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Abstract

While skeletal muscle mass is an established primary outcome related to understanding cancer 

cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and 

functional properties that have recognized roles in systemic health. Skeletal muscle quality is a 

classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate 

utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced 

muscle wasting. While the historical assessment of mitochondria content and function during 

cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this 

understanding has expanded to link mitochondria dysfunction to cellular processes regulating 

myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and 

oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of 

cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and 

mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for 

cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and 

oxidative stress. In addition, we discuss environments associated with cancer cachexia that can 

impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role 

of cytokine-mediated regulation of mitochondria function regulation, followed by the potential 

role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced 

mitochondrial dysfunction is reviewed.
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1. Introduction

Improving survival and quality of life are inherent goals for successful treatment of cancer 

patients, and also the expectant translational impact of basic cancer research. Cancer 

cachexia, the unintentional loss of body weight, has an established adverse effect on these 

treatment objectives [1–3]. Cachexia development is not associated with all cancers, but the 

progression of cachexia is directly associated with cancer patient morbidity and mortality. 

While cachexia has been reported to account for a significant number of cancer deaths [4,5], 

successful treatment of the cachectic cancer patient remains elusive. The difficulty in 

treating cancer cachexia parallels the condition’s underlying complex and multifactorial 

nature, which can vary with the underlying disease severity. Consequently, for biomedical 

research to either promote the discovery or enhance existing therapeutic approaches to 

effectively treat cachexia, the facets of body weight loss that are the critical lynch pins for 

survival need to be further established. There is evidence that cancer-induced weight loss is 

associated with global endocrine and metabolic abnormalities [6,7], and the disrupted 

function of many tissues and organs, including the gut, brain, heart, liver, and adipose [8–10]. 

Nevertheless, for some time, critical importance has been placed on cancer-induced skeletal 

muscle mass loss [5].

The longstanding interest in skeletal muscle with cancer cachexia appears to be a logical 

extension of the importance of muscle for health maintenance during aging [11,12]. Skeletal 

muscle also has an established role for maintaining health during obesity, and in patients 

with many chronic diseases [11,13,14]. Nonetheless, the mechanistic explanation of how 

skeletal muscle conveys these health properties is still being revealed. Until recently, 

research examining cancer cachexia mechanisms in preclinical models placed significant 

emphasis on skeletal muscle mass as the primary outcome [15]. However, there are 

considerable gaps in our understanding of muscle biochemical and functional properties that 

have established roles in either systemic health or life quality. These health consequences are 

less often investigated. The reality is that skeletal muscle has properties extending beyond 

mass that can convey health benefits to the cancer patient. To this end, the response of 

skeletal muscle to increased use may also convey health benefits beyond mass. Skeletal 

muscle quality is a current method of classifying muscle, and is aligned with muscle’s 

metabolic capacity and substrate utilization flexibility [16]. Furthermore, skeletal muscle can 

serve an endocrine function through the secretion of myokines [17,18]. Disruption of the 

endocrine function or metabolic quality in cachectic muscle could impact health and 

survival, and also regulate the muscle’s microenvironment [19]. Muscle quality can also be 

expanded to encompass the regulation of muscle anabolic and catabolic processes, which 

can regulate metabolic and endocrine functions. The response of skeletal muscle to external 

stimuli such as inflammation, hormones, and contraction requires integrated cellular 

signaling pathways involving several organelles and structures. However, the involvement of 

muscle mitochondria in the regulation of both wasting and metabolic quality has become 

firmly established [20]. Consequently, the role of the mitochondria in the regulation of 

cancer-induced muscle wasting has received significant attention during the past several 

years [20,21].
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Mitochondria content aligns with the oxidative metabolic capacity of a myofiber, and has 

been classically used to define a muscle phenotype, in conjunction with myosin expression 

and functional properties [22]. However, muscle oxidative metabolism is not a static 

property; mitochondrial content and function are altered by a host of stimuli, including 

increased and decreased use, systemic inflammation, and systemic hormonal 

signaling [23,24]. In addition to cellular ATP production, mitochondria function has an 

established role in intracellular processes regulating muscle apoptosis, autophagy, and 

protein turnover [25]. Oxidative metabolism has emerged as a biological target of cancer-

induced muscle wasting, and mitochondria loss has been well characterized across many 

cachectic conditions [26–28]. Interestingly, as little as 5 years ago the discussion surrounding 

the regulation of cancer cachexia-induced muscle wasting often considered a somewhat 

narrow role for mitochondria that often aligned with energy flux and wasting susceptibility. 

A growing body of evidence has successfully expanded this discussion and linked 

mitochondria dysfunction to cellular processes regulating myofiber wasting [27]. The 

primary objective of this literature review is to examine the emerging role of skeletal muscle 

oxidative metabolism as a biological target of cancer cachexia and also as a cellular 

regulator of cancer-induced muscle wasting. While the review covers concepts from the 

fields of muscle biology and physiology, content related to wasting is specifically delimited 

to cancer research using preclinical models and human patients. A description of how cancer 

cachexia affects muscle mitochondria and oxidative metabolism will be described, but this 

topic has recently been reviewed [20]. The review will then discuss potential regulators of 

muscle mitochondria function during the progression of cancer cachexia. Specifically, 

inflammation, hypogonadism, and muscle use will be scrutinized for the regulation of cancer 

cachexia-induced mitochondrial changes. Lastly, altered skeletal muscle oxidative 

metabolism and mitochondrial function, as a regulator of muscle wasting, will be discussed.

2. Skeletal Muscle Oxidative Metabolism and Cancer Cachexia

2.1 Myofiber phenotype’s role in cancer-induced wasting susceptibility

Human skeletal muscle contains myofibers with a heterogeneous mix of oxidative and 

glycolytic metabolic capacities. The expression level of metabolic enzymes, and substrate 

storage involving glycogen and lipid abundance, also contribute to differential metabolic 

capacities. The plasticity of the muscle metabolic phenotype can be a function of innervation 

and use involving contraction and loading [29,30]. Furthermore, functional parameters related 

to fatigability and speed of contraction typically mirror the fibers’ metabolic capacity [22]. 

Sensitivity to many types of atrophic stimuli is also a function of metabolic phenotype. 

Decreased use (i.e. bed-rest, spaceflight) induces a more rapid atrophy in slow-oxidative 

muscle fibers than primarily glycolytic muscle [31], while glycolytic fibers demonstrate 

greater age-induced atrophy and hypoplasia [32]. The majority of studies with rodent cancer 

cachexia models demonstrate more hindlimb wasting in primarily glycolytic muscle when 

compared to primarily oxidative muscle [15,33,34]. However, the examination of myofiber 

cross-section, rather than whole muscle mass, has demonstrated decreases in both glycolytic 

and oxidative myofibers with cancer cachexia [35–37]. The duration of the cachexia in rodent 

studies may also be a factor in the wasting outcomes involving oxidative skeletal muscle. 

