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SUMMARY

5-Deazaflavin cofactors enhance the metabolic flexibility of mi-
croorganisms by catalyzing a wide range of challenging enzymatic
redox reactions. While structurally similar to riboflavin, 5-deaza-
flavins have distinctive and biologically useful electrochemical
and photochemical properties as a result of the substitution of N-5
of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin
(Fo) appears to be used for a single function: as a light-harvesting
chromophore for DNA photolyases across the three domains of
life. In contrast, its oligoglutamyl derivative F420 is a taxonomi-
cally restricted but functionally versatile cofactor that facilitates
many low-potential two-electron redox reactions. It serves as an
essential catabolic cofactor in methanogenic, sulfate-reducing,
and likely methanotrophic archaea. It also transforms a wide
range of exogenous substrates and endogenous metabolites in aer-
obic actinobacteria, for example mycobacteria and streptomyce-
tes. In this review, we discuss the physiological roles of F420 in
microorganisms and the biochemistry of the various oxidoreduc-
tases that mediate these roles. Particular focus is placed on the
central roles of F420 in methanogenic archaea in processes such as
substrate oxidation, C1 pathways, respiration, and oxygen detox-
ification. We also describe how two F420-dependent oxidoreduc-
tase superfamilies mediate many environmentally and medically
important reactions in bacteria, including biosynthesis of tetracy-
cline and pyrrolobenzodiazepine antibiotics by streptomycetes,
activation of the prodrugs pretomanid and delamanid by Myco-
bacterium tuberculosis, and degradation of environmental con-
taminants such as picrate, aflatoxin, and malachite green. The
biosynthesis pathways of Fo and F420 are also detailed. We con-
clude by considering opportunities to exploit deazaflavin-depen-
dent processes in tuberculosis treatment, methane mitigation,
bioremediation, and industrial biocatalysis.

1. INTRODUCTION

Flavin- and deazaflavin-dependent enzymes mediate a wide
range of redox reactions in biological systems (1, 2). Flavin

adenine dinucleotide (FAD) and flavin mononucleotide (FMN)
are versatile flavin cofactors that are central to metabolism across
the three domains of life. Some organisms also synthesize and
utilize 5-deazaflavin compounds (3, 4), in which a carbon atom
substitutes for the N-5 atom of the isoalloxazine ring. Two such
compounds are relevant to biological systems, namely, 7,8-
didemethyl-8-hydroxy-5-deazariboflavin (Fo) and its lactyl oligo-
glutamate phosphodiester derivative (F420) (Fig. 1) (5, 6). While
structurally similar to flavins, these compounds have markedly
different physicochemical properties (6–9): they serve as obligate

two-electron hydride carriers, have low standard redox potentials
(�340 mV), and have blue-shifted intrinsic fluorescence. As elab-
orated upon in section 2, the chemical properties and biological
functions of F420 are in fact more similar to nicotinamides (i.e.,
NAD, NADP) than flavins, leading to its description as a “nicotin-
amide in a flavin’s clothing” (7, 10).

Fo and F420 have entirely distinct physiological roles. Fo is dis-
tributed across the three domains of life (Bacteria, Archaea, and
Eukarya), but it appears to serve only one function: as a light-
harvesting antenna in some DNA photolyases that repair pyrimi-
dine dimers following exposure to UV light. As a result, Fo can be
considered a chromophore rather than a cofactor; while it can
substitute for F420 in vitro (11–13), it does not appear to have any
redox roles in living cells. The biosynthesis, distribution, and pho-
tochemistry of this chromophore are covered in section 2. In con-
trast to Fo, F420 has a very limited taxonomic distribution and has
been chemically identified in only two phyla thus far (Euryar-
chaeota and Actinobacteria). However, this cofactor has diverse
catalytic roles in such organisms and mediates many of the chal-
lenging redox transformations necessary for their catabolic, de-
toxification, and biosynthetic pathways. F420 appears to have been
selected for such processes due to its unique electrochemical prop-
erties compared to other flavins, namely, its two-electron reactiv-
ity and low redox potential. By maintaining a pool of hydride
transfer redox cofactors separate from NAD(P), cells may also be
able to better control the flux of specific redox reactions. The roles
and enzymology of the reactions catalyzed by F420 are discussed in
sections 3 and 4 of this review.

Nine years after the discovery of methanogenesis (14), Cheese-
man et al. formally identified F420 in 1972 (5) in Wolfe’s labora-
tory. They demonstrated that the compound was responsible for
the characteristic 420-nm absorbance and blue-green fluores-
cence of oxidized lysates of Methanobacterium bryantii (5). The
compound, thereafter named factor 420 (abbreviated F420; some-
times called coenzyme F420 or cofactor F420), was shown to be a
redox-active 5-deazaflavin derivative (6) that is present at levels
up to 400 mg/kg in methanogens (15). It was demonstrated that
F420 facilitated multiple central metabolic redox reactions in
methanogens, including oxidation of energy sources (H2 and for-
mate) (16, 17) and reduction of cofactors (NADP and tetrahydro-
methanopterin) (16, 18). Later, it was realized that F420 is also
synthesized by sulfate-reducing archaea (19), halophilic archaea
(20), and likely methanotrophic archaea (21). As a result of more
than 5 decades of study, scientists developed a rich understanding
of the physiology and biochemistry of F420 in the methanogenic
and sulfate-reducing archaea (22), as summarized in section 3.
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However, our understanding of the roles of F420 in bacteria
remains in its infancy. While cofactors with properties corre-
sponding to F420 were isolated in mycobacteria and streptomyce-
tes in 1960 (23, 24), it was not until decades later that the cofactor
was formally identified in these genera (25–27). As discussed
throughout section 4, F420 is implicated in the catabolic, biosyn-
thetic, and detoxification pathways of both saprophytic actino-
bacteria (28–30) and their pathogenic descendants (e.g., Mycobac-
terium tuberculosis) (31, 32). Interest in F420 metabolism has
surged following the discovery that the recently clinically ap-
proved antimycobacterial prodrug delamanid is activated by a
specific F420H2-dependent reductase (33–36). However, the phys-
iological and pharmacological roles of F420 are still poorly under-
stood in actinobacteria, and the majority of the predicted F420-
dependent enzymes in such organisms remain functionally
unannotated (30, 37). There is also genomic evidence that F420

might be more widely distributed than previously thought, with
potential roles in Chloroflexi, Alphaproteobacteria, and Betaproteo-
bacteria inhabiting aerated soil ecosystems (30, 37). This review
concludes by considering the diverse implications and potential
environmental, medical, and industrial applications of deazafla-
vin compounds (section 5).

2. 5-DEAZAFLAVIN COMPOUNDS

2.1. Properties

The structure of Fo (7,8-didemethyl-8-hydroxy-5-deazaribofla-
vin; also sometimes referred to as 8-HDF, F0, and FO) is similar to
that of riboflavin (Fig. 1). However, its physical and chemical
properties are modulated by three substitutions in its isoalloxa-
zine rings (38): N-5 is substituted for a carbon, C-7 and C-8 are
demethylated, and C-7 is hydroxylated (6). F420 is a derivative of
Fo; the ribityl side chain forms a phosphoester bond, with a lactate
moiety forming the phosphodiester and linking to an oligogluta-
mate chain (6). While the substitutions that distinguish 5-deaza-
flavins from flavins may seem superficial, pioneering work by Walsh
has shown that they profoundly influence the physicochemical prop-
erties of these molecules (7, 8, 39, 43). Several years prior to their
discovery in biology, chemically synthesized 5-deazaflavins (3, 4,
39) were used as probes to study the flavin-dependent reactions
(40–43), revealing distinct electrochemical and photochemical
properties from their flavin counterparts (44). Upon the discovery
of 5-deazaflavins in biological systems (5, 6), it was realized that
the electrochemical properties of these compounds are central to
the role of F420 as a redox cofactor (6), while the photochemical
properties are exploited by Fo as an antenna chromophore for

DNA photolyases (45). Three features define the roles of 5-deaza-
flavins in biology.

(i) Two-electron carrier. Whereas flavins can serve as one or
two electron carriers, 5-deazaflavins are obligate two-electron
(hydride) carriers (44, 46). This is because flavins are stable as
semiquinones (both neutral and anionic), whereas 5-deazaflavins
are not. The nitrogen atom in position 5 is required for an un-
paired electron to efficiently delocalize through the isoalloxazine
ring; indeed, radicals of pyrazine groups (of flavins) are much
lower energy than those of pyridine groups (of 5-deazaflavins) (7,
43). Reflecting this reactivity, F420-dependent enzymes mediate
diverse hydride transfer reactions that transform C�C and C§C
bonds (28, 29, 47, 48), alcohol and imine groups (49, 50), and
certain inorganic compounds (51, 52). Furthermore, due to the
substitution, 5-deazaflavins do not readily undergo single-elec-
tron reactions. Thus, unlike flavins, reduced 5-deazaflavins are
relatively stable against air oxidation with a half-life on the order
of hours instead of seconds for flavins (39, 44). This autooxidation
in air has also been reported to be influenced by other factors such
as stimulation from ambient light (8, 44) and, in the case of F420

and Fo, the addition of the 8-hydroxy group that results in the
formation of a delocalized paraquinoid anion upon deprotona-
tion of the oxidized species at pH above 6 (8). The low electro-
philic reactivity of this anion results in a slower disproportion-
ation/self-exchange reaction between F420 and F420H2 (8).
Similarly, 5-deazaflavins also exhibit reduced reactivity with re-
ducing agents that act primarily as single-electron donors (e.g.,
dithionite) (6, 8, 39).

(ii) Strong reductant. As a result of the substitution of N-5 to
C-5, 5-deazariboflavin has a much lower standard redox potential
(�310 mV) than riboflavin (�210 mV), FAD (�220 mV), or
FMN (�190 mV) (7, 53). Due to the electron-withdrawing groups
added to the isoalloxazine ring, Fo and F420 are even stronger re-
ductants (�340 mV) than 5-deazariboflavin and thus some of the
lowest-potential redox cofactors in biology (8, 9). This redox po-
tential may be modulated under physiological conditions; for ex-
ample, it will be �380 mV at standard temperature in hydrog-
enotrophic methanogens that maintain a 10:1 ratio of oxidized to
reduced F420 (9). This redox potential places F420 at the center of
the redox biology of methanogens (Table 1); the compound is
capable of being reduced by exogenous fuels (H2 and formate) and
reoxidized by key cofactors (NADP and tetrahydromethanopterin
derivatives) in an energetically efficient manner (7, 8, 53). Bacteria
likewise appear to tightly couple substrate oxidation (glucose-6-
phosphate and NADPH) to F420 reduction, presumably to en-

FIG 1 Structures of riboflavin, Fo, and F420.
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hance catalytic efficiency (Table 1). Partly due to its low redox
potential, the F420H2 produced is capable of reducing a wide range
of organic compounds otherwise recalcitrant to activation as dis-
cussed in section 4 (28, 54, 55). Recent work also indicates that
F420 may be utilized in aerobic bacteria in hypoxic and anoxic
environments, potentially substituting for high-potential nicotin-
amide cofactors (NAD and NADP) (�320 mV) (30, 32, 56).

(iii) Intrinsic fluorophore. Like flavins, 5-deazaflavins are in-
trinsically fluorescent compounds. The delocalized charge on the
isoalloxazine ring undergoes � ¡ �* transitions upon exposure
to UV-visible light. In its oxidized state, the absorbance spectrum
of F420 peaks at 420 nm, and the emission spectrum peaks at 470
nm (6) (Fig. 2). These peaks are pH dependent with a shift in the
absorbance peak to 375 nm at lower pH along with reduced inten-
sity (6). The reduced species F420H2 loses the absorbance peak at
420 nm for a new peak at 320 nm with a lower molar absorption
coefficient (6) (Fig. 2). Due to the substitution of C-5 to N-5, the
visible absorption spectra and fluorescence emission spectra of
5-deazaflavins are blue-shifted by about 50 nm compared to fla-

vins (6, 44). As a result, light captured by 5-deazaflavins can be
efficiently transferred to flavins through Förster resonance energy
transfer (FRET). As elaborated below, this is central to the mech-
anism of the Fo-utilizing DNA photolyases (57, 58). The autofluo-
rescence of F420 has also been used for detecting methanogens
(59–66) and mycobacteria (67, 68).

2.2. Chromophore Fo

2.2.1. Biosynthesis

Despite its structural similarity to riboflavin, the biosynthetic
pathway for Fo and other 5-deazaflavins diverges at an early step in
the pathways leading to the synthesis of flavin cofactors (Fig. 3).
The deazaflavin and flavin biosynthetic pathways both proceed
from the pyrimidine ribityldiaminouracil (5-amino-6-ribityl-
amino-2,4[1H,3H]-pyrimidinedione). In the flavin pathway, this
substrate is condensed with 3,4-dihydroxy-2-butanone 4-phos-
phate to make a lumazine derivative (6,7-dimethyl-8-ribitylluma-
zine) (69); two of these molecules subsequently condense to re-
generate 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione
with concomitant production of riboflavin (69). In the deazafla-
vin pathway, ribityldiaminouracil is instead condensed with the
amino acid tyrosine (not 4-hydroxyphenylpyruvate as previously
proposed [70]) leading to formation of Fo (71). The enzyme re-
sponsible for this condensation step, Fo synthase, is encoded by
two polypeptides in archaea (CofG and CofH) (70) and a two-
domain fusion protein (FbiC) in bacteria and eukaryotes (72).
Each subunit/domain contains a radical S-adenosylmethionine
(radical SAM) catalytic site (71, 73). A recent mechanistic study
demonstrated that formation of the complex heterocycle depends
on the coordinated action of the two radical SAM active sites, each
of which abstract a hydrogen atom from the tyrosine (73).

2.2.2. Distribution

Fo serves as an antennal chromophore in DNA photolyases in a
range of organisms across the three domains of life. Auxiliary to

TABLE 1 List of standard redox potentials for key F420-linked redox reactionsa

Substrateb Reaction E0= (mV) Reference

Ferredoxin Fd � 2 e� ¡ Fd2� �500 to �400 487
CO2/formate CO2 � 2 e� � H� ¡ HCO2

� �420 487
H�/H2 2 H� � 2 e� ¡ H2 �410 487
Methenyl/methylene H4MPT CH§H4MPT � 2 e� � H� ¡ CH2�H4MPT �390 301
F420 F420 � 2 e� � 2 H� ¡ F420H2 �340 8
6PGL/G6P 6-Phosphogluconolactone � 2 e� � 2 H� ¡ Glucose-6-phosphate �330 488
Methylene/methyl H4MPT CH2�H4MPT � 2 e� � H� ¡ CH3-H4MPT �320 301
NAD(P)� NAD(P)� � 2 e� � H� ¡ F420H2 �320 487
Acetone/propan-2-ol Acetone � 2 e� � 2 H� ¡ Propan-2-ol �290 53
FAD FAD � 2 e� � 2 H� ¡ FADH2 �220 53
Riboflavin Riboflavinox � 2 e� � 2 H� ¡ Riboflavinred �210 53
FMN FMN � 2 e� � 2 H� ¡ FMNH2 �190 53
Methanophenazine Mphenox � 2 e� � 2 H� ¡ Mphenred �170 489
Heterodisulfide CoM-S-S-CoB � 2 e� � 2 H� ¡ CoM-SH � CoB-SH �140 487
Sulfite/sulfide SO3

� � 6 H� � 6 e� ¡ S� � 3 H2O �120 490
Menaquinone Menaquinone � 2 e� � 2 H� ¡ Menaquinol �70 53
O2/H2O O2 � 4 H� � 4 e� ¡ 2 H2O �820 53
a This list of standard redox potentials (E0=) demonstrates that the electrochemical properties of F420 enable the cofactor to mediate a wide range of oxidation and reduction
reactions in biological systems, especially methanogenic archaea. In whole cells, physiological redox potentials can differ considerably due to the mass action ratios of substrates/
products and differences in physical conditions (487). Potentials were determined under standard conditions (25°C, 1 atm, pH 7.0) against the standard hydrogen electrode.
b 6PGL, 6-phosphogluconolactone; Mphenox and Mphenred, oxidized and reduced methanophenazine, respectively.

