of components (Kz) for Ci and 

Dl models. See Supplementary Tables 3–6 for complete model selection results and parameters from the fitted 

models.

Ci data Dl data

Joint Chained Layered

Binding (z=1) PVII, K1 = 2 Normal, K1 =2

Expression (z=2) Normal, K2 =3 Normal, K2 =2

Conservation (z=3) PVII, K3 =2 PVII, K3 =2
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Table 5

Ranks for KEGG Hedgehog pathway genes in top 200 genes by joint model for Ci data set. See also 

Supplementary Table 8.

Joint Binding Expression Conservation

hh 12 79 111 2461

wg 40 407 99 754

smo 71 570 182 1450

wntd 127 848 339 3287
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