The ApcMin/+ mouse, which often undergoes cancer cachexia for several weeks, has 
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consistently demonstrated decreased mass of the oxidative soleus muscle [38–40]. Besides 

wasting susceptibility, the oxidative soleus muscle has been reported to demonstrate more 

regeneration and/or necrosis when compared to more glycolytic muscle [40]. Further studies 

are needed to determine if cancer-induced fatigue and force production impairments are 

related to oxidative myofiber regeneration with cancer cachexia. The effect of oxidative 

metabolism on cachexia susceptibility may be linked to the heterogeneous population of 

mitochondria in red and white muscle [41], but additional research is needed to demonstrate 

this as a mechanism of glycolytic fiber wasting with cancer. Although clear evidence exists 

that muscle metabolic phenotype influences the response to many stimuli that alter muscle 

mass, during late stages of cachexia atrophy of both glycolytic and oxidative muscle has 

been reported [42]. Further study is needed to establish if decreased use related to inactivity 

plays a prominent role in oxidative muscle fiber wasting with cancer cachexia. It is also 

interesting to speculate if decreased muscle use, which corresponds with the sedentary 

behavior that accompanies cachexia can affect muscle sensitivity to systemic cachectic 

mediators, such as cytokines.

2.2 Muscle oxidative metabolism capacity and mitochondria content during cancer 
cachexia

Oxidative metabolism is central to skeletal muscle metabolic homeostasis [20,43] and 

frequently quantified by mitochondria content, mitochondria respiratory capacity, and the 

activity of enzymes involved in the Krebs cycle and the electron transport chain (Figure 1). 

Understanding skeletal muscle’s capacity for oxidative metabolism has been a cornerstone 

of muscle biology and physiology research for over 40 years [43]. During this time the 

scientific examination of muscle has extended beyond the classical descriptions of muscle 

phenotype, and has evolved into mechanistically understanding the regulation of metabolic 

plasticity related to muscle use, disease, and aging. Initial breakthroughs examining muscle 

oxidative metabolism established metabolic plasticity with increased and decreased muscle 

use, which were linked to the capacity for whole body oxygen consumption (fitness) and 

exercise endurance [23]. While it is established that muscle mitochondria content and 

function are increased by exercise [44], the mechanistic basis of this plasticity is still being 

investigated today. As clearly demonstrated by the extensive number of studies published 

during the past 15 years [43], understanding changes in muscle oxidative metabolism and 

mitochondria function have become a fundamental focus of aging research investigating 

sarcopenia, frailty, and quality of life in the elderly. Additionally, there is strong evidence 

that wasting diseases alter muscle oxidative metabolism [45].

The well-described disruption of skeletal muscle oxidative metabolism reported with many 

cachectic conditions involves muscle mitochondria loss [25–28,46]. Although red and white 

skeletal muscle differ dramatically in both mitochondria density and the importance of 

oxidative metabolism, cancer cachexia reduces mitochondrial content and oxidative protein 

expression in both muscle types in the mouse hindlimb [26]. The loss of muscle oxidative 

capacity in the later stages of cancer cachexia also corresponds with the development of 

severe insulin resistance in several rodent models [10,47]. Insulin sensitivity as well as lipid 

metabolism are impaired in cancer patients with recent weight loss [7]. However, in lung 

cancer patients exhibiting significant weight loss muscle oxidative capacity has been 
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reported to be preserved [48]. Further study is needed to determine the relationship between 

muscle oxidative capacity declines and the specific type of cancer; lung cancer can promote 

rapid weight loss, which could differentially affect oxidative capacity when compared to less 

aggressive body weight loss. Interestingly in humans, cancer is often accompanied by aging 

and decreased muscle use, which are not normally accounted for in studies employing 

animal cancer cachexia models.

Since glycolytic muscle has been reported to be more sensitive to cachectic stimuli, there 

has been an interest in determining if muscle oxidative metabolism might inherently confer 

resistance to cancer cachexia. There is clear evidence that hindlimb myofibers from tumor 

bearing rodents undergo atrophy regardless of the succinate dehydrogenase activity 

level [26,36,37,49]. Regardless, mitochondria dysfunction is an established regulator of 

myofiber protein turnover [21,25], and gaps remain in our understanding of whether the fiber 

metabolic phenotype can produce differential regulation of cellular muscle wasting 

processes. Outside of the diaphragm muscle [50], load-bearing hindlimb muscle has been 

studied almost exclusively in highly glycolytic muscle. While heterogeneous populations of 

mitochondria in red and white muscle have been reported [41], differential responses of these 

subpopulations to cancer cachexia has not been clearly established. Further examination of 

myofiber oxidative metabolism and its interaction with cachectic stimuli is certainly 

warranted; there is likely a high prevalence of oxidative fibers in the aging cancer 

patient [12]. Additionally, the wasting of oxidative myofibers could be more dramatically 

impacted by decreased muscle use, which is documented with cancer cachexia in human and 

rodent studies [38,51–53]. Related to oxidative myofiber sensitivity to cachectic stimuli, the 

roles and potential regulatory interactions between decreased use, suppressed oxidative 

metabolism, and mitochondrial dysfunction need to be more firmly established.

An additional line of inquiry has examined if skeletal muscle’s metabolic plasticity can be 

exploited to prevent cancer-induced muscle wasting. Is there a therapeutic benefit of 

increasing muscle oxidative metabolism above basal levels? While successful outcomes 

related to the induction of oxidative capacity could involve muscle mass, blocking metabolic 

dysfunction could also serve to improve the patient’s survival. While there is encouraging 

evidence that exercise [47,53–55] and nutraceuticals [56] may be beneficial in conferring 

resistance to cachexia, the complexity of the systemic responses to these treatments 

complicates the mechanistic interpretation of the findings. These interventions cannot be 

directly linked to oxidative metabolism, as they target many systemic parameters and diverse 

muscle-signaling pathways. Additionally, many of these treatments regulate tumor growth 

and function that are involved in creating the cachectic milieu [46,54,55,57–59]. Intervention 

studies often measure tumor size, but this may not account for the tumor’s capacity to create 

a cachectic environment. A less examined paradigm with clinical significance is the 

restoration of mitochondrial content in cachectic muscle. Research is needed to establish the 

constraints, if any, that severe cachexia places on the metabolic plasticity of muscle.