FIG 2 UV-visible absorption spectra of F420 (blue) and F420H2 (red). Adapted
from reference 31.
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the catalytic chromophore FADH�, Fo captures light more effec-
tively than FADH� owing to its longer wavelength absorption
maximum and higher molar absorption coefficient (74). This is
particularly important under low-light conditions, during which
Fo enhances the efficiency of DNA repair by orders of magnitude
(75). Fo-utilizing photolyases have been identified in multiple
bacteria (e.g., Synechococcus elongatus, Streptomyces griseus) (76–
80), archaea (e.g., Methanothermobacter marburgensis, Methano-
sarcina mazei, Halobacterium halobium) (81–83), and unicellular
eukaryotes (e.g., Acutodesmus obliquus, Chlamydomonas rein-
hardtii, Ostreococcus tauri) (84–86). Genes encoding probable Fo

synthases (CofG/CofH or FbiC) are consistently present in the
genomes of such microorganisms. The question of whether Fo is
utilized in higher eukaryotes is more controversial. Structural and
chemical studies have demonstrated that Fo binds tightly to, and
enhances the efficiency of, the two photolyases of the higher eu-
karyote Drosophila melanogaster (85, 87). Catalytically active and
nucleus-targeted Fo-utilizing DNA photolyases are also known to
be produced by insect baculoviruses (88–93). However, it is per-
plexing how such photolyases could utilize Fo in vivo, given that
the genomes of higher eukaryotes lack Fo synthase-encoding genes
(94). One explanation is that the dispensable Fo-binding domain
of such enzymes is an evolutionary remnant, although it is also

plausible that these organisms carry genes that encode compo-
nents of a novel Fo biosynthesis pathway or acquire Fo from mi-
crobial endosymbionts and baculoviruses (85); in contrast to the
highly anionic cofactors F420, FMN, and FAD, Fo is uncharged and
hence can readily diffuse through cell membranes (95–97). While
Fo-utilizing DNA photolyases are widespread, they are hardly uni-
versal: photolyases of many species use different antennal chro-
mophores or lack them altogether (75, 98), while eutherian lin-
eages appear to have lost the capacity for light-driven DNA repair
(99).

2.2.3. Enzymology

Enzymes of the DNA photolyase superfamily use the energy of
blue light (350 to 450 nm) to facilitate the reductive cleavage of
DNA pyrimidine dimers formed by far UV irradiation (200 to 300
nm). Distinct, but related, photolyases cleave cyclobutane pyrim-
idine dimers (CPD photolyases) and pyrimidine-pyrimidone
photoproducts (6-4 photolyases) (75, 98). All DNA photolyases
use the twice-reduced flavin FADH� as the catalytic chro-
mophore. Most photolyases also use an antennal chromophore to
optimize light capture, namely, methenyltetrahydrofolate or the
flavin/deazaflavin compounds Fo, FMN, or FAD (100–103). Crys-
tal structures reveal that the Fo-utilizing CPD photolyase (76, 77)

FIG 3 Summary of flavin and deazaflavin biosynthesis pathways.
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from Synechococcus elongatus (Protein Data Bank [PDB] identifi-
ers [IDs] 1QNF, 1TEZ, and 1OWL) (57, 104–106) is a single-
subunit enzyme containing an N-terminal �/� domain and a C-
terminal �-helical domain. Both chromophores are deeply
buried, with Fo located in a cleft between the domains and FADH�

embedded in the �-helical domain (Fig. 4) (57, 106). The �17-Å
distance between the chromophores enables efficient FRET while
potentially preventing competitive electron transfer reactions be-
tween the cofactors (74).

The catalytic cycle of Fo-utilizing CPD photolyases has been
elucidated through extensive spectroscopic and structural studies
on the S. elongatus photolyase (Fig. 4). In the light-independent
initial reaction, the enzyme recognizes and binds to damaged du-
plex DNA on the basis of its bent orientation (106). The antennal
chromophore Fo thereafter captures a photon of blue light with an
absorbance peak at 437 nm (red-shifted due to the strong interac-
tion of the chromophore with the protein) (77). Femtosecond-
scale spectroscopic studies show that Fo then transfers the energy
to FADH� through FRET (107). The excited catalytic chro-
mophore (FADH�*) thereafter transfers an electron to the pyrim-
idine dimer, leading to its cleavage, and back-electron transfer
restores the catalytic chromophore to an active form ready for a
second catalytic cycle (108, 109). As reviewed in detail elsewhere
(75, 110), similar reaction cycles facilitate light capture by other
antennal chromophores and cleavage of pyrimidine-pyrimidone
dimers. Fo-dependent photolyases are generally more efficient
than methenyltetrahydrofolate-dependent ones, and the quan-
tum yields of the energy transfer and electron transfer steps have
been shown to be at near-unity (58, 107).

2.3. Cofactor F420

2.3.1. Biosynthesis

The chemical structure of F420, a lactyloligoglutamyl phosphodi-
ester of Fo, was inferred from spectroscopic analysis of its degra-
dation products (6) and validated by chemical synthesis (111–
113) (Fig. 1). Reflecting its modular molecular structure, F420 is

synthesized from several precursors: Fo, lactate, the amino acid
glutamate, and the nucleotide GTP (97, 114, 115). Through a
combination of biochemical and genetic studies in methanogens
and mycobacteria, the majority of the steps in the F420 biosyn-
thetic pathway have been resolved (Fig. 5).

There are two major steps in the conversion of Fo to F420. In the
first, the lactate-derived intermediate L-lactyl-2-diphospho-5=-
guanosine (LPPG) is condensed with Fo (116) to form the phos-
phodiester F420-0 (i.e., F420 containing no glutamate side chain).
This reaction is catalyzed by a 2-phospho-L-lactate transferase
(named CofD in archaea and FbiA in actinobacteria) (117, 118).
The structure of this enzyme (PDB ID 3C3D) demonstrates that
the deazaflavin ring of Fo interacts with a hydrophobic pocket and
two water molecules, while the nucleotide moiety of LPPG is ac-
commodated in a Rossmann fold domain with a Mg2� ion. It is
proposed that, following conformational changes initiated by
substrate binding, the condensation proceeds following the ab-
straction of a proton from the terminal hydroxyl group of Fo by
the �-phosphate of LPPG (119).

Thereafter, the nonribosomal peptide synthase F420:	-L-glu-
tamyl ligase (CofE/FbiB) catalyzes the GTP-dependent addition
of an oligoglutamate tail (118, 120–122). L-Glutamate residues are
added via 	-linkages to F420-0 (F420-0 � glutamate � GTP ¡
F420-1 � GDP � Pi) and glutamated derivatives thereof (F420-n �
glutamate � GTP ¡ F420-n � 1 � GDP � Pi) in a sequential
manner. The X-ray crystallographic structure of the enzyme from
Archaeoglobus fulgidus (PDB ID 2PHN) demonstrates that it
forms a butterfly-like homodimer that accommodates GTP and
Mn2� at the dimer interface. It is proposed that the cofactor is
activated by phosphorylation (at the terminal hydroxyl group of
the lactate moiety of F420 and the terminal glutamate of F420-n
derivatives), and the resultant acyl-phosphate is subject to nu-
cleophilic attack by the amino group of the incoming gluta-
mate residue (123). The number of glutamate residues on F420

is highly species specific, ranging from two or three in meth-
anogens without cytochromes (124), four or five in methano-

FIG 4 Structure and function of the Fo-utilizing DNA photolyases. (a) Crystal structure of the Fo-utilizing CPD photolyase of Synechococcus elongatus (PDB ID
1TEZ) (106). (b) Catalytic cycle of the enzyme. FRET is an acronym for Förster resonance energy transfer. The blue asterisk after FADH� indicates that the
molecule is in the excited state.
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gens with cytochromes (124), and five to seven in mycobacteria
(125). The physiological significance and biochemical basis for
these differences is not yet understood. In some archaea, a
terminal �-linked glutamate residue (126, 127) is also added by
	-F420-2:�-L-glutamate ligase (CofF) (128), an enzyme of the
ATP-grasp superfamily.

The pathway that leads to the production of LPPG from the
precursor L-lactate has only been partially resolved. Detailed stud-
ies on Methanocaldococcus jannaschii indicate that lactate is exclu-
sively synthesized from L-lactaldehyde (129, 130); lactaldehyde is
generated from the reduction of methylglyoxal or the aldol cleav-
age of fuculose-1-phosphate and is in turn oxidized to lactate by
the NAD�-dependent L-lactaldehyde dehydrogenase (CofA)
(130). Though unconfirmed, it is assumed that lactate (synthe-
sized from glycolytic pyruvate by L-lactate dehydrogenase) is also
the precursor for LPPG in bacteria. It has been shown in meth-
anogens that lactate can be phosphorylated to form 2-phospho-L-
lactate in a GTP-dependent manner (116); however, the enzyme
responsible (to be named CofB) has remained elusive in the 15
years since the reaction was discovered. Finally, the 2-phospho-L-
lactate is converted to LPPG by the GTP-dependent enzyme
2-phospho-L-lactate guanylyltransferase (CofC) (PDB ID 2I5E)
(116, 131). Homologous enzymes are required for F420 produc-
tion in mycobacteria (132).

2.3.2. Distribution

F420 has a more restricted taxonomic distribution than Fo and the
ubiquitous redox cofactors FAD, FMN, and NAD(P). The cofac-
tor has been identified in a single phylum each of bacteria and
archaea using analytical chemistry methods. Among the archaea,
F420 is thought to be distributed in all methanogens, a group of
strictly anaerobic methane-producing archaea (5, 15). In these
organisms, F420 serves as a central catabolic cofactor and is also
central to two of the three main methanogenesis pathways. While
present in low levels in some methanogens (e.g., Methanosarcina-
les), it is present at concentrations between 100 to 400 mg per kg in
many hydrogenotrophs (15, 61, 62). F420 has also been identified
in several nonmethanogenic euryarchaeota, including three spe-
cies of the sulfate-reducing genus Archaeoglobus (19, 133–135)
and seven species of the photosynthetic genera Halobacteria and
Halococcus (20, 136). The cofactor is also proposed to be central to
the metabolism of the various lineages of the anaerobic metha-
notrophic archaea (ANME) (21, 137). Comparative genomics
indicate that the genes required for F420 biosynthesis are also dis-
tributed in the Thaumarchaeota, Aigarchaeota, Geoarchaeota,
Bathyarchaeota, and Lokiarchaeota (138–142). The absorbance
spectra of single cells of the ammonia- and cyanate-oxidizing
thaumarchaeon Nitrososphaera gargensis are also consistent with
the presence of F420 (143, 144). It is unclear whether F420 is pro-

FIG 5 Summary of the F420 biosynthesis pathway from Fo.
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duced by Crenarchaeota; while the cofactor was reported to be
present at low levels in representatives of the Sulfolobus and Ther-
moplasma (20), the genomes of these organisms suggest that in
fact they lack the capacity to synthesize this deazaflavin by any
currently understood biosynthetic mechanism.

It is assumed that F420 has a more restricted distribution among
bacteria. The cofactor has been identified in representatives of the
actinobacterial genera Mycobacterium (23, 27, 125, 145), Strepto-
myces (25, 27, 29, 146), Nocardia (27, 145), and Nocardioides (54).
Most of these representatives are saprophytic soil bacteria that
adopt a heterotrophic, aerobic lifestyle. The cofactor has also been
reported in several mycobacterial pathogens, namely, the major
obligate pathogens Mycobacterium tuberculosis, Mycobacterium
bovis, and Mycobacterium leprae, as well as several opportunistic
species (145). Comparative genomic analyses show that the genes
involved in F420 biosynthesis and utilization are also found in rep-
resentatives of the Chloroflexi, Alphaproteobacteria, Betaproteo-
bacteria, and Gammaproteobacteria (30, 37), which constitute
some of the most dominant taxa in aerated soil ecosystems (147).
The occasional references to F420-dependent processes in Cyano-
bacteria are erroneous; these have emerged from authors misat-
tributing Fo-dependent processes to F420 (72, 148) or relying on
incorrect automated sequence predictions (149). Indeed, F420 has
yet to be chemically identified in any species outside the phyla
Euryarchaeota and Actinobacteria.

2.3.3. Enzymology

In most archaea and some actinobacteria, F420 is reduced through
coupled steps in central catabolic pathways (Table 2). Methano-
gens are able to oxidize their substrates for growth using F420, i.e.,
H2 (via the F420-reducing hydrogenase [Frh]) (150), formate (via
the F420-reducing formate dehydrogenase [Ffd]) (17), or second-
ary alcohols (via the F420-reducing secondary alcohol dehydroge-
nase [Adf]) (49). This facilitates the entry of electrons into the
CO2-reducing pathway of methanogenesis and generates F420H2

to drive cellular redox reactions (151). Note that, contrary to his-
torical reports (152, 153), carbon monoxide dehydrogenase, py-
ruvate dehydrogenase, and �-ketoglutarate dehydrogenase of
methanogens are not F420 dependent in methanogens (151, 154).
Mycobacteria also reduce F420 via their central catabolic pathways
by using the F420-reducing glucose-6-phosphate dehydrogenase
(Fgd), one of two entry points to the reductive pentose phosphate
pathway. However, pathways also exist to reduce F420 using other
redox cofactors depending on external and internal redox states, i.e.,
NADP (via the F420-NADP oxidoreductase [Fno]) in many actino-
mycetes (12, 155) and tetrahydromethanopterin (via methylene tet-
rahydromethanopterin dehydrogenase [methylene-H4MPT de-
hydrogenase {Mtd} and methylene-H4MPT reductase {Mer}]) in
methylotrophic methanogens (156, 157). As emphasized by the
central placement of F420 in the redox ladder of Table 1, many of
these reactions are physiologically reversible. The physiology and
biochemistry of the F420-reducing dehydrogenases is discussed in
detail in sections 3.2 and 4.2.

The physiological roles of F420 are primarily elicited by the cou-
pling of the oxidation of F420H2 to the reduction of other com-
pounds (Table 2). In methanogens, F420H2 oxidation sustains a
wide range of processes. F420H2 is used to reduce one-carbon units
bound to tetrahydromethanopterin, the central one-carbon car-
rier in methanogenesis pathways (158), and NADP, the central

cofactor for anabolic processes (16). This depends on the afore-
mentioned reactions catalyzed by Mtd (47), Mer (159), and Fno
(160). The cofactor can additionally be used to detoxify O2 (via
F420H2-dependent oxidase [Fpr]) (161), mobilize sulfite (via
F420H2-dependent sulfite reductase [Fsr]) (51), and in methano-
gens with cytochromes, reduce methanophenazine for respiratory
energy conservation (via F420H2-dependent methanophenazine
reductase [Fpo]) (162). F420H2 can be used to reduce diverse or-
ganic compounds in actinomycetes, including endogenous me-
tabolites (e.g., quinones, porphyrins, fatty acids) (30, 32) and ex-
ogenous compounds (e.g., tetracyclines, picrate, aflatoxins) (28,
29, 54). These activities depend on two diverse superfamilies dis-
tinguished by their split �-barrel (flavin/deazaflavin oxidoreduc-
tases [FDORs]) (30, 37) or TIM barrel (luciferase-like hydride
transferases [LLHTs]) protein folds (Fig. 6) (37). The F420H2-de-
pendent reductase enzymes are discussed in more detail in sec-
tions 3.3 and 4.3.

