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Quantum versus simulated 
annealing in wireless interference 
network optimization
Chi Wang, Huo Chen & Edmond Jonckheere

Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems 
and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum 
tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable 
amount of effort has been devoted to detect and quantify quantum speedup. While the debate over 
speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, 
here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, 
the scheduling of the activation of the air-links for maximum throughput subject to interference 
avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a 
novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the 
occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major 
result of this paper is that quantum annealing benefits more than simulated annealing from this gap 
expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this 
could become a real-word application niche where potential benefits of quantum annealing could be 
objectively assessed.

Quantum Annealing
Quantum annealing is designed to mimic the process of simulated annealing1 as a generic way to efficiently get 
close-to-optimum solutions in many NP-hard optimization problems. Quantum annealing is believed to utilize 
quantum tunneling instead of thermal hopping to more efficiently search for the optimum solution in the Hilbert 
space of a quantum annealing device such as the D-Wave2,3. Since the introduction of D-Wave One in 2011, there 
has been a considerable amount of work done on its potential applications, e.g., protein folding4, determining 
Ramsey number5, Bayesian network structure learning6, operational planning7, power system fault detection8, 
graph isomorphism9, database optimization10, machine learning11, deep learning12, to name but a few. Note that 
of all the applications we are aware of, most were solved with small logical instance size due to hardware con-
straints and none of them demonstrated conclusive speedup compared to classical methods. In fact, benchmark-
ing quantum speedup is more subtle than it appears to be. There has recently been a lot of insightful work on 
such a challenging question13–15. One conclusive remark is that no evidence for a general speedup has been found 
thus far, but potential speedup might exist in certain problems or upon scaling. In this paper, we introduce a new 
breed of graph-theoretic applications motivated by the very problem that makes the design of optimal wireless 
network protocols outstanding from the computational viewpoint—the interference constraints—and we show 
that a gap expansion technique benefits quantum annealing much more than simulated annealing, indicating a 
way to obtain quantum speedup.

Quantum annealing is based on the premise that the minimum energy configuration of the Ising spin glass 
model encodes the solution to specific NP-hard problems, including all Karp’s 21 NP-complete problems16. Such 
problems are written in the form of Quadratic Unconstrained Binary Optimization (QUBO) problems,
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where xm ∈  {0, 1}, and cm, Jmn represent QUBO parameters. The latter has an equivalent Ising formulation
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where σj
z represents the z-Pauli operator of Ising spin j in the network, and hj and Jjk are local fields and coupling 

strengths, resp. The annealer initially prepares a initial transverse magnetic field, an equal superposition of 2N 
computational basis states, eigenspace of
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During the adiabatic continuation, the Hamiltonian evolves smoothly from Htrans to HIsing, that is,

= + ∈H t A t H B t H t T( ) ( ) ( ) , [0, ], (4)trans Ising

where A(·) decreases monotonically from 1 to 0 and B(·) increases monotonically from 0 to 1. From the adiabatic 
theorem, if the evolution is “slow enough”, the system would remain in its ground state. Thus, in principle, an 
optimal solution to the original problem could be obtained by measurements at final time17.

Network Scheduling Problem
One of the fundamental problems in multi-hop wireless networks is network scheduling. Signal-to- 
Interference-plus-Noise Ratio (SINR) has to be maintained above a certain threshold to ensure successful decod-
ing of information at the destination. For example, IEEE 802.11b requires a minimum SINR of 4 and 10 dB corre-
sponding to 11 and 1 Mbps channel, resp18. Consequently, only a subset of edges of the network can be activated 
within the same time slot, since every link transmission causes interference with nearby link transmissions.

Different networks and protocols use different interference models. The most commonly used model is the 
1-hop interference model (node exclusive model), in which every node can transmit or receive along only one 
activated link abutting that node in the same time slot. This is commonly used in Bluetooth and FH-CDMA19,20, 
while the 2-hop interference model is sometimes used in studies of IEEE 802.11 networks21, in which no two links 
within 2-hop distance can be simultaneously activated. Generally, K-hop is used with K representing arbitrary 
hop interference model. In some cross-layer optimization studies22, the optimal K is found to vary between 1 and 
3. In theory, protocol designers can set K to arbitrary value, as long as end-to-end delay, signal interference and 
computation cost reach a Pareto-optimal point.