2.3 Mitochondrial biogenesis during cancer cachexia

Myofiber mitochondrial content is subjected to regulation that allows responsiveness to the 

cellular environment. This cellular metabolic plasticity has been well studied and includes 
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the coordinated processes of mitochondrial biogenesis, fission/fusion, and mitophagy. The 

disturbance of any of these processes can disrupt muscle metabolism [60]. Mitochondrial 

biogenesis is required for the maintenance of muscle mitochondria content and function, and 

the coordinated events essential for this process have been reviewed in detail 

elsewhere [61,62]. The peroxisome-proliferator gamma-activated receptor (PGC-1) family of 

co-activators has been described as the ‘master regulators’ of muscle oxidative metabolism. 

PGC-1α regulates mitochondrial biogenesis by nuclear translocation and activation of 

oxidative gene transcription [63], and was first identified for its role in brown adipose tissue 

adaptive thermogenesis [64]. PGC-1α loss reduces mouse muscle mitochondrial content and 

disrupts mitochondrial function [65], while PGC-1α over-expression increases muscle 

mitochondrial protein expression [66]. PGC-1α transcriptional control involves 

mitochondrial proteins, mitochondrial transcription factor A (Tfam), and nuclear respiratory 

factor-1 (NRF-1) and NRF-2 [62,63]. Several PGC-1 isoforms have also been identified. 

PGC-1β drives the specific expression of MHC IIX fibers, and is associated with an increase 

in oxidative phenotype [67]. The PGC-1α4 isoform regulates IGF-1 and myostatin signaling, 

and is associated with muscle hypertrophy rather than oxidative capacity [68]. There has been 

substantial interest in understanding if PGC-1α has a regulatory role in cancer-induced 

muscle wasting. There is strong evidence that wasting and metabolic dysfunction decrease 

muscle PGC-1α expression in humans and rodents [69–75]. Muscle PGC-1α expression is 

also decreased with cancer cachexia [26,47,51]. Numerous studies examining PGC-1α 

overexpression by either in vivo transfection or transgenic mice have found protection from 

skeletal muscle atrophy due to decreased use [76–79], starvation [78], and cytokine 

administration [80]. Fewer studies have examined the role of PGC-1α in preventing cancer 

cachexia induced muscle wasting. PGC-1α overexpression is not sufficient to block Lewis 

lung carcinoma (LLC)-induced muscle wasting [81]. However, the ability of cachectic 

muscle to restore mitochondria function after cachectic loss has not been determined. While 

our knowledge of PGC-1 co-activators continues to advance, it is apparent that PGC-1α 

controls multiple pathways that regulate mitochondrial content and function in skeletal 

muscle, and further work is needed to determine how this can both affect and benefit 

cachectic muscle.

The control of PGC-1α activity occurs through upstream mediators, and provides critical 

metabolic responsiveness to the cellular environment [43]. Sirtuin 1 (Sirt1) deacetylation of 

PGC-1α increases its activity, but the function of Sirt1 in cancer-induced muscle wasting has 

not been clearly established. Sirt1 mRNA expression in cachectic muscle has been reported 

to be a function of muscle phenotype, being reduced in the cachectic gastrocnemius mouse 

muscle, but not in the soleus [26]. Interestingly, both the cachectic gastrocnemius and soleus 

muscles have reduced muscle mitochondria content. AMP-activated protein kinase (AMPK) 

is a potent regulator of skeletal muscle metabolism, and can be activated by cellular energy 

status, calcium levels, and cytokine signaling [82,83]. AMPK can regulate mitochondrial 

content through PGC-1α-dependent mitochondrial biogenesis and ULK1-dependent 

stimulation of mitophagy [82]. Exercise and pharmacological agents can stimulate AMPK 

activation and PGC-1α expression in skeletal muscle [84–88]. AMPK can bind to and 

phosphorylate PGC-1α [86], thereby increasing the activity and transcription of this 

transcriptional co-activator. While the AMPK-PGC-1α axis can stimulate mitochondrial 
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biogenesis, this signaling is disrupted in mouse models of cancer cachexia. Wasting skeletal 

muscle from ApcMin/+ mice exhibits chronically elevated AMPK activity, which does not 

translate to changes in either mitochondrial content or PGC-1α expression [26,47,51]. 

Interestingly, elevated AMPK is observed in skeletal muscle lacking PGC-1α [89]. Since 

interleukin-6 (IL-6) can stimulate AMPK and reduce PGC-1α expression in myotubes [47], 

further research is needed to determine if chronic AMPK activation is a result of circulating 

inflammatory cytokines or metabolic energy stress in cachectic muscle. Systemic IL-6 

inhibition in ApcMin/+ mice can increase mitochondrial content, PGC-1α expression, and 

mitochondrial protein expression while attenuating the progression of cancer cachexia [47], 

but a direct regulatory effect has not been established. Understanding the disrupted 

relationship between AMPK, PGC-1α, and mitochondria biogenesis in cachectic muscle is 

needed to develop therapies to improve muscle metabolic quality and patient health.

The p38 mitogen-activated protein kinase (MAPK) family plays a critical role in skeletal 

muscle metabolism. The selective activation of p38 MAPK isoforms (α, β, and γ) can 

promote distinct cellular metabolic processes. Skeletal muscle p38β MAPK activation can 

regulate protein catabolism in cachectic muscle [90,91]. p38 MAPK signaling can also 

regulate muscle PGC-1α activity [92–94]. Activation of p38 MAPK signaling by voluntary 

exercise or transgenic overexpression can increase muscle PGC-1α gene expression [95]. 

However, the response to muscle contraction appears specific to p38γ MAPK, as the loss in 

p38α or p38β MAPK does not affect endurance exercise metabolic adaptation [96], while the 

loss of muscle p38γ suppresses contraction-induced PGC-1α gene expression [96]. The role 

of p38γ-PGC-1α regulation of mitochondrial biogenesis with increased contractile activity 

warrants further investigation to determine if it can be targeted in cachectic muscle.

2.4 Mitochondria dynamics during cancer cachexia

The maintenance of the myofiber mitochondrial network is critically important for 

adaptation to altered metabolic demands [97,98]. Mitochondrial dynamics involve the 

coordinated processes of fission and fusion, which can affect mitochondrial function (Figure 

2) [99,100]. Mitochondrial fusion expands myofiber mitochondria networks, and fusion 

proteins 1 and 2 (Mfn1/2) and optic atrophy protein 1 (OPA1) are important regulators of the 

process [60]. In healthy individuals, mitochondrial fusion is associated with PGC-1α protein 

expression, citrate synthase activity, and mitochondrial creatine kinase [101]. A reduction in 

Mfn2 has been observed in muscle from type 2 diabetic [102,103] and obese patients [103]. 