The majority of F420- and F420H2-binding proteins bind the
cofactor within either TIM barrel (Adf, Mer, F420-reducing hy-
droxymycolic acid dehydrogenase [fHMAD], Fgd, and other
LLHTs) (48, 49, 163), FrhB-like (Frh, Fpo, Ffd, and Fsr) (150), or
split �-barrel (FDORs) (28, 30, 164, 165) folds (Fig. 6). Exceptions
to this are the structures of Mtd (novel Mtd-like fold) (166), Fno
(Rossmann fold) (160), and Fpr (interface of �-lactamase and
flavodoxin folds) (52). Of these known F420 binding architectures,
the F420-binding TIM barrel and split �-barrel proteins share
structural homology with related FMN- and FAD-binding pro-
teins (30, 48). In contrast, the Mtd-like and FrhB-like folds have
been found only in F420- or F420H2-dependent proteins (150, 166).
All of the proteins carry out hydride transfer on the Si-face of F420

(48, 49, 150, 160, 163, 166, 167), with the exception of the FDORs
that catalyze the reaction on the Re-face (28, 165). These proteins
are adapted for F420 binding by the presence of a positively charged
channel or region that associates with the phospholactate and
polyglutamate chain. In FDORs, LLHTs, Mtd, and Fno, hydrogen
bonding interactions at the pyrimidine and hydroxyl of the deaza-
flavin moiety anchor the cofactor, along with hydrophobic inter-
actions to the Re-face (Si-face for FDORs) that is not involved in
the enzyme reaction (28, 48, 49, 150, 160, 161, 163–166). In FrhB,
Fno, and Fpr, stability is also provided by aromatic interactions
with the enzyme-bound FAD, NADP, or FMN (52, 150, 160).

3. F420 IN METHANOGENS AND OTHER ARCHAEA

3.1. Physiological Roles

3.1.1. Methanogens

F420 is a catabolic redox cofactor in both methanogenic and non-
methanogenic archaea. Methanogens are microorganisms that
produce methane as the end product of their anaerobic pathways
of energy generation (168). These organisms encompass at least
six phylogenetically distinct, metabolically diverse orders of the
archaeal phylum Euryarchaeota: Methanobacteriales, Methanococ-
cales, Methanopyrales, Methanomicrobiales, Methanocellales, and
Methanosarcinales (169–173). F420 is synthesized in all of these
orders, where it serves as a redox cofactor in both methanogenesis
pathways and wider cellular processes (5, 15). In fact, the charac-
teristic fluorescence of many methanogens is due to the presence
of this cofactor (5, 59, 60).

Methanogens can generate methane through three major
routes, the CO2-reducing, methylotrophic, and aceticlastic path-
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ways (174–177) (Fig. 7). In the CO2-reducing pathway, CO2 is
progressively reduced to methane using exogenously derived elec-
trons (151, 168, 178). This pathway sustains hydrogenotrophic
growth using H2-derived electrons (16), formatotrophic growth
using formate-derived electrons (17), and in some organisms,
growth on secondary alcohols (179). In the methylotrophic path-
way, the methyl groups of methanol, methylated amines, and
methylated sulfides are converted into CH4 (reductive route) and
CO2 (oxidative route), with the oxidative reactions occurring
through a reverse arm of the CO2-reducing pathway (157, 175,
180). In the aceticlastic pathway, acetate is fermented to methane
(through reduction of the methyl group) and CO2 (through oxi-
dation of the carboxy group) (175, 180, 181). Most methanogens
are capable of hydrogenotrophic growth, with cytochrome-con-
taining methanogens (i.e., the Methanosarcinales) primarily re-
spiring H2 and the other five orders conserving energy through
electron-bifurcating pathways (182, 183). Formatotrophic growth
is also widespread (17, 184, 185), but it does not occur in the
Methanosarcinales (186). In contrast, only a few taxa are capable of
methylotrophic growth (the family Methanosarcinaceae and genus
Methanosphaera) (176, 187) and aceticlastic growth (the families
Methanosarcinaceae and Methanosaetaceae) (176, 188). These
pathways are nevertheless quantitatively important, with the ace-
ticlastic pathway responsible for up to two-thirds of global net
methane production. The biochemistry, physiology, and ecology
of methanogenesis will be discussed further only in the context of
F420 metabolism; readers requiring further background on this
topic are referred to several excellent reviews (151, 154, 168, 178,
182, 189).

F420 is central to the CO2-reducing and methylotrophic path-
ways of methanogenesis. Dedicated F420-dependent hydroge-
nases/dehydrogenases oxidize H2 (Frh) (17, 150), formate (Ffd)
(17, 190), and secondary alcohols (Adf) (49, 179) for entry into the
CO2-reducing pathway. F420 also serves as the redox cofactor for
the Mtd and Mer reactions, which mediate the fourth and fifth
steps of the CO2-reducing pathway, reducing methenyl-tetrahy-
dromethanopterin (methenyl-H4MPT) to methyl-H4MPT with
F420H2 (47, 159). They operate in the reverse direction in the
methylotrophic pathway, oxidizing methyl-H4MPT to methenyl-
H4MPT. However, F420 is not involved in the aceticlastic pathway,
which depends on a largely distinct set of enzymes (175, 181). In
addition to mediating methanogenesis, dedicated F420-dependent
enzymes mediate a wide array of other cellular reactions in meth-
anogens, including reduction of NADP for biosynthetic pathways
(Fno) (22), mobilization of sulfite as a sulfur source (Fsr) (51,
191), and detoxification of atmospheric O2 (Fpr) (161, 192).
Methanogens with cytochromes can use F420H2 generated
through the methylotrophic pathway as an input to the respira-
tory chain using the proton-translocating F420H2-reducing
methanophenazine reductase (Fpo) (162, 193). Interestingly, F420

is still present in acetate-grown Methanosarcina (194) and the ob-
ligately aceticlastic genus Methanosaeta (195, 196), reinforcing the
idea that the cofactor has been selected for roles well beyond
methanogenesis. On the basis of metagenomic studies, it was re-
cently reported that members of the newly defined phylum Bathy-
archaeota may also be F420-dependent methylotrophic methano-
gens (141).

FIG 6 Structures of F420-binding protein domains. (a) TIM barrel fold of Fgd (PDB ID 3B4Y [163]), (b) structure of Frh subunit B (PDB IDs 4OMF [150] and
3ZFS [167]), (c) split �-barrel fold of Ddn (PDB ID 3R5R [164]), (d) novel protein fold of Mtd (PDB ID 3IQE [166]), (e) Rossmann fold of Fno (PDB ID 1JAY
[160]) and (f) the interface between �-lactamase and flavodoxin folds in Fpr (PDB ID 2OHJ [161]). Where available, the F420 molecule is shown in green, and
key residues at the F420-binding site are highlighted in cyan. In panels b, d, and f, the positions of the FAD (orange), NADP (purple), and FMN (yellow) molecules
required for F420 binding are also shown.
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3.1.2. Sulfate-reducing archaea

F420 is also known to be synthesized by two orders of nonmetha-
nogenic archaea, the Archaeoglobales and Halobacteriales (20,
136). Archaeoglobi are primarily heterotrophic, sulfate-reducing
thermophiles that inhabit deep-sea vents (19), whereas Halobac-
teria are primarily phototrophic, facultatively aerobic halophiles
that dominate hypersaline waters (197). While the two orders
have very different metabolisms, both to methanogens and to each
other, they are closely phylogenetically related to the Methanomi-
crobiales, Methanosarcinales, and Methanocellales (169, 171, 172).
It is likely that F420 was synthesized in the common ancestor of
each of these five orders prior to their metabolic divergence. While

little is known about the role of F420 in Halobacteria (20, 136), a
range of biochemical studies indicate that F420H2 is a central cat-
abolic electron donor in Archaeoglobus fulgidus (133). F420H2 do-
nates electrons to the sulfate-reducing respiratory chain via the
proton-translocating F420H2-dependent quinonereductase (Fqo)
(198–200). Additionally, the F420H2-dependent NADP reduc-
tase (Fno) is proposed to generate NADPH for various biosyn-
thetic pathways (160, 201). F420 appears to be reduced through
distinct routes depending on whether the growth substrate is
H2/CO2 or lactate. It is well-established that, during the anaer-
obic oxidation of lactate to CO2, F420 can be reduced by Mtd
and Mer (133, 200, 202). Given that the organism lacks Frh, it

FIG 7 CO2-reducing (green), methylotrophic (pink), and aceticlastic (blue) pathways of methanogenesis. The routes for energy generation from H2/CO2,
formate, secondary alcohols, methanol, and acetate are shown. Processes common to all pathways are shown in black, and dashed arrows in gray show alternative
pathways. F420-dependent oxidoreductases are highlighted in red and catalyze both forward and reverse reactions, except for FpoF which is known to catalyze
only F420H2 reoxidation. Abbreviations: Fdred/ox, reduced/oxidized ferredoxin; MF, methanofuran; H4MPT, tetrahydromethanopterin; H4SPT, tetrahydrosar-
cinapterin; H-SCoM, 2-mercaptoethanesulfonate (reduced coenzyme M); CoBS-H, N-7-mercaptoheptanoylthreonine phosphate (reduced coenzyme B); MPh/
MPhH2, reduced/oxidized methanophenazine.
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remains to be resolved how A. fulgidus generates F420H2 during
hydrogenotrophic growth (203); possible routes include electron
transfer from reduced ferredoxin (Fdred) (via a hypothetical com-
plex), quinols (via reverse electron transfer), or NADPH (via
Npo) (135, 200).

3.1.3. Methanotrophic archaea

There is strong evidence that F420 is also central to the metabolism
of anaerobic methanotrophic archaea (ANME). In contrast to
methanogens, these archaea consume, rather than produce, meth-
ane and use the electrons liberated from methane to drive sulfate-
and nitrate-reducing respiratory chains (204–207). While these
organisms have yet to be successfully cultured, they are of enor-
mous ecological and geochemical significance; it is predicted that
90% of the methane produced by methanogens in marine sedi-
ments is immediately recycled by ANME (189, 208, 209). Exten-
sive studies of microbial ecology have demonstrated that these
organisms are closely related to two orders of methanogens
(Methanosarcinales and Methanomicrobiales), and form at least
three major phylogenetic clades (ANME-1, ANME-2, and
ANME-3) (210, 211). A range of genomic and biochemical evi-
dence suggests that these archaea predominantly grow through a
reverse methanogenesis pathway (similar to the methylotrophic
pathway; Fig. 7), through which F420H2 is generated via the Mer
and Mtd reactions (137, 212–215). The F420H2 that is produced
from this pathway is proposed to be reoxidized by the proton-
translocating Fqo complex, with sulfate or nitrate serving as the
terminal respiratory electron acceptor (21, 215). This proposal
was recently supported by a metagenomic/metatranscriptomic
study that showed that the nitrate-reducing methanotroph
Methanoperedens nitroreducens (part of the ANME-2 lineage) ex-
presses a complete reverse methanogenesis pathway, along with all
the F420 biosynthesis genes and a putative Fqo complex (137).
Environmental sequencing has also inferred a role for F420 in other
ANME lineages (21, 215, 216). Also consistent with the presence
of F420, ANME, like methanogens, are autofluorescent under UV
light (217, 218).

3.2. F420-Reducing Dehydrogenases

3.2.1. Frh: F420-reducing hydrogenase

The F420-reducing hydrogenase directly couples H2 to F420 reduc-
tion (9, 11, 219, 220). The enzyme is encoded by genes in all classes

of methanogens (183) and is the preferred route to F420 reduction
during hydrogenotrophic methanogenesis (Fig. 7) (221–223).
This hydrogenase is essential for growth on H2/CO2 in Methano-
sarcina barkeri (Ms. barkeri) (224), but it appears to be dispensable
in methanogens with genes that encode an alternative pathway for
F420 reduction such as Methanococcus maripaludis (Mc. maripalu-
dis) (225). The enzyme complex, encoded by the transcriptional
subunit frhADGB (222), is a product of the association of an F420

reductase subunit of the F420-binding protein family (functionally
analogous to F420 reductase domains of Fsr, Fpo, and Ffd) with a
H2-oxidizing [NiFe]-hydrogenase of the group 3a family (226).
Structural characterization of this complex from Methanothermo-
bacter marburgensis through cryo-electron microscopy (167, 227)
and X-ray crystallography (150) revealed a large dodecameric
complex of heterotrimers (FrhABG), arranged as a shell with a sol-
vent-filled core (Fig. 8). Each heterotrimeric protomer (FrhABG)
contains a [NiFe]-hydrogenase large subunit (FrhA; matured by
the endopeptidase FrhD), a [NiFe]-hydrogenase small subunit
(FrhG), and an F420 reductase subunit (FrhB). While the complex
is located in the cytoplasm (150), it is often purified from the
membrane fraction due to its high molecular mass of 1.2 MDa
(228–230).

During the H2-dependent reduction of F420, H2 binding and
oxidation occur at the buried [NiFe] center of FrhA, which is
facilitated by a hydrophobic channel that extends from the [NiFe]
center to the outer surface of the enzyme complex (150). On the
basis of structural and spectroscopic studies, it is proposed that H2

is heterolytically cleaved in a mechanism similar to other [NiFe]-
hydrogenases (150, 219, 231–233). As with other [NiFe]-hydro-
genases, the protons generated are relayed from the [NiFe] center
to the outer surface of the complex, where they are released to the
bulk solvent near a covalently bound FAD molecule on the FrhB
subunit of a neighboring protomer (150). Concomitantly, elec-
trons from the H2 cleavage reaction are individually transferred
via four [4Fe4S] clusters (three on FrhG and one on FrhB) to the
FAD molecule bound to FrhB of the same protomer, generating
FADH2 (Fig. 8). The terminal step involves hydride transfer from
FADH2 to F420, which binds reversibly at a solvent-accessible
pocket on FrhB, with the 5-deazaflavin rings (Si-face) next to the
isoalloxazine of the FAD cofactor (Si-face) (150, 234). Kinetic and
structural data suggest that hydride transfer to F420 occurs rapidly
and is rate limited by diffusion, rather than conformational
change (227, 235). The remarkable oligomerization of the com-

FIG 8 (a) Structure of the dodecameric complex of Frh (PDB ID 4OMF [150]), where a single protomer (identified with darker shades) contains three subunits:
FrhA (green), FrhB (blue), and FrhG (pink). (b) Electron transfer route from H2 to F420 within the Frh subunits during hydrogenotrophic methanogenesis.
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plex does not appear to influence the reaction kinetics of the hy-
drogenase and instead may serve to protect metal centers from
redox-active compounds of the cytosol (150).

It has been proposed that Frh is physiologically active in both
the forward and reverse directions (224, 225). While Frh primarily
sustains H2-mediated F420 reduction during hydrogenotrophic
growth, it may mediate F420H2-mediated H2 production during
methylotrophic methanogenesis and formate-dependent growth
(224, 225). This is consistent with the observations of severe de-
fects of Ms. barkeri �frh mutants during growth on methanol and
on H2 production during formate-dependent growth of Mc. mari-
paludis (225). While F420 reduction is more thermodynamically
favorable (E0 F420 � �340 mV; E0 H2 � �410 mV), the reverse
reaction may occur when F420H2 accumulates and H2 partial pres-
sure [pH2] is low. This is supported by biochemical data that Frh
purified from Methanobacterium formicum can sustain a moder-
ate rate of F420H2-mediated H2 evolution (230). However, genetic
dissection experiments will be required to definitively confirm
whether Frh-mediated H2 evolution can occur in vivo at physio-
logically relevant rates.

