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Abstract

Schizophrenia and bipolar disorder are complex psychiatric disorders that present unique 

challenges in the study of disease biology. There are no objective biological phenotypes for these 

disorders, which are characterized by complex genetics and prominent roles for gene-environment 

interactions. The study of the neurobiology underlying these severe psychiatric disorders has been 

hindered by the lack of access to the tissue of interest – neurons from patients. The advent of 

reprogramming methods that enable generation of induced pluripotent stem cells (iPSCs) from 

patient fibroblasts and peripheral blood mononuclear cells has opened possibilities for new 

approaches to study relevant disease biology using iPSC-derived neurons. While early studies with 

patient iPSCs have led to promising and intriguing leads, significant hurdles remain in our 

attempts to capture the complexity of these disorders in vitro. We present here an overview of 

studies to date of schizophrenia and bipolar disorder using iPSC-derived neuronal cells and discuss 

potential future directions that can result in the identification of robust and valid cellular 

phenotypes that in turn can lay the groundwork for meaningful clinical advances.
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Introduction

Schizophrenia (SCZ) is a chronic and debilitating psychiatric disorder that is characterized 

by hallucinations, paranoid delusions, disordered thought processes, and cognitive deficits 

(Lewis and Lieberman, 2000). Bipolar disorder (BPD), also known as manic-depressive 

illness, is characterized by debilitating episodes of mania and depression that are often 

accompanied by psychotic symptoms (Keck et al., 2003, Goodwin and Ghaemi, 2003). SCZ 

and BPD both afflict ~1% of the population (Kessler et al., 2005, Merikangas et al., 2007). 

These illnesses manifest themselves in late adolescence or early adulthood, and follow a 

chronic course requiring treatment for the rest of a patient’s life (Fenton and McGlashan, 

1991a, Fenton and McGlashan, 1991b, Salvatore et al., 2007). Patients with SCZ and BPD 

have a very high risk of suicide compared to the general population (Palmer et al., 2005, 

Pompili et al., 2013). The diagnosis and treatment of SCZ and BPD are based on clinical 

symptomatology and there are no biomarkers to aid in diagnosis, in guiding treatment 

decisions, or in monitoring treatment response (Pillai and Buckley, 2012, Frey et al., 2013).

SCZ and BPD are highly heritable but their genetic architecture is very complex (Kendler 

and Diehl, 1993, McGuffin et al., 2003). These disorders have monozygotic concordance 

rates of ~50% and dizygotic concordance rates of ~10% (Davis et al., 1995, Kieseppä et al., 

2004, Kety et al., 1971). Despite the strong genetic component to these severe psychiatric 

disorders, genetic studies are only beginning to identify risk variants (Consortium, 2014, 

Group, 2011). Recent genome wide association studies have also found recurrent 

microdeletions and copy number variants that are associated with SCZ and BPD (Georgieva 

et al., 2014). Genetic studies point to some shared genetic susceptibility to SCZ and BPD 

(Lichtenstein et al., 2009, Consortium, 2013).

There is a marked dearth of medications that target the underlying disease biology in SCZ 

and BPD (Insel and Scolnick, 2006). Current antipsychotics were derived from the 
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serendipitous discovery of chlorpromazine in the 1950s when scientists were trying to 

develop drugs with sedative and anti-histaminergic properties to use during surgeries 

(López-Muñoz et al., 2005, Ban, 2007). Similarly, lithium, the most efficacious treatment for 

BPD, was discovered in 1949 (CADE, 1949). The last major clinical advance in the 

treatment of SCZ was the development of clozapine in 1970s (Rodová et al., 1973) which 

had better efficacy compared to other antipsychotic medications (Baldessarini and 

Frankenburg, 1991). Current treatment of SCZ is based on the hypothesis that psychosis 

results from increased level of dopaminergic activity in the brain (Seeman, 2013). 

Antipsychotic medications are believed to work by acutely blocking the binding of 

dopamine to the D2 receptor (Kapur and Mamo, 2003, Seeman, 2006). However, there is 

significant variability in efficacy in different patients and there is often a lag time in 

therapeutic response that creates significant challenges in properly and effectively treating 

these patients (Pouget and Müller, 2014, Case et al., 2011, Takeuchi et al., 2012).