During the progression of cachexia in mouse hindlimb muscle, Mfn1/2 protein expression is 

suppressed during the initial stages of cachexia [47], which suggests that altered fusion is an 

initial event in the cancer-induced disruption of muscle oxidative capacity. Mitochondrial 

fusion protein expression appears to be IL-6 sensitive. Systemic IL-6 over-expression in vivo 
decreases muscle mitofusion protein expression in ApcMin/+ mice, whereas IL-6 receptor 

(IL-6r) antibody administration increases Mfn2 expression in cachectic mouse muscle [47]. 

Direct effects of IL-6 on Mfn2 expression was shown, as the treatment of primary human 

muscle cultures by IL-6 reduced Mfn2 gene expression [103]. Mfn2 gene expression is 

regulated by PGC-1α and PGC-1β [104,105]. PGC-1α overexpression rescues Mfn1/2 

expression during unloading-induced atrophy [77]. Extending our understanding of the 

mechanisms that suppress mitochondrial fusion during cancer cachexia, and determining if 
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this process can serve as a therapeutic target to improve muscle metabolic function are 

warranted.

Mitochondrial fission, the division of the organelle, is regulated through the expression of 

dynamin-related protein-1 (DRP1) and Fission protein 1 (Fis1) [60]. Increasing fission results 

in fragmented mitochondria, while a reduction in fission increases mitochondria 

networks [106]. Unlike fusion proteins, muscle Fis1 expression is not induced until the more 

severe stages of cachexia in mice [47]. Increased Fis1 expression in cachectic muscle is not 

affected by inherent oxidative capacity, being increased in both oxidative and glycolytic 

muscles [46]. Fis1 expression also appears to be IL-6 sensitive, increasing with systemic IL-6 

over-expression in ApcMin/+ mice and decreasing with IL-6r antibody administration during 

the progression of cachexia [47]. These effects may be due to direct actions of IL-6 on the 

muscle, as IL-6-treated myotubes increase Fis1 protein expression [47]. Fis1 was also 

demonstrated to regulate the atrophic process of skeletal muscle [27]. Related to regulation of 

muscle mass, the over expression of Fis1 has been shown to be pro-apoptotic [107–109], 

associated with the production of reactive oxygen species [25], and is also capable of 

activating protein degradation [27]. Muscle apoptosis has been observed in human and rodent 

models of cancer cachexia [38,110–113]. In ApcMin/+ mice apoptosis was only observed in 

severely cachectic muscle [38], which coincides with Fis1 expression [26]. Mitochondria 

fission activates AMPK, which regulates FOXO3 independently of Akt activation [27]. Both 

denervation- and starvation–induced muscle atrophy activate AMPK, and the knockdown of 

either AMPK or FOXO can prevent mitochondrial dysfunction and atrophy [27]. Exercise 

also can affect muscle mitochondrial dynamics, by increasing fission and suppressing 

fusion [99,114,115]. However, in ApcMin/+ mice exercise attenuated the IL-6 induction of 

mitochondrial fission and FOXO [47]. While evidence suggest that the regulation of 

mitochondrial fission and fusion is able to control muscle wasting, as it relates to cancer 

cachexia, significantly less is understood about the role of mitochondria dynamics and its 

own regulation. Nonetheless, the restoration of mitochondrial dynamics in cachectic muscle 

may be a therapeutic target for improving overall function.

2.5 Mitophagy and cancer cachexia

Maintaining mitochondrial quality requires the removal of damaged mitochondria [60]. 

Autophagy is an essential cellular process for lysosomal-dependent degradation of 

organelles, and selective removal of damaged or dysfunctional mitochondria is known as 

mitophagy. This process is linked to mitochondrial dynamics [116]. The molecular 

components of the autophagy-lysosomal pathway involve several autophagy-related genes 

(Atgs) [117]. Deletion of Atg7 results in skeletal muscle atrophy, mitochondria abnormalities, 

and disorganization of sarcomeres [118]. The myofiber requires a coordinated balance 

between mitochondrial biogenesis and mitophagy, and a cancer-induced disruption in this 

balance could cause decreased mitochondrial content and the accumulation of dysfunctional 

mitochondria. Indeed, alterations in mitochondria morphology that indicate dysfunction (i.e., 

swelling, electron-lucent areas, vesicle-like structures) have been observed in cachectic 

skeletal muscle [36,119]. Activation of the autophagy-lysosomal system can be observed 

during the initial stages of weight loss [120–123], and muscle lysosomal enzyme activity has 

been correlated with weight loss in cancer patients [124]. Rodent cancer cachexia models also 
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demonstrate increased muscle expression of autophagy and lysosomal 

proteins [46,117,125,126]. Muscle autophagy can be regulated by the FOXO family and mTOR 

signaling, which are established controllers of muscle mass [27,127]. In ApcMin/+ mice the 

expression of autophagy proteins is not increased until the muscle is severely cachectic [46]. 

Interestingly, in cachectic cancer patients there is evidence for the induction of muscle 

autophagy-lysosomal processes, while activation of the ubiquitin proteasome system in 

human cancer patients is more equivocal [122,123,128–130]. Also, the link between oxidative 

metabolism and autophagy is less clear in humans; a decrease in muscle oxidative 

metabolism has not been reported in some cachectic human cancer patients [48]. As it relates 

to physical activity, oxidative muscle fibers display higher levels of autophagy flux [131], and 

exercise can stimulate autophagy [131–133]. Further work is needed to determine if 

contraction is a stimulus that can restore cachectic muscle’s disrupted balance between 

mitochondria biogenesis and mitophagy.

2.6 Mitochondria uncoupling and ROS formation during cancer cachexia

Reactive oxygen species (ROS) are molecules that contain an oxygen free radical and can be 

produced in multiple cellular locations [134]. Superoxide is the most commonly-generated 

ROS, with hydrogen peroxide being a more stable derivative [134]. ROS are natural 

byproducts of biochemical reactions and can serve as cellular signaling molecules [135]. 