Several variants of Frh can be encoded by genes in the same
genome. Many methanogens carry genes that encode both a sele-
nium-containing F420-reducing hydrogenase (Fru) in addition to
a selenium-free one (Frh) (183, 221, 222). Studies on the purified
[NiFeSe]-hydrogenase from Methanococcus voltae suggest that the
selenium-containing isozymes are faster acting and more oxygen
tolerant than the selenium-free variant (236, 237). Hence, tran-
scription of Fru over Frh occurs in selenium-containing condi-
tions in this organism (221, 238, 239). In addition, variants of Frh
were recently found to be encoded by genes of several non-F420-
producing species of the archaeal order Thermococci and the bac-
terial family Desulfobacteriaceae (183). Biochemical and sequence
analyses indicate that these enzymes cannot reduce F420 and in-
stead couple to another electron acceptor, such as a flavin (240);
these enzymes and their F420-reducing relatives are capable of re-
ducing FAD and FMN in vitro (16, 240).

3.2.2. Ffd: F420-reducing formate dehydrogenase

Many hydrogenotrophic methanogens can also grow using for-
mate as the sole electron donor, including species from the genera
Methanococcus (241, 242), Methanobacterium (243), and Metha-
nospirillum (184). This process is especially ecologically signifi-
cant, given that formate produced by fermentative bacteria can be
consumed by methanogens through interspecies transfer (244). It
is well established that formatotrophic growth is linked to F420

metabolism (17) and that it depends on F420-reducing formate
dehydrogenases (called Ffd or Fdh) (242). Although Ffd has not
been structurally characterized, biochemical studies on the en-
zyme from Methanobacterium formicicum (Mb. formicicum) have
revealed its core architecture. Ffd is a membrane-bound heterodi-
meric enzyme containing several redox centers (190, 245, 246).
The large subunit is homologous with the structurally character-
ized bacterial formate dehydrogenases (247), and it is predicted to
contain a molybdopterin guanine nucleotide cofactor (MGD)
(248–252) and a [4Fe4S] center (190). The small subunit is unique
to methanogenic archaea and is predicted to contain two [4Fe4S]
clusters (190), an FAD cofactor (190, 253, 254), and an F420-bind-
ing site that is homologous to FrhB (150). It has been proposed
that formate is oxidized at the molybdopterin center and that
electrons are shuttled via the FeS clusters to the electron gate FAD

and finally to F420 (254) (Fig. 9). Like most other F420-dependent
enzymes (255), hydride transfer to C-5 of F420 is Si-face stereospe-
cific (254).

Two pathways that facilitate formate-dependent methanogen-
esis have been elucidated (Fig. 7). In the first pathway, it has been
proposed that electrons derived from formate are funneled
through the hydrogenotrophic pathway, with F420H2 and H2 serv-
ing as intermediates (225, 256). First, formate is disproportion-
ated through the combined activity of Ffd (formate � F420 ¡
CO2 � F420H2) and Frh (F420H2 ¡ F420 � H2) (257). Subse-
quently, the H2 and CO2 produced are converted to methane
through the hydrogenotrophic pathway (225). More recently, it
was proposed that Ffd can form an electron-bifurcating complex
with heterodisulfide reductase; in this model, the oxidation of
formate simultaneously drives the exergonic reduction of hetero-
disulfide and endergonic reduction of ferredoxin (258, 259). This
pathway is supported through analysis of protein-protein interac-
tions, which indicate that Ffd forms a membrane-bound super-
complex with a heterodisulfide reductase (Hdr) and a hydroge-
nase subunit (VhuD) (259, 260). Genetic dissection studies
likewise show that Ffd but not Frh is essential for formatotrophic
growth of Mc. maripaludis (259, 261–263). In fact, a suppressor
mutant of Mc. maripaludis sustains formatotrophic growth when
all of its seven hydrogenases are deleted (261). Costa et al. pro-
posed that, in addition to providing electrons to Hdr, Ffd must
also provide F420H2 to sustain the central reactions catalyzed by
Mer and Mtd in the methanogenesis pathway (259).

As with Frh, methanogens have evolved selenium-free and se-
lenium-containing variants of the Ffd. Whereas Mb. formicicum
carries a gene that encodes a single Ffd, Methanococcus vannielii
carries genes that encode both selenium-free and selenium-con-
taining variants of the Ffd (185, 264). Selenium supplementation
markedly stimulates formate-driven growth of the organism, sug-
gesting that the selenocysteine-containing Ffd may be the more
efficient variant (265). In contrast, both Ffd variants in Mc. mari-
paludis are selenoproteins (266); hence, the organism requires the
presence of selenium to grow on formate (267, 268). Genetic dis-
section has demonstrated that each homolog confers a competi-
tive growth advantage, with single mutants impaired and double
mutants unviable for formatotrophic growth (242). Interestingly,
while some Methanosarcina species carry genes that encode Ffd
homologs (269), methanogens with cytochromes cannot sustain
formate-dependent growth. Thauer et al. rationalize that the high
H2 threshold of these organisms compared to other methanogens

FIG 9 Proposed architecture of Ffd and electron transfer route from formate
to F420.
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means that they would not be able to competitively oxidize H2

produced from formate metabolism (182). An alternative expla-
nation is that they lack the electron-bifurcating systems required
to efficiently couple formate oxidation to growth (259).

3.2.3. Adf: F420-reducing secondary alcohol dehydrogenase

Some methanogens are capable of low-yield growth using alcohols
as electron donors. Whereas methanogens oxidize primary alco-
hols (e.g., ethanol) using standard NADP-reducing alcohol dehy-
drogenases (Adh) (22, 270), some can also metabolize secondary
and cyclic alcohols using a phylogenetically unrelated class of F420-
dependent secondary alcohol dehydrogenases (Adf) (271, 272).
The enzymes that mediate this are sparsely distributed, encoded
by genes on just six sequenced methanogens in the NCBI database,
all of the class Methanomicrobia. The F420H2 generated from the
reduction of secondary alcohols (e.g., isopropanol, butan-2-ol) to
ketones (e.g., acetone, butanone) is, in turn, used to sustain the
CO2-reducing pathway of methanogenesis and other cellular re-
ductive processes (271, 272). Adf belongs to the bacterial lucifer-
ase superfamily (TIM barrel protein fold), which also includes
other F420-dependent enzymes Fgd (163), Mer (48), and Fht
(155). As with other enzymes of the luciferase superfamily, crys-
tallographic analysis shows that Adf from Methanoculleus thermo-
philicus is dimeric, containing a nonprolyl cis peptide bond toward
the Re-face of F420 that keeps the 5-deazaflavin rings in a bent
“butterfly” conformation (49). The structure contains the inactive
F420-acetone adduct (Fig. 10) (thought to form due to acetone
accumulation in the presence of oxidized F420 in a reductive envi-
ronment); small secondary alcohol substrates, such as isopropa-
nol, bind in the same pocket in the active enzyme (49). Hydride
transfer occurs on the Si-face of the cofactor, facilitated by the
abstraction of a proton from the alcohol by a catalytic histidine
residue and the stabilization of the alcoholate anion transition
state by nearby tryptophan and glutamate residues (49, 273).

3.3. F420H2-Dependent Reductases

3.3.1. Mtd: F420-reducing methylene-H4MPT
dehydrogenase/Mer: F420H2-dependent methylene-H4MPT
reductase

In all methanogenesis pathways, tetrahydromethanopterin
(H4MPT) serves as the carrier of one-carbon (1C) units (158,
274). 1C units can be conjugated to H4MPT in various oxida-
tion states, including formyl (CHO-H4MPT), methenyl

(CH§H4MPT), methylene (CH2�H4MPT), and methyl (CH3-
H4MPT). In hydrogenotrophic and formatotrophic methano-
genesis, CO2 is activated through three F420-independent initial
steps (Fig. 7). The resultant methenyl-H4MPT adduct is reduced
to methylene-H4MPT and methyl-H4MPT via two successive
F420-dependent steps. The first is catalyzed by the F420-reducing
methylene-H4MPT dehydrogenase (Mtd; CH§H4MPT� �
F420H2 ¡ CH2 � H4MPT � F420 � H�) (18, 275–278). The sec-
ond is catalyzed by the F420H2-dependent methylene-H4MPT re-
ductase (Mer; CH2 � H4MPT � F420H2 ¡ CH3-H4MPT � F420)
(279–284). Reflecting the standard redox potentials of F420, meth-
ylene-H4MPT, and methenyl-H4MPT (Table 1), these reactions
are physiologically reversible. Hence, Mer and Mtd can also be
used to oxidize CH3-H4MPT to CH§H4MPT� with the concom-
itant reduction of two mole equivalents of F420 (156, 157). This is
particularly important in the oxidative arm of the methylotrophic
methanogenesis pathway, which generates reducing agents
(F420H2, Fdred) through the oxidation of CH3-S-CoM (coenzyme
M) to CO2 (Fig. 7) (157).

A succession of crystal structures of Mtd and Mer have revealed
much about their architectures and mechanisms. The structure of
Mtd from Methanopyrus kandleri revealed a unique protein fold
compared to other F420-binding proteins (47, 166, 285, 286).
Whereas most F420-binding proteins adopt bacterial luciferase-
like (TIM barrel) (163), FDOR-like (split �-barrel) (30), or FdrB-
like (novel �� fold) (150) protein folds, Mtd folds into a unique
tertiary structure (47, 166) (Fig. 6). Each protein chain of the
homohexameric complex of Mtd (a trimer of dimers) contains an
�� domain, a smaller helical bundle domain, and a C-terminal
sheet segment (47). Methenyl-H4MPT and F420H2 bind opposite
each other at the active site, which is located between the two
domains and capped by the loop segment of the adjacent chain
(Fig. 11) (166). The reaction is catalyzed through a ternary com-
plex mechanism (276, 284), wherein hydride transfer occurs be-
tween C-14a of methylene-H4MPT (Re-face stereospecific) and
C-5 of F420H2 (Si-face stereospecific) (166, 287–289). Crystal
structures of Mer homologs have been solved from three organ-
isms, Methanoplanus kandleri (159), Methanothermobacter mar-
burgensis (159), and Methanosarcina barkeri (48). As a member of
the bacterial luciferase superfamily, Mer contains a characteristic
TIM barrel fold and a nonprolyl cis-peptide bond close to the
F420-binding site (48, 159). Modeling studies indicate that meth-
ylene-H4MPT and F420H2 are likely to bind opposite each other to

FIG 10 Structure of the active site of Adf. (a) Cartoon representation of the protein (PDB ID 1RHC [49]) showing the bound F420-acetone adduct. (b) Proposed
mechanism of isopropanol reduction to acetone (49). R1 is the ribitylphospholactyl-oligoglutamate chain of F420.
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form a ternary complex like in Mtd (48), enabling direct hydride
transfer in a stereospecific manner (289) (Fig. 11).

In four of the methanogenic orders, the fourth step in the
CO2 reduction pathway can be effected using H2 instead of F420

(Fig. 7) (183). The methylene-H4MPT hydrogenase (Mth; also
known as the [Fe]-hydrogenase, the H2-forming methylenetet-
rahydromethanopterin dehydrogenase, and Hmd) directly
reduces methenyl-H4MPT to methylene-H4MPT using H2

(CH§H4MPT� � H2¡CH2�H4MPT � H�) (290–292). Several
transcriptome analyses have indicated that, while the F420-depen-
dent route is constitutive, the H2-dependent route predominates
at high H2 partial pressures (pH2) that induce rapid growth (293–
295). Consistently, Mtd mutants of Methanobacter thermoau-
totrophicus are unable to grow at low pH2 (296). Methanogens can
also reduce F420 using H2 through the combined action of Mth
(CH§H4MPT� � H2 ¡ CH2�H4MPT � H�) and Mtd
(CH2�H4MPT � F420 � H�¡CH§H4MPT� � F420H2) (the net
reaction is H2 � F420 ¡ F420H2) (225, 297). Hendrickson and
Leigh demonstrated through genetic dissection in Mc. maripaludis
that this Mth-Mtd cycle can fully compensate for Frh during hy-
drogenotrophic growth; the pathways could be eliminated sepa-
rately, but not together (225). Transcriptional and biochemical

studies on Methanothermobacter marburgensis (Mt. marburgensis)
have suggested that the Mth-Mtd cycle is particularly important
during nickel-limiting conditions when the F420-reducing [NiFe]-
hydrogenase cannot be synthesized (297, 298).

Homologs of Mtd and Mer are also present in sulfate-reducing
archaea (299, 300). Archaeoglobus fulgidus converts lactate to three
molecules of carbon dioxide using an Mtd/Mer-facilitated 1C
pathway similar to methylotrophic methanogenesis (133, 300).
The F420H2 produced by Mtd and Mer can be subsequently re-
spired through a sulfate-reducing electron transport chain (200).
It has also been proposed that these enzymes operate during the
reverse methanogenesis pathway of anaerobic methanotrophic
archaea (ANME). In support of this, genes encoding homologs of
Mtd and Mer have been found in some reconstructed ANME meta-
genomes (21, 137, 215). Heterologously expressed Mtd from an
ANME-1 archaeon catalyzed the same reaction as Mtd from
methanogens, with similar catalytic specificity and cofactor de-
pendence (214). In addition to F420-dependent enzymes,
NAD(P)-dependent methylenetetrahydromethanopterin dehy-
drogenases have been characterized that have central roles in the
formaldehyde assimilation pathways of aerobic methylotrophic
bacteria (301, 302).

FIG 11 Structure and mechanism of F420H2-dependent hydride transfers to one-carbon compounds conjugated to tetrahydromethanopterin. (a) Structure of
Mtd (PDB ID 3IQE [166]) as a ternary complex with F420 (green) and methenyl-H4MPT� (pink). The large ��-domain of a single subunit is shown in purple,
and the helical bundle domain is shown in cyan. The secondary subunit in the dimer is shown in gray. (b) Mechanism of hydride transfer between F420H2 (Si-face)
and methenyl-H4MPT� (Re-face) leading to methylene-H4MPT production (166). (c) Structure of Mer (PDB ID 1Z69 [48]) as a ternary complex with F420

(green) and polyethylene glycol (blue) occupying the methylene-H4MPT-binding site. (d) Inferred mechanism of hydride transfer between F420H2 (Si-face) and
methylene-H4MPT (Re-face) leading to methyl-H4MPT production (166).
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3.3.2. Fpo: F420H2-dependent methanophenazine
reductase/Fqo: F420H2-dependent quinone reductase

The single order of methanogens containing cytochromes, i.e., the
Methanosarcinales, can translocate protons by coupling the oxida-
tion of F420H2 to the reduction of heterodisulfide (CoM-S-S-
CoB). It was initially thought that this activity was mediated by a
single hypothetical enzyme complex, the F420H2:heterodisulfide
oxidoreductase (303). However, it is now appreciated that this
system is in fact formed from two respiratory complexes (304–
306), the F420H2-dependent methanophenazine reductase (Fpo)
(162) and the methanophenazine-dependent heterodisulfide re-
ductase (Hdr) (307), which are linked by the redox-active mem-
brane-diffusible cofactor methanophenazine (305, 308–310) (Fig.
10). Constituting the primary dehydrogenase, Fpo is a respiratory
proton pump exclusive to the order Methanosarcinales (162).
Serving as the terminal reductase, Hdr is anchored to the mem-
brane by a b-type cytochrome (307, 311, 312). Together, these
enzymes translocate four protons (two each through Fpo and
Hdr) per molecule of F420H2 that is oxidized (303). In contrast, the
Hdr-linked complexes of methanogens without cytochromes are
primarily cytosolic and do not serve a respiratory role (182).