The development of novel therapeutics for SCZ and BPD has been hindered by the lack of 

our understanding of the neurobiology underlying these disorders. Most biological studies to 

date of small molecules with potential roles in the treatment of psychiatric disorders have 

been carried out in animal models (Nestler and Hyman, 2010). Studies in rodents have 

yielded a wealth of knowledge on basic biology and pathophysiology, including in our 

understanding of neurobiology. Animal models have been routinely used to identify new 

therapeutic leads for various human diseases, including for psychiatric disorders (Woodcock 

and Woosley, 2008). While these studies have led to a better understanding of the biology, 

there has been a lack of compounds that have translated successfully from animal models to 

humans (Pound et al., 2004, Hackam and Redelmeier, 2006, Medicine, 2013). Recent 

studies have found that genomic responses in humans to specific pathophysiological 

processes often have poor correlation with such responses in rodent models (Seok et al., 

2013). In addition, studies in induced human neurons and in cortical neurons from knockout 

mice showed species-specific differences in the effects of NRXN1 mutations on synaptic 

biology (Pak et al., 2015). These considerations have led to a note of caution about focusing 

exclusively on animal studies for preclinical studies and spurred efforts to study the biology 

relevant to neuropsychiatric diseases in human neuronal cells (van der Worp et al., 2010, 

Rice, 2012, Haggarty and Perlis, 2014).

Until recently, a significant hurdle to the development of novel therapeutics has been the 

inability to study live human neurons in the laboratory. Cellular reprogramming methods 

now enable generation of human iPSCs from patient fibroblasts, which can be differentiated 

to neurons (Okita and Yamanaka, 2011, Takahashi et al., 2007, Takahashi and Yamanaka, 

2006, Brennand et al., 2014a, Brennand et al., 2014c, Brennand et al., 2011, Yu et al., 2014, 

Pedrosa et al., 2011, Yoon et al., 2014, Wen et al., 2014, Vaccarino et al., 2011, Chen et al., 

2014). Given the complexity of brain development and diversity of neuronal subtypes, 

generation and identification of specific neuronal subtypes may seem daunting. However, 

there have been recent methodological advances in human iPSC differentiation along 

specific neuronal lineages (Shi et al., 2012a, Shi et al., 2012c, Yu et al., 2014, Mariani et al., 

2012). These advances enable the study of disease-related features in specific neuronal 

subtypes derived from patient iPSCs. We review here the current status of the field in 

studying patient iPSC-derived neurons in SCZ and BPD, with a discussion focused on 
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approaches that incorporate environmental factors and clinical information in order to 

discover disease signatures that can lead to novel therapeutics.

Stem cell models in schizophrenia

There have been a number of promising studies of iPSC-derived neurons in SCZ (Brennand 

et al., 2014c). In the initial study of iPSC-derived neurons in patients diagnosed with SCZ, 

an experimental approach that involved transmission of modified rabies virus in 

differentiated neuronal cultures was used to show that neurons from SCZ patients had 

decreased neural connectivity, decreased neurites and decreased levels of the synaptic 

protein PSD95, even though they showed normal physiological properties by whole-cell 

patch recordings and calcium imaging (Brennand et al., 2011). Gene expression patterns of 

the SCZ neurons revealed altered expression of genes involved in Wnt signaling, cAMP 

signaling and glutamate receptors (Brennand et al., 2011). Another study with neural 

progenitor cells (NPCs) that focused on gene expression and proteomics found abnormalities 

in cytoskeletal remodeling and oxidative stress in NPCs from SCZ patients (Brennand et al., 

2014a).

A number of studies have also been done with SCZ patients that carry specific disease-

related genetic abnormalities. iPSCs from a SCZ patient with 22q11.2 del (velocardiofacial 

syndrome) showed deficits in the down regulation of pluripotency-related genes during 

neuronal differentiation (Pedrosa et al., 2011). Further studies with iPSC-derived neurons 

from SCZ 22q11.2 del patients showed altered miRNA expression profiles that recapitulated 

previously described patterns in postmortem brains and peripheral cells (Zhao et al., 2015). 