While only a small percentage of mitochondrial oxygen is converted to ROS [136,137], this 

production can increase in response to increased contractile activity, decreased use, or 

chronic disease [135]. While ROS has a role in cellular signaling during physiological 

conditions, aberrant ROS production can lead to muscle dysfunction through the oxidation 

of proteins, lipids, and DNA [138,139]. Muscle atrophy is associated with mitochondrial 

dysfunction and the production of reactive oxygen species (ROS) [135]. Glycolytic muscle 

appears to be more susceptible to oxidative stress [41]. Additionally, subsarcollema (SS) 

mitochondria can produce higher levels of ROS and are preferentially lost when compared to 

intermyofibrillar (IMF) mitochondria [140,141]. Inflammation can also affect muscle ROS 

production. Tumor necrosis factor (TNF) is a cytokine that has been associated with 

increased mitochondrial ROS production [142]. Evidence suggests that muscle oxidative 

stress is increased in some, but not all rodent models of cancer cachexia [42,110,143,144]. In 

addition, higher levels of ROS and oxidative stress has been reported in cachectic lung 

cancer patients [145], and LLC conditioned medium increases ROS production in C2C12 

muscle cells [146]. However, determining the contribution of mitochondrial ROS production 

to the regulation of mechanisms controlling increased catabolic signaling in cachectic 

muscle warrants further examination.

Mitochondrial uncoupling proteins (UCPs) have been implicated in the control of energy 

metabolism during cancer cachexia, and may also play a role in the regulation of ROS 

production in skeletal muscle [147]. Mitochondrial UCPs are membrane proteins that mediate 

proton leakage and uncouple respiration to produce thermogenesis instead of ATP 

synthesis [5]. UCP-1 is expressed in adipose cells and has been implicated in ‘browning’ of 

white adipose tissue during cancer cachexia [148]. In contrast, UCP-2 and -3 have been 

associated with skeletal muscle wasting [5]. While some researchers have reported increased 

UCP-2 or UCP-3 expression in cachectic human and rodent skeletal muscle [149–155], others 
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have reported reduced expression [26]. The differential responses observed may be related to 

the tumor model used, as well as the fasted state of the animal. Skeletal muscle UCP-2 and 

-3 gene expressions are induced in response to fasting conditions [156,157], which can vary 

between studies. However, when food intake has been controlled, muscle UCP-2 and -3 gene 

expression is increased in cachectic muscle [152,154]. Future research is needed to define the 

significance of muscle UCP expression and its relationship to mitochondrial dysfunction 

during the progression of cancer cachexia.

3. Cancer Cachexia-Induced Regulation of Skeletal Muscle Oxidative 

Metabolism

3.1 Cytokine mediated regulation of muscle oxidative metabolism

Systemic inflammation is recognized as a hallmark of cancer cachexia [8], and circulating 

cytokines are established initiators of the muscle wasting process (Figure 3) [38,158]. 

Changes in cytokines may be related to the tumor and/or the host response to the tumor [159]. 

The cellular signaling linking inflammatory mediators to disrupted protein turnover has been 

widely researched [8,15]. Specific to cancer cachexia, perturbations in cytokines such as IL-6, 

TNF, TNF-like weak inducer of apoptosis (TWEAK), and myostatin have been implicated in 

muscle wasting processes [8,160,161]. While often proposed, the evidence directly linking 

inflammation to cancer cachexia-induced mitochondrial dysfunction is only beginning to 

emerge [146].

IL-6 is a pleiotropic cytokine that has been implicated in the regulation of skeletal muscle 

metabolism and cachexia in both animal models and cancer patients [48,145,161–163]. IL-6 

binding to its receptor complex can activate several intracellular signaling pathways 

including JAK/STAT signaling. Manipulating systemic IL-6 can affect the disruption of 

muscle oxidative metabolism during cancer cachexia, but these approaches have not 

provided direct evidence for the action of IL-6 signaling in myofibers. Systemic IL-6 

overexpression disrupts muscle mitochondrial biogenesis and dynamics [47], while IL-6 

receptor antibody administration attenuates mitochondrial loss and disrupted oxidative 

metabolism in cachectic skeletal muscle [26,47,164]. A role for mitochondrial STAT3 in basal 

cellular respiration has been described [165], and it has been proposed that the accumulation 

of mitochondrial STAT3 may alter ETC function and ROS production, and produce 

mitochondrial dysfunction [166]. A role for STAT3 in the disruption of skeletal muscle 

oxidative metabolism with cancer cachexia has yet to be established. The subcellular 

localization of STAT3 in non-muscle cells has been implicated in the regulation of 

autophagy [167], and nuclear STAT3 can promote or suppress target genes regulating 

autophagy. Interestingly, JAK/STAT3 also has been implicated in the nuclear/cytosolic 

shutting of FOXO-1 and -3 in CD4+ T cells [168]. While this has not been described in 

cachectic skeletal muscle, a better understanding of IL-6 and STAT3 regulation of 

mitophagy in cachectic muscle is warranted.

TNF is an inflammatory cytokine elevated in the circulation with certain cancers and some 

rodent cancer cachexia models [6,145]. TNF predominantly activates the canonical NF-κB 

signal transduction pathway, which has been implicated in muscle oxidative metabolism 
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regulation [169]. The canonical NF-κB pathway involves the nuclear localization of the 

p65/p50 heterodimer complex. This occurs through the degradation of IκBα, which is 

regulated by IKKβ kinase activity [170]. Activation of the classical signaling pathway impairs 

mitochondrial biogenesis and oxidative capacity, and alters mitochondrial morphology [169]. 

In addition, NF-κB signaling has also been shown to suppress muscle mitochondrial gene 

expression, oxygen consumption, and ATP production [171,172]. Interestingly, non-canonical 

signaling can also result in mitochondrial NF-κB localization and suppression of 

mitochondrial gene expression [173]. While NF-κB signaling is activated in multiple rodent 

models of cancer cachexia [51,174,175], direct actions of this pathway regulating skeletal 

muscle oxidative metabolism during the progression of cancer cachexia remain to be 

established.

TWEAK, a member of the TNF superfamily, transduces intracellular signaling through the 

fibroblast growth factor-inducible 14 (Fn14) receptor [160]. Pathological conditions can 

increase muscle Fn14 expression to amplify TWEAK signaling [176]. TWEAK-Fn14 

signaling is associated with muscle atrophy [177], and the regulation of skeletal muscle 

oxidative capacity [178,179]. TWEAK inhibits oxidative metabolism in skeletal muscle [178], 

possibly through the repression of PGC-1α and the activation of the NF-κB [80]. TWEAK 

loss causes enhanced skeletal muscle mitochondrial content and oxidative capacity [178], 

whereas TWEAK overexpression decreases mitochondrial density [80]. Interestingly, 

PGC-1α overexpression can prevent the induction of Fn14 expression during muscle 

atrophy [80]. Given the interrelationship between NF-κB, TWEAK signaling, and PGC-1α, 

strategies to target this interaction could have therapeutic potential for rescuing disrupted 

muscle oxidative metabolism due to cancer.