The complete Fpo complex has been purified from only a single
species, Methanosarcina mazei (Ms. mazei) (162, 313–315). The
complex is very similar to bacterial NADH:ubiquinone oxi-
doreductase I (Nuo; also known as complex I) in both overall
subunit composition and amino acid sequence (316, 317). The
Fpo complex is formed of 13 subunits that associate into a hydro-
philic portion (FpoFBCDIO) and a transmembrane portion
(FpoAHJKNML) (162, 318). The hydrophilic electron input
(FpoF) and electron output (FpoBCDI) modules catalyze electron
transfer from F420H2 to methanophenazine and are largely con-
served with Nuo. However, there are several key differences: an
F420H2-oxidizing subunit (FpoF) replaces the NADH-oxidizing
module (NuoEFG), the phenazine-reducing subunit (FpoD) has a

modified binding pocket compared to its quinone-reducing
equivalent (NuoD), and a subunit of unknown function (FpoO) is
present. The remaining hydrophobic portion of Fpo is embedded
in the membrane, consisting of the proton-translocating E-chan-
nels (FpoAJKH) and Mrp antiporter-like channels (FpoNML)
that are homologous to those in Nuo (316, 317, 319). Unlike Nuo,
which pumps four protons per two input electrons, the Fpo com-
plex is thought to translocate two protons per molecule of F420H2

(162). On the basis of the structure of bacterial Nuo (319, 320),
a basic model for the mechanism of Fpo has be proposed (Fig.
12): electrons are transferred from F420H2 to methano-
phenazine, methanophenazine reduction propagates conforma-
tional changes to the E-channel and in turn the antiporter module,
and two protons are subsequently translocated through half-
channels via conserved lysine and glutamate residues.

During methylotrophic methanogenesis, it is proposed that the
F420H2 formed serves as the major respiratory electron donor
(Fig. 7). In this pathway, one-carbon compounds (e.g., methanol,
methylamine) are activated to produce methyl-coenzyme M
(methyl-S-CoM) and thereafter converted to CO2 or methane; the
oxidative branch yields F420H2 via the Mer and Mtd reactions,
while the reductive branch generates proton motive force by cou-
pling F420H2 oxidation to heterodisulfide reduction (318, 321).
Consistently, trimethylamine-cultured �fpo mutants of Ms. mazei
are severely compromised in growth and methane formation
compared to the wild-type strain (193). Surprisingly, these find-
ings do not extend to Ms. barkeri; in this organism, Fpo appears to
be dispensable for methylotrophic growth, whereas Frh is essential
(224). On this basis, Kulkarni et al. (224) in Metcalf’s laboratory
have proposed that H2 is an intermediate during methylotrophic
growth wherein electrons from the F420H2 produced by Mer and
Mtd may be used to drive H2 production by Frh. The H2 produced
is in turn reoxidized via a hydrogenase (Vhu) that can reduce
methanophenazine to facilitate heterodisulfide reduction by Hdr,

FIG 12 Model of respiration in Methanosarcina mazei using F420H2 as an electron donor and heterodisulfide as an electron acceptor. In this system, the primary
dehydrogenase is the proton-translocating F420H2-dependent methanophenazine reductase (Fpo) and the terminal reductase is methanophenazine-dependent
heterodisulfide reductase (Hdr). Arrangement of Fpo subunits and the proposed electron and proton transfer pathways are inferred from the homology of the
system to bacterial complex I (Nuo) (317, 319, 320). Gray lines show the propagation of conformational change in the E-channel (FpoAJKH) and antiporter
(FpoNML) modules upon electron transfer to methanophenazine (MPh/MPhH2), and dashed arrows show possible routes for proton transfer based on
structural analysis of complex I. The protein topology of Hdr is not shown in detail.
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thereby bypassing the need for Fpo (224). Frh activity is consis-
tently 10-fold higher in Ms. barkeri than in Ms. mazei; hence, Frh
may be able to fully substitute or compensate for loss of Fpo ac-
tivity only in the former organism (193). Fpo is also likely to be
dominant during methylotrophic growth in Methanosarcina ace-
tivorans, which exhibits low levels of hydrogenase expression and
activity (322, 323).

Beyond methylotrophic methanogenesis, several other roles
have been proposed for the Fpo system. For example, the proton
gradient generated by Fpo is thought to contribute to ATP synthe-
sis during hydrogenotrophic methanogenesis, while H2 oxidation
can be coupled to methanophenazine reduction directly (via the
methanophenazine-reducing hydrogenase), F420 is also some-
times preferentially used as an intermediate (through the com-
bined activities of Frh and Fpo) (182, 224). There is also evidence
that Fpo contributes to the growth of Methanosarcina barkeri on
carbon monoxide (324). More recent work also suggests that FpoF
may sometimes function as a cytosolic enzyme independently of
the other membrane-bound Fpo components in certain methano-
gens (193, 325). Consistently, the fpoF gene is genomically sepa-
rated from the rest of the fpo operon in several Methanosarcina
species (269, 326), and the protein is expressed at high levels in the
cytosolic fraction of Ms. mazei cells (193). FpoF from Ms. mazei
can slowly, but specifically, catalyze electron transfer from Fdred to
F420 (Fig. 7), which may help to maintain redox balance among
methanogenic cofactors (193). Interestingly, members of the ge-
nus Methanosaeta (part of the order Methanosarcinales) contain a
variant of Fpo (fpoABCDHIJKLMNO) that lacks the F420H2-oxi-
dizing subunit FpoF and instead may be dependent on another
reducing agent, e.g., Fdred (196, 327).

A related multimeric membrane-bound proton-translocating
complex is also present in some nonmethanogenic archaea (198).
The enzyme appears to serve as an F420H2-dependent menaqui-
none reductase (Fqo) during sulfate respiration of Archaeoglobi
(198, 199). Transcriptome analysis has shown that Fqo is consti-
tutively expressed at high levels in Archaeoglobus fulgidus together
with the other respiratory chain components (200). The enzyme is
composed of 11 subunits that assemble in a manner similar to Fpo
in methanogenic archaea, but it likely reduces menaquinone
rather than methanophenazine via the FqoD subunit (199). Ho-
mologous enzymes are also encoded by some ANME archaea (e.g.,
Methanoperedens nitroreducens) and are proposed to input elec-
trons derived from methane oxidation into sulfate- and nitrate-
reducing respiratory chains (21, 215, 328).

3.3.3. Fpr: F420H2-dependent oxidase

Among the more recently discovered F420-binding proteins, the
physiological role of the F420H2-dependent oxidases (Fpr/FprA) is
to catalyze the four-electron reduction of dioxygen (O2) to water
(H2O) in methanogens (161, 192). In contrast to terminal oxi-
dases, these enzymes are not linked to respiratory chains and in-
stead appear to have evolved to detoxify O2. Encoded in the ge-
nomes of five of the six presently recognized orders of
methanogens (173), the F420H2 oxidases are part of the flavodiiron
protein family, which have been implicated in O2 and/or NO de-
toxification in microorganisms across all three domains of life.
The methanogen enzymes share particularly high sequence iden-
tity (�40%) to the reductases in the anaerobic bacteria Moorella
thermoacetica and Desulfovibrio vulgaris (52, 329), but they use
F420H2 rather than an additional rubredoxin domain containing

FMNH2 as the reductant. Fpr has been correlated with the ability
of methanogens such as Methanobrevibacter arboriphilus and
Methanothermobacter marburgensis (Mt. marburgensis) to effi-
ciently scavenge micromolar concentrations of O2 in their envi-
ronment (192). Although yet to be confirmed through genetic
dissection, it has been hypothesized that such enzymes are respon-
sible for the surprising and potentially ecologically significant
aerotolerance of many members of the methanogens (all obligate
anaerobes) (192, 330, 331). Some methanogens carry genes that
encode multiple isozymes (e.g., Mt. marburgensis encodes three
FprA homologs) (332), though it has yet to be resolved whether
they are differentially regulated and kinetically distinct.

X-ray crystal structures of Fpr from Methanothermobacter mar-
burgensis have been determined. They reveal that each monomer
of this homotetrameric enzyme binds a diiron center, an FMN
cofactor, and a solvent-diffusible F420H2 molecule (161, 192, 255).
The enzyme forms a functional homodimer, with the diiron cen-
ter of one subunit associating with the FMN cofactor of another
(161). The structure of this enzyme has been solved in three con-
formational states (reduced-active, oxidized-active, and oxidized-
inactive states) by altering the oxygen exposure of the protein
crystals prior to data collection (161). This has enabled the elu-
cidation of the probable catalytic mechanism for this protein
(Fig. 13). Dioxygen binding occurs at the reduced-active state
[Fe(II)Fe(II)FMNH2], where the F420H2-binding site adjacent
to FMN is in a “closed” conformation. The oxygen molecule
forms a peroxo intermediate that bridges the diiron center and
is reduced to release two water molecules through a diferric
transition state. This forms the oxidized-active state of the en-
zyme [Fe(III)Fe(III)FMN], inducing conformational changes
to “open” the F420H2-binding site. Two subsequent F420H2

molecules can then bind in a Si-Si conformation adjacent to the
oxidized FMN, reducing both the diiron center and FMN to
regenerate the reduced-active state. The enzyme also adopts a
third oxidized-inactive state where the iron ion closest to FMN
is displaced. An additional iron ion is also present, which locks
the F420H2-binding site in the “open” state, preventing oxygen
binding. This is hypothesized to occur in the presence of excess
oxygen to prevent loss of reducing power (161).

3.3.4. Fsr: F420H2-dependent sulfite reductase

The F420H2-dependent sulfite reductase (Fsr) catalyzes the six-
electron reduction of sulfite to sulfide (51). Discovered by John-
son and Mukhopadhyay, the enzyme appears to have a dual role in
methanogens: detoxification of sulfite and growth on sulfite as the
sole sulfur source (51, 191). While sulfite is generally inhibitory
for growth of methanogens (e.g., Methanococcus maripaludis)
(191, 333), diverse species are able to utilize it as a sole sulfur
source (e.g., Methanocaldococcus jannaschii) (51, 334, 335). Mc.
maripaludis can be rendered sulfite tolerant through recombinant
expression of Mc. jannaschii Fsr (191). Fsr purified from Mc. jan-
naschii rapidly catalyzes sulfite reduction using F420H2 (51). The
single-subunit enzyme appears to have arisen through the fusion
of an F420H2-binding protein with a sulfite reductase (336, 337):
the N-terminal domain is homologous to the FhrB-like domains
of other F420H2 dehydrogenases, while the C-terminal domain is
similar to siroheme-containing dissimilatory sulfite reductases
(51). It is therefore proposed that, as in Frh, Ffd, and Fpo (Fig. 8,
9, and 12), F420H2 is oxidized at the N-terminal domain and elec-
trons are funneled to the C-terminal domain via a possible flavin,
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an [4Fe4S] cluster, and siroheme, where the sulfite is subsequently
reduced (337). The enzyme appears to be sensitive to oxygen, but
it can be reactivated by cellular thioredoxins (338). Other than Fsr,
some methanogens can also mobilize sulfite using the P590-type
sulfite reductases (339), the physiological role of which are still
incompletely resolved (336).

3.3.5. Fno: F420H2-dependent NADP reductase

In most cases, the catabolic pathways of methanogens reduce F420

and ferredoxin, but not nicotinamides. In order to generate
NADPH for biosynthetic processes, methanogens instead transfer
electrons from F420H2 to NADP (151). This process depends on
F420H2:NADP oxidoreductase (Fno), a physiologically reversible
enzyme that primarily acts as an F420H2-dependent NADP reduc-
tase in methanogens and an F420-reducing NADPH dehydroge-

nase in bacteria. Fno is present in all six orders of methanogens
and can reduce NADP using electrons derived from F420H2 during
hydrogenotrophic, formatotrophic, and methylotrophic growth
(16, 152, 340). An exception is those methanogens that grow on
primary alcohols (e.g., Methanoculleus thermophilicus), which in-
stead use an NADP-reducing primary alcohol dehydrogenase
(272); in such organisms, Fno serves as an F420-reducing NADPH
dehydrogenase that generates sufficient F420H2 to drive the fourth
and fifth steps in the CO2-reducing pathway of methanogenesis
(22). In contrast, methanogens that harbor an F420-reducing sec-
ondary alcohol dehydrogenase use Fno in the typical NADP-re-
ducing direction (22). Homologous enzymes also appear to bridge
catabolic and anabolic processes in Archaeoglobi (201) and Halo-
bacteria (136).

One of the best-understood F420-dependent enzymes, Fno has

FIG 13 Summary of F420H2-dependent oxygen detoxification by Fpr. The mechanism was inferred based on the three crystallographic states of the active site
(161): (a) the reduced-active state where the F420H2-binding site adjacent to FMN is “closed” by a loop with bulky aromatic residues (PDB ID 2OHI), (b) the
oxidized-active state where the F420H2-binding site is “open” due to conformational changes in the loop (PDB ID 2OHH), and (c) the oxidized-inactive state
where one iron atom in the diiron center is displaced and an additional third iron is present locking the loop in the “open” state (PDB ID 2OHJ). Fe(III) is shown
in green, Fe(II) is shown in brown, water molecules at the predicted dioxygen-binding site are red, and FMN is in yellow. (d) Catalytic mechanism of Fpr. The
five steps are shown as follows. (i) Transient binding of dioxygen to the reduced-active state; (ii) oxidation of the diiron center with the release of a water molecule;
(iii) oxidation of FMN to release the second water molecule; (iv) reduction of the diiron center via FMN at the oxidized-active state, which binds F420H2 as an
electron donor; (v) reduction of FMN by a second F420H2 molecule.

F420- and Fo-Dependent Redox Reactions

June 2016 Volume 80 Number 2 mmbr.asm.org 469Microbiology and Molecular Biology Reviews

http://www.rcsb.org/pdb/explore/explore.do?structureId=2OHI
http://www.rcsb.org/pdb/explore/explore.do?structureId=2OHH
http://www.rcsb.org/pdb/explore/explore.do?structureId=2OHJ
http://mmbr.asm.org


been purified and characterized from methanogens of the genera
Methanococcus (341, 342), Methanothermobacter (343, 344),
Methanosphaera (345), and Methanogenium (22). The structure of
Fno from Archaeoglobus fulgidus complexed with F420 and NADP
gives direct structural insight into its hydride transfer mechanism
(Fig. 14). The single-subunit enzyme contains a small C-termi-
nal domain and an N-terminal domain characteristic of a di-
nucleotide-binding Rossmann fold. The nicotinamide and
deazaflavin moieties of the cofactors are bound roughly parallel
to each other (Si-face to Si-face) in a hydrophobic pocket be-
tween the domains (160). The aromatic groups are laterally
shifted relative to each other, such that the C-4 atom of NADP
is positioned exactly above the C-5 atom of F420 (201, 346) to
allow for hydride transfer at an optimal distance of 3.1 Å. The
affinity of F420 for Fno increases in the presence of NADP,
suggesting that NADP binding facilitates F420 binding (160).
Consistently, structural comparison between apo- and holoen-
zymes indicates that NADP binding facilitates a conforma-
tional change that induces F420H2 binding and generates a cat-
alytically active ternary complex (160).