15q11.2 CNVs have been reported as risk factors for SCZ (Stefansson et al., 2008, 

Consortium, 2008) and iPSCs from subjects with 15q11.2 del have also been studied. These 

studies showed that the NPCs derived from these iPSCs had abnormalities in adherens 

junctions and apical polarity (Yoon et al., 2014). Disrupted in Schizophrenia 1 (DISC1) is 

another gene associated with SCZ, as well as with other psychiatric disorders (Chubb et al., 

2008, Mackie et al., 2007). iPSCs from family members carrying a frame-shift DISC1 

mutation were differentiated along the forebrain lineage and were found to have synaptic 

deficits and dysregulation of many synaptic genes (Wen et al., 2014). Isogenic iPSC lines 

generated by gene editing showed that mutant DISC1 depleted wild-type DISC1 protein and 

led to abnormalities in synaptic vesicle release (Wen et al., 2014). While these studies 

focuses on NPCs and cortical neurons, another study examined iPSC-derived hippocampal 

neurons from SCZ patients, and showed that hippocampal NPCs had reduced neuronal 

activity and resulted in deficits in generation of DG granule neurons (Yu et al., 2014).

Stem cell models in bipolar disorder

In the first study of iPSC-derived neurons in BPD, NPCs and neurons from three patients 

and three subjects were studied (Chen et al., 2014). This study found that while the iPSC 

transcriptomes were not different between BPD and controls, there were significant 

differences in the neuronal transcriptomes, with increased expression of ion channels and 

membrane-bound receptors in BPD neurons. Neurons from control iPSCs were found to 

express genes involved in dorsal telencephalic fate specification while BPD neurons 
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expressed transcripts for ventral fate specification. This study also found that the calcium 

transients and wave amplitudes in BPD neurons were significantly decreased by exposure to 

lithium compared to control neurons (Chen et al., 2014). Another study of NPCs from two 

BPD patients and their unaffected parents found significant differences in neurogenesis and 

in expression of genes involved in the WNT signaling and ion channel subunits (Madison et 

al., 2015). In addition, overexpression of miR-34a, which targets multiples genes implicated 

in BPD, was shown to result in abnormalities in neuronal differentiation and morphology as 

well as in the expression of synaptic proteins (Bavamian et al., 2015).

A recent study examined hippocampal dentate gyrus (DG) granule cell-like neurons 

differentiated from BPD patients and controls(Mertens et al., 2015). Gene expression studies 

of the patient-derived neurons suggested mitochondrial abnormalities in young neurons from 

BPD subjects while functional studies revealed hyperexcitability in these BPD neurons. 

Moreover, they compared the hyperexcitability phenotypes in neurons from patients who 

were lithium responders and non-responders and found that lithium selectively decreased the 

hyperexcitable phenotype only in neurons from the responders, and not in neurons from the 

non-responders (Mertens et al., 2015).

Searching for disease phenotypes – the relevance of cell type

Brain imaging studies of patients consistently show that patients with SCZ and BPD have 

enlarged ventricles, indicating loss of cortical volume (Steen et al., 2006, Arnone et al., 

2009). Patients with SCZ and BPD both show gray matter loss in the cortex, though in 

different areas of the brain (Sheline, 2003). BPD patients treated with lithium show greater 

gray matter density compared to untreated patients (Bearden et al., 2007). In addition to 

findings in the cortex, abnormalities have also been reported in hippocampal volumes in 

SCZ and BPD (Heckers and Konradi, 2010), specifically in dentate gyrus (DG) and cornu 

ammonis 3 (CA3) (Mathew et al., 2014, Tamminga et al., 2012, Tamminga et al., 2010). In 

studies of patients with BPD, treatment with lithium was associated with larger hippocampal 

subfield volumes (Giakoumatos et al., 2015, Yucel et al., 2007, Yucel et al., 2008).