Myostatin, a transforming growth factor-β (TGF-β) superfamily member, is involved in the 

regulation of skeletal muscle growth and differentiation [180]. Myostatin binding to ActRIIB 

phosphorylates downstream effector Smad2/3, and results in the translocation of the 

Smad2/3 and Smad4 complex to the nucleus, where it regulates the transcriptional 

suppression of genes responsible for myogenesis [181]. Elevated circulating and muscle 

myostatin has been reported in tumor-bearing mice [182,183], and myostatin- associated 

signaling can disrupt protein turnover leading to muscle catabolism [180]. Myostatin has been 

identified as part of the C26 tumor secretome, and C26-induced cachexia in mice results in a 

significant reduction in mitochondria content [159]. Additionally, C26-conditioned media can 

increase ROS production and oxidative stress in C2C12 myotubes [159]. Similar to other 

cytokines, the direct evidence for myostatin regulation of muscle oxidative metabolism in 

cachectic muscle is still being established.

3.2 Hypogonadism regulation of muscle oxidative metabolism

Gonad function has a significant role in whole body homeostasis through the production of 

sex steroids. The capacity for this regulation changes throughout the lifespan, and can also 

be affected by disease, energy balance, and body composition [6,184,185]. Although 

hypogonadism is commonly mentioned as an environment associated with cachexia [1], 

significant gaps remain in our understanding of gonad dysfunction’s regulatory role in 

cancer-induced muscle wasting. While circulating sex steroids decline with hypogonadism 
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in both the female and male, far more is known about hypogonadism as it relates to cachexia 

in the male condition. Hypogonadism can indirectly affect muscle wasting through the 

regulation of other environments related to anemia, insulin resistance, and inflammation, 

which are also targeted by cancer [184,186,187]. However, circulating sex steroids also have 

direct effects on many tissues, including muscle and bone [188]. There is clear evidence that 

estrogen and testosterone have regulatory functions related to skeletal muscle mass, 

metabolism, and ability to repair from injury [189–192]. Low testosterone in the male can 

decrease strength and muscle mass in the absence of disease [193,194], and many diseases, 

including cancer, can decrease circulating testosterone [6,184]. Estrogen deficiency can affect 

muscle mass retention in the aged female, decrease the ability to recover from atrophy, and 

adversely affect muscle metabolism and the regulation of protein turnover [189,192,195]. 

Additionally, since the median age of diagnosis of colon, lung and pancreatic cancers is over 

70 years of age, the vast majority of women are post-menopausal when these potentially 

cachectic cancers are diagnosed [196,197]. Sex hormone therapy in males and females has 

been widely examined in adults for a range of health benefits, and also to determine the 

inherent health risks of the specific therapies [198–200]. Beyond effects in patients with 

conditions related to disease and gonad dysfunction, sex hormone replacement therapy in the 

aged female and male has been extensively examined [200,201]. The interaction of these 

therapies with aging has clinical significance for cancer patients, who can exhibit age-

induced changes in gonad function at the time of cancer diagnosis [6,184]. Testosterone 

therapy has convincing effects on muscle mass and strength in both old and young 

males [202,203]. Estrogen replacement in animal models has demonstrated positive effects for 

muscle recovery from atrophy, and a growing body of evidence currently supports a role for 

hormone replacement in muscle mass retention in the post-menopausal female [200]. Beyond 

being a therapeutic target, further understanding hypogonadism’s mechanistic role in the 

disruption of muscle protein turnover and oxidative metabolism is certainly warranted, given 

the known effects of sex steroid loss on muscle, and also the evidence regarding gonadal 

function in cachectic cancer patients and animal models of cancer cachexia.

While decreased circulating testosterone has not been reported with all types of cancer, 

lowered total or bioavailable testosterone has been reported in male cancer patients, and also 

in cachectic cancer patients [6,186,187]. While not widely examined in rodent cancer models, 

decreased circulating testosterone accompanies the progression of cachexia in the ApcMin/+ 

mouse, and circulating testosterone levels are correlated with hindlimb muscle loss [204]. 

However, further work is needed to determine if this effect is related to the specific type of 

cachexia model or degree of cachexia, as tumor-bearing rats have been reported not to show 

decreases in circulating testosterone [205]. A complex response that involves muscle 

phenotype and sex is found when examining skeletal muscle responses to either increased or 

decreased testosterone levels. Rodent skeletal muscle associated with reproductive functions 

demonstrates extreme sex steroid sensitivity compared to locomotor hindlimb 

muscle [206,207]. Additionally, muscles within the rodent hindlimb appear to have different 

sensitivities to testosterone and estrogen [189,207,208]. Muscle sensitivity to sex hormone 

levels is affected by muscle androgen and estrogen receptor expression (AR and ER, 

respectively) [209]. Circulating hormone levels, muscle regeneration, muscle loading, and 

aging can all affect muscle AR expression [190,191,210,211]. Related to cancer cachexia, 

Carson et al. Page 12

Semin Cell Dev Biol. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



muscle AR expression is decreased in cachectic ApcMin/+ mouse muscle [204]. The time 

course of decreased circulating testosterone and muscle AR expression in male ApcMin/+ 

mice during the progression of cachexia corresponds to muscle mitochondria loss [47]. 

Interestingly, independent of disease, orchiectomy can cause a similar reduction in mouse 

muscle mitochondria content and oxidative metabolism [191,212].

Studies examining overexpression and loss of the AR and ER have established a role for sex 

hormone signaling in the regulation of muscle metabolism. Similar to overall hormone 

responsiveness, the studies to date reveal a complex regulation by sex steroid receptors that 

are affected by both muscle phenotype and sex. AR overexpression increases rat EDL 

muscle myoglobin expression and mitochondrial enzyme activity [213]. However, muscle 

fatigue resistance is increased with the global AR [214] or ERβ [215] deletion in a muscle- and 

sex-specific manner. Myofiber-specific AR loss can increase the percentage of type I 

oxidative fibers in the soleus muscle, but not the fast-glycolytic EDL muscle [207]. Estrogen 

signaling through the ERα and ERβ can regulate mitochondrial biogenesis and function 

through transcriptional regulation of NRF-1 and Tfam [216]. Additionally, ovarian function 

loss in mice is associated with muscle mitochondrial dysfunction, which is attenuated by 

estrogen replacement [217]. Emerging regulatory networks have demonstrated how muscle 

anabolic and catabolic signal transduction pathways are intertwined with mitochondrial 

function, and cellular sex hormone signaling also overlaps with these processes. 