3.4. Cofactor F390

Two purinated derivatives of F420 are formed in methanogens un-
der certain conditions, and these two derivatives of F420 are col-
lectively referred to as F390 (347, 348). F390-A and F390-G are
formed when F420 forms a phosphodiester linkage with AMP and
GMP, respectively, via the 8-hydroxy group of the 5-deazaflavin
ring (348, 349). Seemingly exclusive to methanogens, F390 has
been identified in genera as diverse as Methanothermobacter (347,
350), Methanobacterium (351), Methanobrevibacter (330), and
Methanosarcina (352). Owing to their electron-donating groups,
F390 compounds have a higher standard redox potential (�320
mV) than F420 (�340 mV) and hence may be ideal for sensing or
catalytic roles under oxidizing conditions (353). These derivatives
are synthesized when methanogens are exposed to oxygen and are
hydrolyzed back to F420 and AMP/GMP upon reestablishment of
anaerobiosis (349). Production depends on an ATP/GTP-depen-
dent F390 synthetase of the adenylate-forming superfamily (354–
356), while a hydrolase mediates the AMP/GMP-forming hydro-
lysis reaction (356, 357). As F390 synthesis appears to be sensitive

to both redox state and oxygenation levels (296, 355), it has been
proposed that the cofactor derivative is part of a redox-sensing
system that regulates metabolic activity of methanogens. It has
been consistently demonstrated that F390 synthetase transcription
and F390 cellular expression levels are correlated with the availabil-
ity of reductant in Methanobacterium thermoautotrophicum (358,
359). However, no genetic or phenotypic studies have been per-
formed to resolve its physiological role. In fact, there has been an
almost complete absence of literature on this molecule over the
last 2 decades.

4. F420 IN MYCOBACTERIA AND OTHER BACTERIA

4.1. Physiological Roles

4.1.1. Mycobacteria

Relatively little is known about the roles of F420 in bacteria. The
cofactor has been experimentally shown to be synthesized in only
one bacterial phylum thus far, Actinobacteria, where it has mainly
been studied for its roles in secondary, rather than primary, me-
tabolism. Nevertheless, a number of recent phenotypic and bio-
chemical studies have shed light on the endogenous roles of F420 in
mycobacteria, an actinobacterial genus of major medical and en-
vironmental significance (360, 361). F420 is synthesized and re-
duced by all members of the genus Mycobacterium, including sap-
rophytes (e.g., M. smegmatis, M. fortuitum), opportunistic
pathogens (e.g., M. avium, M. kansasii), and the causative agents
of tuberculosis (M. tuberculosis complex) and leprosy (M. leprae)
(20, 125, 145). The observation that F420 is synthesized even in M.
leprae, rendered an unculturable, host-dependent organism
through massive genome decay (362), suggests that it has an evo-
lutionarily conserved central role in mycobacterial metabolism. In
contrast to methanogens, F420 is not essential for the viability of
mycobacteria under ideal conditions: F420 biosynthesis (fbiC) and
reduction (fgd) genes have been successfully deleted or disrupted
in M. smegmatis (28, 31, 132, 363), M. tuberculosis (32, 35), and M.
bovis (72). However, there is a range of evidence that F420 contrib-
utes to the notorious ability of mycobacteria to persist in deprived
and challenging environments (56). Mycobacteria that are unable
to synthesize F420 are unable to survive oxygen deprivation, oxi-

FIG 14 Structure and catalytic mechanism of Fno. (a) Structure of the active site of Fno (PDB ID 1JAY [160]), showing F420 and NADP positioned for electron
transfer. (b) Hydride transfer mechanism from the Si-face of F420 to the Si-face of NADP� (160). R1 is the ribitylphospholactyl-oligoglutamate chain of F420, and
R2 is 2-phosphoadenosine 5-diphosphate.
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dative stress, nitrosative stress, or antibiotic treatment (Fig. 15)
(31, 32, 363).

Several F420-dependent enzymes have been functionally anno-
tated in mycobacteria. Pathogenic mycobacteria such as M. tuber-
culosis encode F420-reducing hydroxymycolic acid dehydroge-
nases (fHMAD) that oxidize hydroxymycolic acids to ketomycolic
acids in the cell wall (364, 365). These mycolic acid derivatives
appear to influence the integrity and permeability of the cell en-
velope, which renders them less sensitive to cytotoxic agents such
as antibiotics (366–368). Preliminary data indicate that a sub-
group of the flavin/deazaflavin oxidoreductase superfamily
(FDOR-AAs) may also be involved in fatty acid modification (30).
Other members of this superfamily (FDOR-Bs) reduce the degra-
dation products formed during heme oxygenation (30): biliverdin
(produced by host heme oxygenase-1 and mycobacterial HugZ in
the CO-generating pathway) and possibly mycobilin (produced
by mycobacterial MhuD in the CO bypass pathway) (369–371).
Our biochemical studies have shown that M. smegmatis carries a
gene that encodes a conserved F420H2-dependent biliverdin re-
ductase that rapidly reduces biliverdin to bilirubin (30), a potent
antioxidant (372, 373).

There is also evidence that F420 contributes to an oxidative stress
response system in mycobacteria. The survival rate of �fbiC
strains of M. tuberculosis is 100- to 1,000-fold lower than wild-type
cells following challenge with redox cycling agents (i.e., menadi-
one, plumbagin) and antibiotics (i.e., isoniazid, clofazimine) (32).
�fgd strains of M. smegmatis are similarly impaired (363). One
explanation is that mycobacteria store electrons as glucose-6-
phosphate (G6P) and mobilize them using Fgd (F420-dependent
glucose-6-phosphate dehydrogenase) in response to oxidative
stress; G6P levels in M. smegmatis are consistently approximately
100-fold higher than those of E. coli during preferential growth
conditions, but the levels become depleted following challenge
with redox cycling agents (363). F420H2-derived electrons may be
used in endogenous redox processes to prevent or reverse damage
from reactive oxygen species. For example, it has been proposed

that a subgroup of the flavin/deazaflavin oxidoreductase super-
family (FDOR-As) are F420H2-dependent menaquinone reducta-
ses that maintain the respiratory chain in a reduced state in re-
sponse to oxidative stress (32). Several previous reports have
demonstrated that the mycobacterial respiratory chain can be re-
modeled in response to environmental changes (374, 375), and
the ability of F420H2 to serve as a respiratory electron donor has
already been demonstrated for respiratory archaea (162, 199).
However, this hypothesis has yet to be supported with data on
phenotypes or energy, and it remains unclear whether purified
FDOR-As are capable of reducing menaquinone (30, 32). There is
also evidence that mycobacteria instead use electrons liberated
from G6P by Fgd to directly detoxify exogenous agents (363). Two
independent studies have demonstrated that FDOR-As rapidly
reduce menadione and plumbagin using F420H2 (30, 32), and it is
also plausible that these highly promiscuous proteins (28, 55) can
directly detoxify certain antibiotics too. However, genetic studies
have yet to definitively link FDORs to antibiotic resistance and
oxidative stress responses.

The potentially related role of F420 in nitrosative stress resis-
tance is also perplexing. M. tuberculosis transposon mutants of
fbiC are hypersusceptible to acidified nitrite (376); this was shown
through an in vitro screen designed to simulate the environment
of an activated macrophage, in which inducible nitric oxide syn-
thase (iNOS)-derived NO is oxidized to NO2

�, acidified into
HNO2, and dismutated into NO and NO2 (377), which have an-
timycobacterial properties (378). One study showed that NO2 is
rapidly nonenzymatically reduced to NO by F420H2 under aer-
obic conditions (31). However, it is likely that F420-dependent
enzymatic mechanisms also contribute to nitrosative stress re-
sistance, either through direct detoxification or indirect mech-
anisms. Indeed, it is possible that F420 may confer protection
against cytotoxic agents in multiple ways: enhancing physical
barriers through cell wall synthesis, direct detoxification by
reducing exogenous agents, and maintaining redox balance
through endogenous metabolism. Given the diverse roles of

FIG 15 Pleiotropic phenotypes associated with loss of function of F420 in mycobacteria. Relevant reactions in the F420 biosynthesis and utilization pathway are
shown in gray. Hollow arrows show observed chemical and phenotypic effects due to loss-of-function mutations in specific enzymes in the pathway. Q, quinone;
QH2, dihydroquinone; HQ●, semiquinone.
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F420 in mycobacterial metabolism and the pleiotropic pheno-
types associated with the cofactor’s absence, it seems likely that
F420 is required for latent tuberculosis infection in vivo, though
this has yet to be definitively confirmed. In line with this, M.
tuberculosis strains incapable of synthesizing ketomycolic acids
are attenuated in macrophages and mice (366–368). One study
surprisingly indicated that transposon mutants of fbiC are vi-
able in vivo in the murine model of acute infection (379),
though it is unclear whether such mutants would be capable of
establishing a chronic infection.

4.1.2. Streptomycetes

It is well established that F420 is required for the synthesis of
tetracycline antibiotics, a group of broad-spectrum aromatic
polyketide antibiotics produced by streptomycetes (380). As far
back as 1960, McCormick et al. isolated a hydride-transferring
cofactor mediating tetracycline biosynthesis (24, 381–383), now
known to be F420 (29, 122, 384). A combination of genetic and
biochemical studies have since shown that an F420H2-dependent
reductase (OxyR) catalyzes the final step of oxytetracycline bio-
synthesis (385), namely, reduction of the C-5a�C-11a double
bond of dehydrooxytetracycline (Fig. 16) (29). This enzyme can
also perform the equivalent reaction for tetracycline. Closely re-
lated enzymes are involved in the same step during biosynthesis of
chlorotetracycline (CtcR) and dactylocyclinone (DaCO4) in
Streptomyces aureofaciens and Streptomyces rimosus (29, 386). En-
coded by the oxytetracycline (oxy), chlorotetracycline (ctc), and
dactylocyclinone (dac) gene clusters (29), these enzymes are
members of the flavin/deazaflavin oxidoreductase (FDOR) super-

family (30) and utilize F420H2 reduced through the action of Fno
(387).

F420 is also required for the synthesis of lincosamide antibi-
otics by Streptomyces lincolnensis strains (146, 388, 389), includ-
ing lincomycin, the precursor of the clinical semisynthetic an-
tibiotic clindamycin (390). On the basis of the accumulation of
4-propylidene-3,4-dihydropyrrole-2-carboxylic acid by strains
unable to biosynthesize F420, it is proposed that an F420H2-
dependent reductase catalyzes the reduction of the imine moi-
ety of the dihydropyrrole to tetrapyrrole (Fig. 16) (389, 391).
The biosynthesis of other pyrrolobenzodiazepine antibiotics
(392) are facilitated by equivalent F420H2-dependent imine re-
duction steps, namely, tomaymycin (Streptomyces achromoge-
nes) (50), sibiromycin (Streptosporangium sibiricum) (393), ka-
sugamycin (Streptomyces kasugaensis) (394), and anthramycin
(Streptomyces rifuineus) (395). However, biochemical studies
have yet to definitively identify which enzymes are responsible
for these reactions. The strongest candidates are the putative
F420H2-dependent luciferase-like hydride transferases (LL-
HTs) encoded in the sequenced antibiotic synthesis gene clus-
ters (50, 391, 393–395) of each of these organisms. Because all
research thus far has focused on the roles of F420 in the second-
ary metabolism of streptomycetes, little is known about the
roles of this cofactor in central metabolism of this genus; it is
likely that streptomycetes use F420 to support some important
metabolic pathways, as they carry genes that encode homologs
of mycobacterial enzymes such as the F420H2-dependent biliv-
erdin reductase (30).

FIG 16 Reactions catalyzed by F420H2-dependent reductases in the biosynthesis pathways of tetracyclines (26), lincosamides (146, 388, 389), and aminoglyco-
sides (394).
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4.1.3. Other actinobacteria

It is established that F420 is synthesized in multiple other actino-
bacterial genera, including Rhodococcus, Nocardia, and Nocar-
dioides (27, 54, 145). However, all studies of such genera have
focused on the roles of F420 in exogenous substrate reduction, and
very little is known about the endogenous roles of F420-dependent
processes. The richest literature is on the degradation of picrate
(2,4,6-trinitrophenol) and related compounds (e.g., 2,4-dinitro-
phenol, 2,4-dinitroanisole) (396, 397). A number of actinobacte-
ria, including Rhodococcus opacus and Nocardioides simplex, are
able to mobilize picrate as their sole carbon and nitrogen source
(396, 398). This depends on reductive activation of these particu-
larly electron-deficient aromatic compounds using two F420H2-
dependent hydride transferases (hydride transferase I [HTI] and
hydride transferase II [HTII]) (section 4.3.2) (155). Fno supplies
the reductant for this process and is expressed from the same
operon as the hydride transferases (54, 155, 396). While polyni-
troaromatic compounds are anthropogenic, actinobacteria may
have evolved the capacity to degrade them from preexisting path-
ways that metabolize naturally occurring nitroaromatic com-
pounds (e.g., chloramphenicol) (399, 400). It has also been dem-
onstrated that F420H2-dependent oxidoreductases of the flavin/
deazaflavin oxidoreductase superfamily have broad substrate
specificity; enzymes purified from genera as diverse as Mycobacte-
rium, Frankia, Nocardia, and Rhodococcus are capable of reducing
coumarin natural products (28, 55). F420 may also contribute to
the well-reported abilities of soil actinomycetes to biodegrade a
wide variety of other polycyclic aromatic hydrocarbons (401).
While the physiological advantage of this promiscuity is unclear, it
might provide actinobacteria an adaptive or selective advantage to
consume or detoxify the wide range of natural products in their
respective environments (402, 403).

4.2. F420-Reducing Dehydrogenases

4.2.1. Fno: F420-reducing NADPH dehydrogenase

Fno is the only redox-active F420-dependent protein proven to be
conserved between archaea and bacteria. Whereas Fno primarily
serves to reduce NADP in methanogens (F420H2-dependent
NADP reductases), its homologs generally act in the reverse direc-
tion to reduce F420 in bacteria (F420-reducing NADPH dehydro-
genases) (219); this reflects that, whereas F420 is a central catabolic
cofactor in methanogens, it is of secondary importance to NADP
in the central metabolism of most bacteria (168). While Fno has
yet to be structurally characterized in actinobacteria, the enzyme is
expected to have a similar structure and mechanism: sequence
comparisons and biochemical studies (12) indicate that the over-
all architecture and cofactor-binding sites are conserved with the
archaeal enzyme (section 3.3.5) (160). The F420H2 generated by
Fno in bacteria is used for various reductive processes, for exam-
ple, biosynthesis of tetracycline antibiotics by Streptomyces (387)
and the mobilization of picrate by Rhodococcus and Nocardioides
species (54, 155).

4.2.2. Fgd: F420-reducing glucose-6-phosphate
dehydrogenase

While Fno appears to be the enzyme primarily responsible for F420

reduction in most actinobacteria, it is replaced by the F420-reduc-
ing glucose-6-phosphate dehydrogenase in several genera, includ-
ing Mycobacterium (Table 2). This enzyme directly links central

carbon catabolism in actinobacteria to F420 reduction (glucose-6-
phosphate � F420 ¡ 6-phosphogluconolactone � F420H2) (163,
404). First identified in the soil bacterium M. smegmatis (148,
404), Fgd has since been identified in multiple other environmen-
tal actinobacteria and the obligate pathogens M. tuberculosis and
M. leprae (145). Fgd is either the sole or main source of F420H2 in
mycobacteria; neither �fbiC and �fgd strains are capable of acti-
vating exogenous substrates through F420H2-dependent reactions
in M. tuberculosis (33, 35) and M. smegmatis (28, 363). Fgd there-
fore appears to have evolved principally as a mechanism to gener-
ate F420H2. As elaborated above, there is also evidence that glu-
cose-6-phosphate serves as an electron store in mycobacteria that
is mobilized by Fgd in response to oxidative stress (32, 363). The
role of Fgd in generating flux through the pentose phosphate
pathway appears to be supplementary, given that most mycobac-
teria also encode conventional NADP-dependent glucose-6-
phosphate dehydrogenases (145). An interesting exception may
be M. leprae, as genome analysis and biochemical studies indicate
that it employs F420, but not NADP, for G6P oxidation (145, 362,
405).