Postmortem studies in SCZ and BPD do not show any gross pathological abnormalities in 

the brain. In SCZ, postmortem studies show decreased neural stem cell proliferation in the 

dentate gyrus (Reif et al., 2006) and indicate deficits in GABAergic neurons (Lewis et al., 

2005, Benes and Berretta, 2001). Postmortem SCZ and BPD brains show well replicated but 

subtle differences in the brain – pyramidal neurons in cortical layer III, but not in other 

cortical layers, show decreased dendritic spine density and fewer synapses (Glantz and 

Lewis, 2000, Glausier and Lewis, 2013, Rosoklija et al., 2000, Konopaske et al., 2014). In 

BPD, postmortem brains also show decreased glial cells in the subgenual prefrontal cortex 

(Ongür et al., 1998). In postmortem studies of hippocampal tissue, CA3 neurons from SCZ 

subjects showed increased levels of PSD95 and GluN2B–containing NMDA receptors, as 

well as a higher number of thorny excrescences and increased dendritic spine density in CA3 

neurons, suggesting increased excitatory signaling in CA3 neurons in SCZ (Li et al., 2015).

Studies to date in SCZ and BPD have included investigations in iPSCs, NPCs, differentiated 

cortical cultures, and hippocampal DG granule-cell like neurons. The postmortem studies 
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can guide decisions on neuronal subtypes that are most likely to reveal disease-related 

differences. Recent advances in neuronal differentiation of human iPSCs enable the 

generation of many of the neuronal subtypes of interest in the study of SCZ and BPD, 

including cortical neurons with dual-SMAD inhibition (Figure 1) (Shi et al., 2012c, Shi et 

al., 2012a, Mariani et al., 2012) and with Neurogenin-2 overexpression (Zhang et al., 2013), 

hippocampal dentate gyrus (DG) granule neurons (Figure 2) (Mertens et al., 2015, Yu et al., 

2014) and cortical interneurons (Nicholas et al., 2013, Maroof et al., 2013). Human iPSC-

derived neurons have been shown to exhibit appropriate functional properties in Ca2+ 

imaging experiments and in patch clamp studies (Kim et al., 2011, Prè et al., 2014, Paşca et 

al., 2011, Shcheglovitov et al., 2013). Ca2+ imaging of the iPSC-derived cortical neurons 

display spontaneous oscillations and bursts of Ca2+ fluorescence at baseline and respond 

robustly and reliably to a depolarizing stimulus with KCl (Figure 3). Studies in SCZ and 

BPD that have used specific neuronal subtypes derived from iPSCs have focused on cortical 

and hippocampal neurons (Wen et al., 2014, Mertens et al., 2015, Yu et al., 2014). 

Investigations focused on disease biology often aim to study pure populations of specific 

neuronal subtypes. However, it can also be argued that studying different neuronal subtypes 

in a more heterogeneous neuronal culture may better reflect the natural physiological 

surroundings of such neurons in vivo. The optimal nature of the cell populations to be 

studied will depend on the type of experiments planned, i.e. while homogeneous cell 

populations may be suitable for gene-expression studies and assay development for high-

throughput screens, heterogeneous cultures with glial cells may be more suitable for detailed 

studies of neuronal morphological features.

In addition to neuronal differentiation of human iPSCs, there have also been methodological 

advances in direct induction of somatic cells into neurons, using forced expression of the 

neurogenic transcription factors Brn2, Ascl1 and Myt1l (Pang et al., 2011) as well as with 

the microRNAs miR-9/9* and miR-124 (Yoo et al., 2011). While direct reprogramming of 

human fibroblasts have resulted in the generation of excitatory neurons (Pang et al., 2011, 

Yoo et al., 2011, Qiang et al., 2011) dopaminergic neurons (Pfisterer et al., 2011, Caiazzo et 

al., 2011) striatal medium spiny neurons (Victor et al., 2014) and spinal motor neurons (Son 

et al., 2011), differentiation protocols for human iPSCs lend themselves to the generation of 

a diverse array of neuronal subtypes from different niches in the human brain, including 

specific cortical and hippocampal populations that are of special interest in the disease 

biology of schizophrenia and bipolar disorder (Brennand et al., 2015).

The studies to date in SCZ and BPD iPSC-derived neurons have been carried out in adherent 

monolayer cultures and focused on abnormalities at the cellular level. This approach 

assumes that the effects of the underlying complex genetic vulnerabilities converge at the 

cellular level (Figure 4). Recent developments in the generation of three-dimensional culture 

systems and organoids present the opportunity to study disease biology in more complex 

environments and to possibly study the biology at the circuit level. Cerebral organoids can 

generate three-dimensional neuronal structures that mimic the organizational aspects of the 

human cortex (Mariani et al., 2012, Lancaster and Knoblich, 2014, Lancaster et al., 2013). 