Ovariectomy increases the activation of PPARα and lean body mass in rats [218,219], and 

muscle PPARδ expression, as well as PDK-4, UCP-2, and FOXO1 expressions, are 

suppressed [220]. In addition to the induction of mTOR signaling [191], testosterone 

administration can increase muscle PGC-1α and COXIV expression, while AR deletion 

suppresses their expression [221]. Related to muscle mass and use, muscle AR expression is 

associated with resistance training responsiveness in humans [222]. Further work is needed to 

establish if the hypogonadal state during cancer cachexia impedes muscle metabolic 

plasticity related to increased use and mechanical loading.

3.3 A role for decreased muscle use

Traditionally, cancer-induced environments related to anorexia, inflammation, insulin 

resistance, hypogonadism, and anemia have played an acknowledged role in the regulation 

of skeletal muscle wasting [1]. All of these environments have the potential to directly or 

indirectly regulate skeletal muscle oxidative metabolism. Weakness and fatigue are 

acknowledged outcomes of cachexia, and are discernable by measurements of decreased 

strength, oxygen consumption (VO2 max), and physical activity level in the cachectic 

patient [1]. Interestingly, physical inactivity and decreased muscle use have been well 

documented with cancer cachexia, but often they are characterized as an outcome of 

wasting, and not a contributor to the process. While resting energy expenditure has been 

shown to increase in cachectic cancer patients, total energy expenditure has been reported to 

decrease, coinciding with decreased physical activity level [52,223]. Rodent models of cancer-

induced cachexia have shown a dramatic decrease in voluntary physical activity compared to 

healthy mice [51,58]. During the progression of cachexia in ApcMin/+ mice the decrease in 

physical activity precedes weight loss [38]. While physical inactivity and sedentary behavior 

are established causes of skeletal muscle metabolic dysfunction and atrophy [141,224–226], 
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until recently cancer patient physical inactivity was not clearly acknowledged as a potential 

contributor to the cachectic muscle phenotype. There are clear gaps in understanding 

physical inactivity’s contribution to muscle wasting and metabolic dysfunction in the 

cachectic cancer patient that warrant further investigation.

While numerous and varied definitions have been used to characterize exercise and physical 

activity, the most physiologically relevant descriptions involve the performance of an activity 

that increases energy expenditure above the basal level [227]. Increasing energy expenditure 

might seem counterintuitive for preventing wasting disease; however, physical activity is 

often associated with an increase in lean body mass [228]. Additionally, a convincing body of 

research has demonstrated that the health benefits of regular physical activity extend far 

beyond energy expenditure [229]. In patients with metabolic syndromes, increased physical 

activity can regulate restoration of metabolic homeostasis [224,230]. Conversely, inactivity is 

an acknowledged risk factor for decreased health and the development of chronic metabolic 

disorders [231,232]. The physical activity-induced health benefits and the decrements related 

to inactivity can be directly related to skeletal muscle metabolic function. Increased physical 

activity can improve skeletal muscle oxidative metabolism through mitochondria 

function [233–235] and efficient substrate utilization involving fatty acid oxidation [236] and 

glucose transport [237]. Increased muscle use can shift muscle towards a more oxidative 

phenotype [43,238] without necessarily promoting muscle growth [239]. Improving 

mitochondrial content and function could therefore have significant ramifications on muscle 

metabolic homeostasis in cachectic skeletal muscle.

Endurance exercise-induced improvements in mitochondria function involve processes 

related to biogenesis, mitophagy, and mitochondrial dynamics [62,240], which can be 

disrupted in cachectic muscle [20,47,112]. Conversely, decreased physical activity results in 

altered signaling pathways leading to loss of skeletal muscle mass and decreased muscle 

oxidative metabolism [241–244]. PGC-1α is highly responsive to muscle contraction and has 

been extensively examined for the regulation of oxidative metabolism by physical 

activity [87,245]. Decreased skeletal muscle use suppresses PGC-1α expression [61,78] and 

coincides with decreased mitochondrial content and associated protein expression [226]. 

Additional signaling pathways sensitive to muscle use can regulate oxidative metabolism 

through PGC-1α, AMPK, FOXO and mTOR interactions [25,170,246]. All of these signaling 

pathways have demonstrated some degree of disruption in cachectic muscle [180]. While the 

role exercise on whole body oxidative metabolism is well established, less is known about 

the effect of muscle contraction on oxidative metabolism in the cachectic patient. However, 

initial investigations into exercise and muscle contraction during the progression of cachexia 

in the ApcMin/+ mouse have demonstrated positive outcomes related to the rescue of 

suppressed muscle anabolic signaling, mitochondrial content, and mitochondrial 

biogenesis [51,54]. There is a clear rationale for further investigation to determine if cachectic 

muscle maintains contraction and physical activity-induced metabolic plasticity.

In addition to exercise involving repeated contraction, skeletal muscle phenotype is 

extremely responsive to increased or decreased loading [247]. Skeletal muscle has well-

developed networks that transduce loading conditions to intracellular signaling. A critical 

pathway in this network is integrin signaling [247]. Muscle sensitivity to stretch is a classic 
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paradigm that demonstrates the potency of mechanical signaling for the induction of 

growth [248]. Altered mechanical signaling in muscle induced by increased or decreased load 

can affect both muscle mass and oxidative metabolism. Decreased loading in both humans 

and rodents induces muscle atrophy that is more rapid in oxidative myofibers [24,249,250]. 

Several components of load muscle sensitive signaling pathways are altered with cancer 

cachexia. Protein kinase B/Akt is highly responsive to muscle loading and unloading 

conditions. Akt can regulate both protein turnover and metabolic regulation in 

muscle [170,251–254]. Unloading-induced atrophy decreases Akt phosphorylation, which can 

affect mTOR and FOXO signaling [170]. As discussed earlier, in addition to FOXO and 

mTOR signaling’s well-described regulation of protein turnover [252], they also regulate 

mitochondria function and autophagy [253]. Unloading-induced muscle atrophy also activates 

NF-κB, which has regulatory roles involving both muscle protein degradation and oxidative 

metabolism [170]. Although mTOR, FOXO and NF-κB have well-described roles in cancer-

induced wasting and disuse, the regulation of these pathways and their effectors may differ 

between conditions [170]. To this end, exercise and stretch can also activate muscle NF-κB 

signaling [255–257], in addition to activating mTOR by Akt independent signaling [258]. 

Further research is needed to determine the consequences of simultaneously activating 

disuse and cachectic signaling pathways in muscle. The effects of countering inactivity with 

increased muscle use, while the cachectic environment is present, also warrants additional 

study. Doing so will allow for an improved understanding of the common and stimulus-

specific regulatory mechanisms involved in muscle wasting.