The F420-reducing and NADP-reducing glucose-6-phosphate
dehydrogenases are not phylogenetically related (148). Fgd is a
member of the bacterial luciferase family (163) with a similar TIM
barrel structure and catalytic mechanism reminiscent of Adf (49)
and Mer (159). The cofactor is accommodated in the active site,
with the isoalloxazine rings innermost and the oligoglutamate tail
extending into the solvent (Fig. 6), where the isoalloxazine is in a
bent butterfly-like conformation due to steric interactions with
the protein backbone, including the nonprolyl cis-peptide bond
behind its Re-face (163). The glucose-6-phosphate has been mod-
eled to bind in a positively charged pocket adjacent to the Si-face
of the deazaflavin (163), similar to what was observed in the ter-
nary complex of the related Adf (Fig. 10). Hydride transfer is
thought to occur similarly to Adf (Fig. 17) and is mediated by
conserved histidine, tryptophan, and glutamate residues (49,
163): proton abstraction is initiated by the histidine, tryptophan
stabilizes the resulting anion transition state, and glutamate is
likely to serve as the proton donor for N-2 of the deazaflavin for
F420H2 formation (49, 163).

4.2.3. fHMAD: F420-reducing hydroxymycolic acid
dehydrogenase

The F420-reducing hydroxymycolic acid dehydrogenase (fHMAD) is
responsible for oxidizing hydroxymycolic acids to ketomycolic
acids during cell wall biosynthesis (365). A member of the bacte-
rial luciferase family, the enzyme shares 36% sequence identity
with Fgd (364). However, in contrast to its original annotation,
the enzyme cannot oxidize glucose-6-phosphate (364) and is spe-
cific for hydroxymycolic acids (365). The enzyme is translocated
through the cell membrane by the Tat pathway and is anchored to
the outside of the cell membrane, where it can function in cell wall
modification (364). Reflecting the taxonomic distribution of fH-
MAD (364, 365), ketomycolic acids are distributed in pathogenic
mycobacteria (e.g., M. tuberculosis complex, M. avium complex)
but are absent from most soil species (e.g., M. smegmatis) (406).
Ketomycolic acids appear to be critical for the virulence of M.
tuberculosis; strains lacking oxygenated mycolic acids have pro-
foundly altered envelope permeability, are hypersusceptible to an-
tibiotics, and are attenuated in macrophages and mice (366–368).
Consistent with the synthesis of ketomycolic acids in response to
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stress, the gene encoding fHMAD is under the control of the al-
ternative sigma factor SigF in M. tuberculosis (407, 408). It was
recently confirmed that fHMAD is inhibited by the nitroimidazo-
pyran prodrug pretomanid (PA-824) (365); this interaction may
be responsible for the altered mycolic acid composition of preto-
manid-treated cells and may contribute to the mode of action of
this next-generation bactericidal agent (33).

4.3. F420H2-Dependent Reductases

4.3.1. FDORs: flavin/deazaflavin oxidoreductase superfamily

F420H2-dependent reductases elicit the physiological roles of F420

in actinobacteria. They are split into two superfamilies, the flavin/
deazaflavin oxidoreductases (FDORs) (30) and the luciferase-like
hydride transferases (LLHTs; section 4.3.2) (37). FDORs are small
(�150-residue) enzymes that accommodate a cofactor-binding
channel and substrate-binding pocket into a split �-barrel fold
(30). This superfamily is highly diverse in terms of catalytic activ-
ity (reductases, oxidases, and oxygenases), cofactor specificity
(F420, FMN, FAD, and heme), and substrate range (30, 409). We
have shown that they have diversified into two major families,
FDOR-As and FDOR-Bs, that share less than 30% sequence sim-
ilarity but share the same protein fold (28, 30) (Fig. 18). Proteins

from the FDOR-A family are exclusively F420-binding proteins
(28, 35, 55, 164, 410) restricted to the phyla Actinobacteria and
Chloroflexi (28, 30, 37). In contrast, FDOR-B proteins are widely
distributed, including in bacteria that do not synthesize F420.
They include the ubiquitous FMN-dependent pyridoxine/pyr-
idoxamine 5=-phosphate oxidases (PnPOx) involved in vita-
min B6 biosynthesis (411–413), heme oxygenases (HugZ) in-
volved in heme catabolism (414–416), and several groups of
uncharacterized FAD-binding proteins (30, 417). Actinobacte-
ria and Chloroflexi also carry genes that encode multiple F420H2-
dependent reductases of the FDOR-B family, which are broadly
divided into six subgroups (28, 30, 165, 418, 419). Structural and
sequence analyses demonstrate that conserved motifs define co-
factor specificity (30); in the case of F420H2-dependent reductases,
deazaflavin binding is stabilized by a large hydrophobic groove
complementary to the isoalloxazine ring and a positively charged
groove that interacts with the oligoglutamate tail (28, 30, 164,
165). Interestingly, unlike all other F420-binding proteins charac-
terized thus far, the most likely substrate-binding pocket of the
F420-binding FDORs appears to be toward the Re-face of the co-
factor (30, 164, 165), similar to the FMN-dependent members of
the superfamily (420).

FIG 17 Proposed catalytic mechanism of Fgd (163). F420 is reduced to F420H2, and glucose-6-phosphate is oxidized to 6-phosphogluconate.

FIG 18 Representative crystal structures of FDOR-A (monomers) and FDOR-B (dimers) proteins. (a) Structures of the quinone-reducing FDOR-A1 proteins
MSMEG_2027 (PDB ID 4Y9I [30]) and MSMEG_3356 (PDB ID 3H96 [28]) overlaid with the complex of rv3547 with F420 (PDB ID 3R5R [164]) with menadione
docked into the active site. (b) Overlay of solved structures of F420H2-dependent FDOR-B proteins. These proteins include the FDOR-B1 proteins rv2991 (PDB
ID 1RFE) and MSMEG_3380 (PDB ID 3F7E [28]), FDOR-B2 protein MSMEG_6526 (PDB ID 4ZKY [30]), FDOR-B3 protein rv1155 complexed with F420 (PDB
ID 4QVB [165]) and FDOR-B4 protein rv2074 (PBD ID 2ASF [419]). Biliverdin, a substrate of FDORs B3 and B4, is docked at the active site (30).
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In mycobacteria, there is a multiplicity of F420H2-dependent
reductases of the FDOR family: 30 in M. smegmatis, 15 in M.
tuberculosis, and 3 in M. leprae (30). As most of these enzymes
remain to be functionally annotated, the reasons behind the ex-
treme expansion and diversification of this superfamily remain
unclear. The highly diverse architecture of the substrate-binding
sites of these proteins, concurrent with a high degree of conserva-
tion of the F420-binding site, suggests that they have evolved to
catalyze the F420H2-dependent reduction of a variety of substrates
(30). Some subgroups (e.g., FDOR-B2s, FDOR-B4s) are tightly
phylogenetically clustered and have probably been constrained for
a specific function (30). In contrast, representatives of the mani-
fold subgroup FDOR-A1 exhibit broad and overlapping substrate
specificities (28, 30). Such enzymes are capable of reducing a wide
range of exogenous substrates, including coumarin natural prod-
ucts such as fungus-derived aflatoxins and plant-derived furano-
coumarins (e.g., angelicin, methoxsalen) (28, 55). They also show
potent activity against redox cycling agents such as menadione
and plumbagin (30, 32). The physiological role of these enzymes
may therefore be to detoxify a wide range of oxidizing agents in
their environment using electrons channeled from G6P. The ab-
sence of such detoxification systems may contribute to the pro-
found sensitivity of �fbiC and �fgd mutants to redox cycling
agents and antibiotics, as discussed in section 4.1.1 (32, 363). Con-
sistent with a role in detoxification or biodegradation, there is
some evidence from expression studies (28, 30, 164) and pro-
teome analyses (421, 422) that these enzymes are bound to the
membrane through their N termini. Another enzyme of this class,
rv3547 (Ddn; deazaflavin-dependent nitroreductase) has also at-
tracted much attention for its role in the activation of nitro-
imidazole prodrugs (e.g., pretomanid, delamanid) by M. tubercu-
losis (section 5.1) (34, 35, 164).

The endogenous roles of the FDOR-type F420H2-dependent re-
ductases in mycobacteria are presently being resolved. We have
shown that a structurally characterized (419) subgroup of this
family (FDOR-B4s) are efficient F420H2-dependent biliverdin re-
ductases (30). They convert the heme degradation product biliv-
erdin—produced by HugZ in environmental mycobacteria (30)
and host heme oxygenase 1 (HO1) (369) during tuberculosis in-
fection—to bilirubin via hydride transfer to C-10 (30). This may
be advantageous for survival of oxidative stress, given that biliru-
bin is a potent antioxidant that can compensate for 10,000-fold
excess in peroxide radicals (372, 373). A recent study showed that
addition of bilirubin enhanced the survival of Mycobacterium ab-
scessus in HO1-inhibited macrophages, possibly via modulation of
intracellular reactive oxygen species (ROS) levels (423). These
proteins may also reduce mycobilins (30), the product of the CO
bypass pathway of heme oxygenation by mycobacterial MhuD
(370). This FDOR group is only the second family of biliverdin
reductases to be identified; a previously characterized family of
mammalian and cyanobacterial biliverdin reductases employs
nicotinamides as an electron source (424, 425). We also observed
low-level biliverdin reductase activity in the structurally related
FDOR-B3s (30). However, their low catalytic efficiency and sub-
optimal active site structure for biliverdin binding suggests that
this promiscuous activity may result from a common evolution-
ary origin to the FDOR-B4s; FDOR-B3 enzymes are therefore
likely to have a different, currently unidentified physiological sub-
strate (30).

Among other FDORs, there is preliminary evidence that

FDOR-AAs are F420H2-dependent fatty acid reductases; these
membrane-bound enzymes may contribute to cell wall modifica-
tion and host invasion, although their substrate specificity has yet
to be defined (30). While it has been proposed that FDOR-A pro-
teins are F420H2-dependent menaquinone reductases (32), to
date, activity has been observed only with nonphysiological qui-
nones (e.g., menadione), rather than with menaquinone (30, 32);
hence, it is unclear whether these enzymes have primarily evolved
to input electrons into the respiratory chain or instead detoxify
exogenous redox cycling agents (section 4.1.1). Finally, it was re-
cently shown that the F420H2-dependent step in the biosynthesis
of antibiotics of the tetracycline, oxotetracycline, and chlortetra-
cycline classes (122, 381, 382, 384) is mediated by enzymes of the
FDOR-B1 subgroup in streptomycetes (section 4.1.2) (29).

4.3.2. LLHTs: luciferase-like hydride transferase superfamily

Luciferase-like hydride transferases (LLHTs) are another diverse
superfamily of flavin/deazaflavin enzymes. These enzymes were
previously defined as luciferase-like monooxygenases (LLMs), but
this is inappropriate given that their reaction mechanisms are O2

independent. Like the FDORs, members of this superfamily vary
in their cofactor preferences (F420, FMN, FAD) and catalytic ac-
tivities (oxidases, reductases, oxygenases) (163, 426–428). F420-
binding LLHTs can be distinguished by a conserved glycine resi-
due that binds the phosphate group without steric hindrance,
which is not conserved in the FMN-binding proteins of this family
(48). The best-characterized F420-dependent LLHTs are the three
aforementioned dehydrogenases: F420-reducing methylene-H4MPT
dehydrogenase (Mtd), F420-reducing glucose-6-phosphate dehy-
drogenase (Fgd), and F420-reducing hydroxymycolic acid dehy-
drogenase (fHMAD). However, comparative genome analysis in-
dicates that there are numerous other F420-dependent LLHTs in
actinomycetes, the majority probably serving as reductases (37).
These have been implicated in a variety of roles, ranging from
pyrrolobenzodiazepene antibiotic synthesis in streptomycetes
(50, 393, 394, 429) to cell wall metabolism in mycobacteria (37)
and exogenous substrate mobilization by rhodococci (155). A
bioinformatics analysis predicted that there are some 45 F420-
binding LLHTs in M. smegmatis and 17 in M. tuberculosis, though
this has yet to be validated experimentally (37). In contrast to the
FDOR superfamily (30), to date, no comprehensive analysis of the
phylogeny, structure, and function of these enzymes has been per-
formed.

The best-characterized F420H2-dependent reductases of this su-
perfamily are the hydride transferases involved in the biodegrada-
tion of the explosive picrate and related compounds (54, 155). In
Rhodococcus opacus, two LLHTs known as hydride transferase I
(HTI) and hydride transferase II (HTII) catalyze the reduction of
picrate into hydride-Meisenheimer and dihydride-Meisenheimer
complexes (430–432). Subsequent tautomerization, nitrite elimi-
nation, reduction, and hydrolysis steps lead to the production of
4,6-dinitrohexanoate, which can then be oxidatively degraded
(432). The complete pathway involved is shown in Fig. 19. This
pathway enables such organisms to grow using picrate and related
compounds as the sole carbon and nitrogen sources (396, 398).
The genes encoding the hydride transferases are organized in an
operon together with genes encoding other enzymes in the path-
way, including Fno which supplies reductant to the pathway (155,
433). Consistent with these genes having a physiological role in the
biodegradation of nitroaromatic compounds, the repressor NpdR
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usually silences these genes, but it is inactivated in the presence of
nitroaromatics (434).

The hydride transferases that mediate these reactions share ap-
proximately 30% amino acid sequence identity with Mtd of meth-
anogens (435). The results of comparative genomics suggest that
homologs of these proteins are exclusively encoded by the genera
Nocardioides, Rhodococcus, and Nocardia among presently se-
quenced organisms. Empirical studies consistently indicate that
equivalent enzymatic pathways can degrade nitroaromatic com-
pounds in five additional Rhodococcus species (398, 436–438) and
three Nocardioides species (54, 396, 397, 432, 439). Beyond picrate
and 2,4-dinitrophenol, LLHTs are involved in the biodegradation
of other nitroaromatic compounds. We recently reported a No-
cardioides strain that is able to mineralize 2,4-dinitroanisole
(DNAN) through an initial O-demethylation step (catalyzed by a

novel hydrolase) followed by degradation of the resultant 2,4-
dinitrophenol by LLHTs (397). 2,4,6-Trinitrotoluene (TNT) can
also be initially reduced to an equivalent hydride-Meisenheimer
complex in Rhodococcus and Mycobacterium strains (440, 441);
however, this is unproductive, as the complex cannot be further
metabolized to yield carbon or nitrogen sources (441).