Methods have also been developed to generate iPSC-derived human cortical spheroids that 

recapitulate aspects of human cortical development and organizations (Paşca et al., 2015). 

Another approach to the generation of three-dimensional networks of stem cell derived 
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neurons has included the use of a matrigel-based support matrix that allow NPCs to 

differentiate into complex networks in vitro (Choi et al., 2014, Kim et al., 2015). While these 

three-dimensional approaches have been used to study the disease biology of Alzheimer’s 

disease and microcephaly, they have yet to be used in the study of SCZ and BPD. Given 

significant evidence for circuit-level dysfunction in SCZ and BPD (Baker et al., 2014), 

three-dimensional approaches may lend themselves to models where rudimentary circuits 

can be formed and interrogated for dysfunctions at the circuit level. Alternatively, 

microelectrode arrays can also be utilized in conjunction with adherent monolayer cultures 

to study network function/dysfunction in vitro in neurons from patients and controls (Obien 

et al., 2014).

Uncovering disease phenotypes – the role for perturbations

Complex psychiatric disorders that have strong gene-environment interactions are difficult to 

model in vitro. Environmental factors impinge on the underlying genetic vulnerability of 

SCZ and BPD, which results from small contributions from many different genes, for 

manifestation of the disease. The fact that monozygotic twin concordance in SCZ and BPD 

is ~ 50%, and not 100% (Davis et al., 1995, Kieseppä et al., 2004, Kety et al., 1971), 

suggests that additional environmental factors are involved in SCZ pathogenesis (Brown, 

2011). While multiple environmental factors have been implicated in SCZ and BPD (van Os 

et al., 2008, Brown, 2011), there is no easy way to translate such environmental factors into 

specific cellular perturbations. Cellular stress has been used to uncover underlying disease-

related vulnerabilities in cellular systems. In a study mitochondrial electron transport gene 

expression in lymphocytes from BPD cases and healthy controls, there were no differences 

when cells were cultured under normal conditions. However, when lymphocytes were 

cultured in low-glucose conditions, the BPD lymphocytes had a markedly aberrant response 

compared to cells from healthy controls (Naydenov et al., 2007). Cellular perturbation can 

be to undertaken in a larger scale in an unbiased way using a range of small molecules that 

interfere uniquely with different signaling pathways (Seashore-Ludlow et al., 2015). Cellular 

pathways involved in disease biology can potentially be identified systematically by 

perturbing specific pathways and identifying perturbations that lead to differential responses 

in patient cells but not in control cells (Basu et al., 2013).

Co-culture models

Immunological mechanisms have also been implicated in the pathophysiology of SCZ and 

BPD (Khandaker et al., 2015, Khandaker and Dantzer, 2015, Barbosa et al., 2014). A major 

neurodevelopmental process that takes place in the adolescent brain is that of synaptic 

pruning, a process by which superfluous excitatory synaptic connections are eliminated 

(Petanjek et al., 2011, Rakic et al., 1986, Zecevic et al., 1989, Huttenlocher and Dabholkar, 

1997, Giedd et al., 1999). Synaptic pruning during this critical period is hypothesized to be 

aberrant in SCZ, the same time frame when most patients have their first psychotic break 

(Feinberg, 1982, Lieberman, 2006, Selemon and Zecevic, 2015). The excessive elimination 

of synaptic connections during the pruning process in SCZ is believed to result in greater 

loss of cortical gray matter volume during adolescence and result in decreased dendritic 

spines in the pyramidal neurons in specific cortical layers (Lewis and Sweet, 2009, Garey et 
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al., 1998, Glantz and Lewis, 2000, Konopaske et al., 2014, Rosoklija et al., 2000, Rapoport 

et al., 1999, McGlashan and Hoffman, 2000, Selemon and Zecevic, 2015). Microglia, the 

resident macrophages in the brain, play a central role in synaptic pruning (Kettenmann et al., 