4. Conclusion

Muscle oxidative metabolism has an established role in metabolic health, which centers on 

mitochondria function. Beyond muscle metabolism and substrate utilization, mitochondria 

maintain skeletal muscle homeostasis through the regulation of protein turnover, autophagy, 

and apoptosis. As it relates specifically to cancer cachexia, the role of skeletal muscle 

oxidative metabolism in wasting has recently begun to emerge. In this review, we assessed 

the growing body of evidence that highlights muscle mitochondria and oxidative metabolism 

as a biological target of cancer cachexia. While muscle metabolic phenotype can influence 

the response to cachectic stimuli, both glycolytic and oxidative muscles waste in late stage 

cancer cachexia. However, further work is needed to establish if the rate of wasting and the 

susceptibility to cachectic stimuli are influenced by metabolic phenotype. Additionally, 

further research needs to be established if the mechanisms disrupting protein turnover are 

differentially regulated in oxidative and glycolytic muscle. While the loss of muscle 

mitochondrial content and a reduction in overall oxidative metabolic capacity are consistent 

findings in cachectic rodent muscle, skeletal muscle oxidative capacity changes in human 

cancer patients requires further investigation. Furthermore, it is unclear if elevating 

mitochondrial content is sufficient to prevent or reverse cancer-induced muscle wasting 

associated with impaired mitochondrial function. Next, evidence for the dysfunction of 

mitochondria related to critical wasting mechanisms in cachectic muscle was examined. 

There is evidence across different preclinical cancer models that skeletal muscle 

mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress can all be disrupted in 

cachectic muscle. Further research will be required to clearly establish these mitochondrial 
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alterations as potential biological targets for treating cancer cachexia. Furthermore, the 

cancer-induced systemic disruptions causing mitochondria dysfunction need to be better 

understood. Lastly, we examined how systemic alterations associated with cancer cachexia 

could impact the regulation of skeletal muscle oxidative metabolism. Current evidence 

suggests increased catabolic cytokines and decreased sex steroids accompany disrupted 

muscle oxidative metabolism during the progression of cachexia. Moreover, physical 

inactivity accompanies skeletal muscle wasting in cachectic rodents and human cancer 

patients. Related to decreased muscle use, it is not well understood if inactivity can interact 

with cytokine signaling to amplify the catabolic response in cachectic muscle. While muscle 

activity is a potent regulator of mitochondrial quality and function, further investigation is 

warranted to determine the response of cachectic skeletal muscle to increased use, and if 

increased activity leads to an improved anabolic state. Clearly defining the interactions 

between muscle use and systemic perturbations on mitochondrial oxidative metabolism will 

provide greater mechanistic insight to the drivers of cancer-induced muscle wasting. This 

understanding will have significant implications for future therapeutic treatments in the 

cachectic cancer patient.
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Figure 1. Cancer cachexia associated disruptions in muscle oxidative metabolism
Mitochondrial biogenesis, dynamics, autophagy (mitophagy), apoptosis, and function are all 

used to measure mitochondrial quality in order to quantify muscle oxidative capacity. In the 

cachectic environment there is a decrease in mitochondrial biogenesis quantified by 

decreased peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α), sirtuin 

1 (Sirt1), nuclear respiratory factor 1 (NRF1), and mitochondria transcription factor A 

(TFAM). The cachectic environment has also been shown to alter mitochondrial dynamics 

by increasing mitochondrial fission proteins, fission 1 (Fis1) and dynamin-1-like protein 

(DRP 1) while decreasing mitochondrial fusion proteins, mitofusion 1 and 2 (Mfn1/2). 

There is a reduction in present mitochondrial content due to increased mitochondrial 

autophagy (mitophagy) and apoptosis seen by increased in all isoforms of light chain 3 

(LC3), parkin, PTEN-putative kinase 1 (PINK 1), autophagy 5 (Atg 5), voltage-dependent 

anion channel (VDAC), bcl-2-associated X protein (Bax), beclin, and BCL2/adenovirus E1B 

19 kd-interacting protein 3 (BNIP3). While mitochondrial function can be an effect of the 

previous 4 groups there is also evidence of a direct link to altered mitochondrial function by 

decreased ATP synthesis, cytochrome c oxidase (COX) activity, citrate synthase, protein and 

mRNA expression of cytochrome B and C (Cyt B and C), and increase reactive oxygen 

species (ROS).
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Figure 2. Mechanisms related to skeletal muscle mitochondria dysfunction that can regulate 
cancer-induced wasting
The progression of cancer cachexia is associated the disruption of mitochondrial quality (i.e. 

biogenesis, dynamics, mitophagy), which can lead to the accumulation of dysfunctional 

mitochondria. Impaired mitochondrial function promotes energetic stress, ROS production, 

and the cytoplasmic localization of calcium and pro-apoptotic factors. Several key catabolic 

signaling pathways are activated leading to skeletal muscle atrophy, as well as further 

impairments in muscle oxidative metabolism. Abbreviations: Adenosine monophospate 

(AMP). 5′ adenosine monophosphate-activated protein kinase (AMPK). Apoptosis-inducing 

Factor (AIF). Cytochrome C (Cyt C). Forkhead Box O (FOXO). Figure was made with 

Servier Medical Art (http://www.servier.com/Powerpoint-image-bank).
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Figure 3. Cancer-induced cachectic environments and their relationship to skeletal muscle 
mitochondrial dysfunction during the progression of cancer cachexia
Increases in inflammation and decreases in sex steroids and physical activity disrupt 

mitochondrial quality throughout the progression of cachexia. Inflammation through 

systemic interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), TNF-like weak inducer of 

apoptosis (TWEAK), and myostatin increase throughout cachexia progression result in the 

activation of STAT3, NF-κB, FOXO, and PGC-1α signaling as well as the generation of 

reactive oxygen species (ROS). These signaling pathways result in decreased biogenesis, 

altered dynamics, increased mitophagy, and altered function in cachectic muscle 

mitochondria. Sex steroids (testosterone and estrogen) and their respective nuclear receptors 

(androgen and estrogen receptors) decrease throughout cachexia progression. These can 

negatively regulate anabolic signaling related to insulin-like growth factor 1 (IGF-1). These 

signaling pathways result in decreased mitochondrial biogenesis and altered mitochondrial 

function. Physical activity decreases throughout cancer cachexia progression resulting in 

decreased signaling through Akt/mTOR, and PGC-1α, while increasing signaling through 

FOXO, NF-κB, Bax, and ubiquitins. Decreased physical activity results in decreased 

biogenesis, increased mitophagy and apoptosis, and altered mitochondrial dynamics and 

function. While these factors can work independently, the culmination of systemic factors 

and decreased use can negatively impact muscle oxidative capacity through the regulation 

mitochondrial biogenesis, dynamics, mitophagy, apoptosis and function.
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