5. APPLICATIONS AND IMPLICATIONS

5.1. Tuberculosis Treatment

Globally, tuberculosis (TB) is the most significant bacterial disease
in terms of morbidity and mortality, infecting approximately 2
billion individuals and causing approximately 1.5 million deaths
in 2013 (442). The standard treatment for tuberculosis relies on a
6-month, four-drug combination therapy (isoniazid, rifampin,

FIG 19 F420-dependent degradation of picrate. (a) Genetic determinants of picrate degradation in Rhodococcus opacus. F420-utilizing oxidoreductases are
highlighted in gray, namely, two luciferase-like hydride transferases (HTI and HTII) and the F420-reducing NADPH dehydrogenase (Fno) (155). Translation of
the operon is silenced by the transcription factor NpdR, which is inactivated in the presence of nitroaromatic compounds (434). (b) Mechanism of picrate and
2,4-dinitrophenolate mobilization by Rhodococcus opacus. Hydride transfer from F420H2 is catalyzed by HTI and HTII, while F420H2 is regenerated by the
F420-reducing NADPH dehydrogenase Fno. The combined action of these enzymes generate hydride-Meisenheimer complex (compound 1 [shown as boldface
1 in the figure]) and dihydride-Meisenheimer complex (compound 2) of picrate and hydride-Meisenheimer complex (compound 3) and dihydride-Meisen-
heimer complex (compound 4) of 2,4-dinitrophenolate (394, 422).
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pyrazinamide, and ethambutol) (443). There are major issues
with this therapy: high cost per patient, poor compliance and
management, growing worldwide drug resistance, and extensive
drug-drug interactions (444). These problems are a reflection of
the extraordinary biology of M. tuberculosis, which can transition
between chronic and latent infection states that can evade the
immune system and resist drug treatment (56), necessitating po-
tent drug regimens to eliminate all tubercle bacilli from infected
patients. There is thus an urgent need to develop new antimyco-
bacterials to supplement or replace the current first-line drugs.
F420 is implicated in the abilities of M. tuberculosis to maintain
nonreplicating persistent states and resist antibiotic treatment,
oxidative stress, and nitrosative stress (section 4.1). Hence, there
may be particular promise in developing small-molecule inhibi-
tors of F420 biosynthesis and enzymatic pathways in order to target
persistent mycobacteria. The pleiotropic importance of F420 in M.
tuberculosis (31, 32), combined with its absence from human cells
and commensal microflora, suggest that a specific inhibitor would
be highly potent while having few off-target effects. Such an inhib-
itor is likely to have a synergistic effect if used with existing drug
regimens (with the exception of nitroimidazole prodrugs that re-
quire F420H2 for activation [33, 34]), given that strains unable to
synthesize F420 are hypersusceptible to first-line and second-line
antimycobacterials (32, 363). There are opportunities to use our
knowledge of the F420 biosynthesis pathways for fragment-based
drug screening and structure-based drug design (445), although
no significant progress has been reported in this area thus far. The
F420 system might also be exploited for the treatment of other

serious mycobacterial diseases (145), for example those caused by
M. bovis, M. ulcerans, M. marinum, and M. leprae (360).

However, there may be even more promise in exploiting the
F420 system to activate prodrugs. Delamanid (OPC-67683; ap-
proved for multidrug-resistant TB [MDR-TB]) (446), pretoma-
nid (PA-824; phase III clinical trials) (33), and the next-genera-
tion TBA-354 (phase I clinical trials) (447, 448) are recently
developed nitroimidazole prodrugs that are activated by hydride
transfer from F420H2 (Fig. 20). These compounds have been
shown to inhibit M. tuberculosis growth at submicromolar levels
and exhibit no cross-resistance with current clinical drugs in vitro
due to their novel mode of action (33, 34, 446, 449–451). In par-
ticular, delamanid shows great promise in the treatment of
multi- and extensively drug-resistant TB (MDR-TB and XDR-
TB, respectively) (452–454), while combination therapies that
incorporate pretomanid exhibited highly promising 14-day bac-
tericidal activity with minimal side effects (455, 456). The mech-
anism of activation of these prodrugs has been studied primarily
with pretomanid (Fig. 20). A member of the FDOR-A1 family (28,
30), rv3547 (deazaflavin-dependent nitroreductase [Ddn]), medi-
ates the hydride transfer from F420H2 to the nitroimidazole (35,
164, 457). Hydride addition leads to the formation of an unstable
intermediate, which decomposes into three primary metabolites
(predominantly a des-nitro compound) (33–35). During the de-
composition, the nitro group is eliminated, resulting in accumu-
lation of reactive nitrogen species (nitric oxide, nitrous acid) in a
dose-dependent manner (34, 458). Transcriptome profiling indi-
cates that the prodrug has a dual bactericidal mode of action as a

FIG 20 Reductive activation and mode of action of the prodrug pretomanid by the F420H2-dependent reductase rv3547 (FDOR-A1) (33, 34, 365).
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result of the products formed (33, 459): the primary decomposi-
tion products prevent mycolic acid biosynthesis (possibly by in-
hibiting fHMAD [365, 446]), while reactive nitrogen species
(RNS) release causes respiratory poisoning (34). Other mycobac-
teria are thought to be resistant to pretomanid because they either
lack homologs of the activating enzyme rv3547 (i.e., M. leprae)
(460) or carry genes that encode homologous enzymes with mu-
tations in the nitroimidazole-binding site (e.g., M. smegmatis) (30,
164).

There are, however, concerns that M. tuberculosis will rapidly
develop resistance against nitroimidazoles (35, 461). Point muta-
tions in Ddn may be able to prevent pretomanid activation with-
out inhibiting the protein’s native quinone reductase activity (30,
32). Likewise, loss of function of rv3547, fbiC, or fgd result in
cross-resistance to delamanid and pretomanid (458). In the clinic,
it was recently reported that an XRD-TB patient rapidly acquired
delamanid resistance through loss of function of the F420 system
(462). Interestingly, the original lead nitroimidazole compound
for combating M. tuberculosis, CGI-17341 (now abandoned due
to safety concerns) (463), depends on the presence of F420 but not
Ddn for antimicrobial activity (458). As CGI-17341 lacks the hy-
drophobic tail and phenyloxazole residues of delamanid and pre-
tomanid, it is likely to be activated by a wider range of FDORs
(458). It may therefore be possible to develop next-generation
nitroimidazoles that are broadly activated by FDORs and hence
will have more promising antimicrobial resistance profiles.

5.2. Methane Mitigation

Methane is the second most important anthropogenic greenhouse
gas and contributes to about 20% of total anthropogenic climate
forcing. Approximately 70% of methane emissions result from the
activity of methanogens, the abundance of which has increased as
a result of ruminant animal farming, rice paddy agriculture, and
solid and liquid waste production (464). As a dominant catabolic

cofactor in methanogens, as well as a central mediator in hydrog-
enotrophic, formatotrophic, and methylotrophic methanogen-
esis, F420 facilitates these emissions. One strategy targeted at re-
ducing methane emissions from ruminant animals and rice paddy
fields is to administer methanogen inhibitors (465–467). Eco-
nomical methanogenesis inhibitors may be particularly attractive
in livestock agriculture, as they may simultaneously reduce green-
house gas emissions while enhancing ruminant productivity
(468). Highlighting the potential in this area, a recent study dem-
onstrated that administration of the methyl-CoM reductase in-
hibitor 3-nitrooxypropanol to dairy cattle feed decreased methane
production and increased body weight gain (468, 469). Other
highly promising targets for methane mitigation include the F420

biosynthesis enzymes CofG/CofH and oxidoreductase Mer, given
their presence and predicted essentiality in all methanogens, in-
cluding obligately aceticlastic species (196). Given that these tar-
gets are absent from host cells and other ruminal microbiota
(where ANME are not competitive), specific inhibitors are likely
to have minimal off-target effects.

5.3. Bioremediation

Many F420H2-dependent reductases have broad substrate specific-
ity and can reductively degrade diverse xenobiotic compounds.
For example, mycobacterial flavin/deazaflavin oxidoreductases
can degrade coumarin derivatives (28, 55), while rhodococcal lu-
ciferase-like hydride transferases can reduce polynitroaromatic
compounds (438, 440). While the physiological advantage con-
ferred by this promiscuity has not been fully resolved, it does pro-
vide a basis for the exploitation of F420 in bioremediation applica-
tions (470). It may be possible to deploy F420-dependent
organisms to remediate lands and waters contaminated with tox-
ins and explosives. The most significant environmental contami-
nants that may be remediated through F420-dependent processes
are picrate, aflatoxins, and dyes such as malachite green (Fig. 21).

FIG 21 Chemical structures of xenobiotics reduced by actinobacterial F420H2-dependent reductases of the FDOR and LLHT superfamilies. The structures
shown are of carcinogenic aflatoxins (aflatoxin G1 [AFG1], AFG2, AFGB1, and AFGB2) (28), nitroaromatic explosives (picrate, 2,4-dinitrophenol, 2,4,6-
trinitrotoluene, and 2,4-dinitroanisole) (396), and the toxin malachite green (132).
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Among the most carcinogenic and hepatotoxic compounds
known, aflatoxins are a group of mycotoxins produced by Asper-
gillus flavus and Aspergillus parasiticus that contaminate crops in
tropical climates (471, 472). As coumarin derivatives, difurocou-
marocyclopentenones (aflatoxins B1 and B2) and difurocouma-
rolactones (aflatoxins G1 and G2) can be efficiently degraded by
mycobacterial F420H2-dependent reductases (28, 409). Rhodococ-
cus erythropolis and Nocardia corynebacterioides can also degrade
aflatoxin, possibly through using homologous enzymes (472–
474). Environmental mycobacteria are also capable of decoloriz-
ing and detoxifying malachite green in an F420-dependent manner
(132, 475); while once extensively used as an antiparasitic in aqua-
culture, this compound has since become regulated against due to
its toxicological properties (476).

Picrate and related nitroaromatic compounds are highly toxic
explosives that extensively contaminate soils in current and for-
mer explosive manufacturing, processing, and storage facilities
(477). Luciferase-like hydride transferases from certain actinomy-
cetes can initiate mineralization of such compounds (438, 440). In
the case of 2,4,6-trinitrotoluene (TNT), hydride transfer from
LLHTs lead to the formation of dead-end products that cannot be
further degraded (440, 441). However, multiple strains of Rhodo-
coccus, Nocardia, and Nocardioides can completely mineralize pi-
crate, 2,4-dinitrophenol (DNP), and 2,4-dinitroanisole (DNAP)
as the sole carbon and nitrogen sources (396, 397). Administra-
tion of such bacteria to nitroaromatic-contaminated sites may be
a cheaper and faster alternative to traditional physical remediation
methods (477, 478). Consistently, there are reports of Rhodococcus
sp. strain NJUST16 being used to biodegrade picrate from con-
taminated soils (437). As with bioremediation of aflatoxins and
malachite green, administration of live bacteria is a more promis-
ing option than cell-free enzymatic systems, because F420 must be
enzymatically reduced before it is utilized by F420H2-dependent
reductases.

5.4. Industrial Biocatalysis

F420 may also prove a useful addition to the toolboxes of synthetic
chemists. F420-dependent processes already provide essential steps
in some industrial processes, for example in the synthesis of some
of the oldest-known antibiotic classes (29, 381), and there is con-
siderable potential to expand the role of F420-dependent enzymes
as catalysts for synthetic chemistry. F420H2-dependent reductases
of the FDOR and LLHT superfamilies can catalyze the stereospe-
cific reduction of enones (28, 55, 291, 409) and imines (50, 388,
393) in diverse heterocycles. The broad substrate range of these
enzymes may be particularly useful for catalyzing hydride addi-
tion to nonnatural compounds in a potentially stereospecific
manner (479, 480). Such enzymes may be particularly useful in
whole-cell biosynthetic cascades if coexpressed with cofactor re-
cycling systems. A promising precedent in this regard is provided
by the use of old yellow enzymes (OYEs) for the asymmetric re-
duction of enone moieties in yeast and bacteria (481). OYEs are
mechanistically predisposed to trans-hydrogenation, whereby a
hydride is delivered to the substrate from the cofactor and a pro-
ton is delivered to the opposite face of the substrate from an active
site tyrosine (482). As F420H2-dependent reductases deliver hy-
drides from the cofactor, it is likely that they will provide access to
cis-hydrogenation of enones for biocatalytic processes (including
in vivo). Asymmetric imine reduction by enzymes is a promising
area for development (483), not least because of the prominence

of chiral amines in modern synthetic chemistry: �40% of phar-
maceuticals and �20% of agrochemicals contain at least one chi-
ral amine (484). However, the toolbox of enzymes available for
use in such applications is still small and incomplete; there are few
enzymes that will reduce a prochiral imine in a linear molecule, for
example (483). The capacity of F420-dependent enzymes to cata-
lyze such imine reductions has, as yet, been explored only super-
ficially (470).

A significant barrier to industrial application of F420-dependent
enzymes in biocatalytic applications is the commercial unavail-
ability of F420. While total chemical synthesis has been achieved
(485), the most efficient and affordable way to obtain the cofactor
is presently through extraction from F420 producers. Most labora-
tory-scale preparations of the cofactor currently rely on Mycobac-
terium smegmatis, a safe “fast”-growing aerobic bacterium that
synthesizes micromolar quantities of F420 during fermenter
growth (96). Bashiri et al. (486) were able to enhance F420 produc-
tion in this organism by overexpressing the fbiABC genes in trans
and inducing F420 production in a rich autoinduction medium.
F420 can subsequently be purified from lysed cells by anion-ex-
change chromatography, followed by hydrophobic-interaction
chromatography (96, 486). In the long-term, it would be prefera-
ble to metabolically engineer large-scale recombinant F420 pro-
duction in Escherichia coli; however, this depends on the identifi-
cation of the elusive enzyme responsible for production of
2-phospho-L-lactate (470). The capacity to produce F420 in heter-
ologous organisms that do not naturally produce or use the cofac-
tor also raises some interesting possibilities for synthetic biology.
“Exotic” cofactors may enable wholly orthogonal synthetic path-
ways for chemical production in an organism, essentially divorc-
ing the pathway from the central metabolic and regulatory back-
ground of the production organism.

6. CONCLUDING REMARKS

On first inspection, it seems surprising that 5-deazaflavins are in-
volved in such disparate processes; very little seems to unify
methanogenesis, tetracycline biosynthesis, and DNA photoreacti-
vation other than this class of compounds. Underlying the selec-
tion of 5-deazaflavins across biology, however, are the unique
properties conferred by the N-5 (flavin) to C-5 (deazaflavin) sub-
stitution. The photochemical properties of 5-deazaflavins are cru-
cial for the role of Fo in light capturing and FRET. The electro-
chemical properties of F420 place it at the center of methanogenic
redox metabolism and provide actinobacteria with a way of cata-
lyzing low-potential hydride transfer reactions in their primary
and secondary metabolism. The enzymes that synthesize 5-deaza-
flavins share conserved sequences and folds, suggesting that they
were either present in the last universal common ancestor or were
laterally transferred between archaea and bacteria. However, oxi-
doreductases appear to have evolved the capacity to utilize F420 on
multiple occasions from related nicotinamide- or flavin-depen-
dent proteins. Three types of F420-binding sites are nevertheless
conserved throughout biology, namely, those in FrhB-like, TIM
barrel, and split �-barrel folds. Many F420-dependent enzymes
have a modular nature—as particularly evident in Frh, Fpo, and
Fsr—suggesting that F420 is versatile enough to be accommodated
in a wide range of redox enzyme systems.

For the future, there are numerous opportunities to both ex-
plore and exploit F420. While we have a relatively rich understand-
ing of the physiology and biochemistry of F420 in methanogenesis,
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there are still conundrums to solve, for example in relation to the
structurally unresolved Ffd, Fpo, and Fsr enzymes. Our under-
standing of the roles of F420 in actinobacteria is much less sophis-
ticated, and there are multiple important questions to resolve. For
example, why is F420 required for mycobacterial persistence and
antibiotic resistance? Why do mycobacteria encode such a multi-
plicity of FDORs and LLHTs? What are the primary roles of F420 in
the metabolism of streptomycetes and rhodococci? Looking at the
bigger picture, it is still poorly understood how F420 biosynthesis
pathways have evolved and why F420 is distributed in relatively few
phyla. However, the finding that F420 is likely to be synthesized by
ANME, Chloroflexi, and Proteobacteria indicates that the cofactor
may be more important in oxic and anoxic communities than
previously anticipated. There is also an urgent need to understand
the role of F420 at the ecosystem level, particularly in relation to
how F420-dependent biodegradation processes influence the com-
munity structuring and chemical composition of soils. Fueled by
the recent approval of delamanid for treatment of multidrug-re-
sistant tuberculosis, there is also room to explore the application
of F420 for medical, environmental, and industrial purposes. Half
a century since their discovery by the Wolfe laboratory, 5-deazaf-
lavins continue to surprise biologists and chemists alike.
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