2013, Bilimoria and Stevens, 2015). Postmortem studies in SCZ show microglial activation 

and infiltration in the cortex (Fillman et al., 2013, Radewicz et al., 2000, Steiner et al., 2008, 

Steiner et al., 2006). In addition, in vivo positron emission tomography (PET) studies in 

patients show strong evidence for increased microglial activity in the brain in SCZ (van 

Berckel et al., 2008, Bloomfield et al., 2015, Doorduin et al., 2009). Recent developments in 

directed differentiation methods now enable the generation of microglial cells from human 

monocytes (Ohgidani et al., 2015, Ohgidani et al., 2014). This method provides new 

approaches for co-culturing human iPSC-derived cortical neurons with microglial cells 

derived from monocytes isolated from the same patient.

Harnessing clinical information – modeling medication response in vitro

The heterogeneity of clinical presentations and genetic makeup often create a hurdle in 

research efforts, especially when large number of samples cannot be studied (Dacquino et 

al., 2015). A clinical feature that can be used to validate cellular phenotypes is the pattern of 

treatment response in patients. An example of such an approach was recently described in 

the study of iPSC-derived hippocampal DG granule cell-like neurons in BPD. The study 

found that young neurons in this hippocampal lineage showed a hyperexcitable phenotype, 

with increased numbers of spontaneous and evoked action potentials (Mertens et al., 2015). 

They further studied these neurons in two groups of BPD patients – patients that had good 

therapeutic response to lithium, and patients that did not respond well. When such young 

neurons were studied in the presence of lithium, only neurons from the lithium responders 

showed decreased hyperexcitability in the presence of lithium, while neurons from lithium 

non-responders showed no such change (Mertens et al., 2015). This is an intriguing example 

of supporting the validity of cellular phenotypes by correlating effects of small molecules in 
vitro with patterns of medication response in patients.

Conclusion

SCZ and BPD are complex psychiatric disorders that have their symptomatic onset in late 

adolescence or early adulthood. The disorders become manifest in brains that have been 

developing over two decades, with concomitant interactions with various environmental 

factors that impinge on their underlying genetic backgrounds. We are attempting to use 

iPSC-derived neurons from patients, often in two-dimensional neuronal cultures 

differentiated over a few weeks, to capture the crux of the disease biology that develop in the 

most complex organ of the human body over many years. While this prospect seems 

daunting, there have been many important advances in the last few years that provide a 

compelling rationale to pursue this quest for cellular disease signatures. New approaches 

that incorporate environmental perturbations as well as co-cultures with other relevant cell 

types are potential avenues that can aid in modeling the complexity in these disorders. In 

addition to a providing us with a better understanding of the cellular-molecular features of 

SCZ and BPD, identification of robust, reliable and valid cellular disease signatures will 
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enable us to develop assays that can be used in high-throughput screens to discover 

promising small-molecule leads for therapeutic development.
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Figure 1. 
Human iPSC-derived human cortical neurons. A. Differentiated cultures with neurons and 

glial cell: β-III tubulin (green), GFAP (red), DAPI (blue) B. Upper-layer cortical neurons : β-

III tubulin (green), layer II-IV marker Brn2 (red), DAPI (blue). C. Deep-layer cortical 

neurons : β-III tubulin (green), layer VI marker Tbr1 (red), DAPI (blue) D. High-

magnification image of a dendrite stained with DiI, arrows pointing to dendritic spines. 

Scale bar: 10 µm.
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Figure 2. 
Human iPSC-derived human hippocampal neurons. : MAP2 (green), PROX1 (red), DAPI 

(blue).
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Figure 3. 
Ca2+ imaging of human iPSC-derived cortical neurons shows characteristics of functional 

neurons. A. Neurons incubated with Ca2+ indicator Fluo-4 AM, for measurement of intra-

neuronal Ca2+ flux. Immunocytochemistry performed to enable identification of responses 

belonging to neurons that express cortical markers SATB2, TBR1, and CTIP2. B. >90% of 

neurons responded to depolarizing stimulus (KCl 30mM). C. Neurons displayed 

spontaneous oscillations and bursts of Ca2+ fluorescence at rest.
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Figure 4. 
Schematic model for interactions of genetic predisposition with environmental factors that 

result in cellular and circuit abnormalities leading to disease phenotype.
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