There are two major methods for solving network interference: the first one is the graph based model that 
solves the Weighted Maximum Independence Set (WMIS) problem on a conflict graph23–27, the other optimizes 
a geometric-based SINR28–31. The former is sometimes argued as being an overly idealistic assumption; however, 
the WMIS problem is still involved in the latter model32 and is of interest in SA versus QA; thus we mainly con-
sider the former model for simplicity. Several general heuristics for the WMIS problem are well-studied, includ-
ing simulated annealing33, neural networks34–36, genetic algorithm37–39, greedy randomized genetic search40, Tabu 
search41–44. It is claimed that simulated annealing is superior to other competing methods with experimental 
instances of up to 70,000 nodes33.

To give formal definitions on a graph G =  (V, E), let wl∈E be the wireless networking link weights in a given 
time slot. (They are related to queue differential and somehow the most highly weighted links should receive 
priority activation if interference allows.) Let dS(x, y) denote the hop distance between x, y ∈  V. Consider edges  
eu, ev ∈  E and let ∂ eu =  {u1, u2}, ∂ ev =  {v1, v2}. We then define

=
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to be the distance between edges. Similar to the definition in the work of Sharma et al.22, a subset of edges E′  is 
said to be valid subject to the K-hop interference model if, for all e1, e2 ∈  E′  with e1 ≠  e2, we have d(e1, e2) ≥  K. Let 
SK denote the set of K-hop valid edge subsets (scheduling set). Then the network scheduling under the K-hop 
interference model is

∑ ′ ∈ .
∈ ′

w E Smaximize , subject to
(6)l E

l K

In the K =  1 case, the problem is a max-weight matching problem and thus has polynomial solution (Edmonds’ 
blossom algorithm45). However, for the case K >  1, the problem is proved to be NP-hard and non-approximable22. 
As already said, the network scheduling problem (6) has to be solved in every time slot; thus, the complexity of 
the exact scheduling problem becomes critical in time-sensitive applications.

Overview
We intend to design a quantum annealing scheduler to solve the WMIS problem and benchmark the results 
obtained by realistic network simulation against simulated annealing. The complete benchmarking is summa-
rized in the following steps.

Conflict Graph. The original scheduling problem on the original graph is reformulated as a QUBO problem 
(1) on a conflict graph: the nodes of the conflict graph are the edges of the original graph with weights wl (= cl in 
QUBO), while the edges of the conflict graph are pairs of edges of the original graph in scheduling conflict, as 
illustrated in Fig. 1, left. As such, subject to proper choice of the Jmn (details in supplemental material), the QUBO 
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problem (1) on the conflict graph, the WMIS problem, provides a solution to K-hop interference problem on the 
original graph (6).

Gap Expansion. In the WMIS problem, some βmn scaling of Jmn is introduced as shown in (7) to open up the 
gap of the Ising model, resulting in less scheduling violations, especially in the QA approach.

Embedding to Hardware. The QUBO problem has to be mapped to the Ising Hamiltonian via 
σ→ + ×x I( )/2i i

z
2 2 , with the constant energy shift ignored. We perform minor embedding into the D-Wave 

Chimera architecture, as illustrated in Fig. 1, right, or decide that it is not embeddable. This is discussed in more 
detail in the supplemental material. Figure 1 gives a simple numerical example of how a network is mapped to 
D-Wave architecture.

Measurement and Post-processing. We perform the annealing run a certain number of times on 
D-Wave, find the lowest energy configuration, and use such configuration as scheduling solution. Some com-
monly used algorithm techniques in adiabatic quantum computation, such as gauge transformation and majority 
vote on possible broken chains are not performed. See the work of King et al.46 for more discussion.

Results
In theory and practice, SA is regarded as a strong competitor of QA and their performances are often contrasted 
in the literature13–15. On the other hand, it is known that SA can also boost the overall performance of classical 
heuristic algorithms in solving WMIS problems33. Thus, it is worth comparing our QA results with the perfor-
mance of the SA algorithm. Comparison metrics are defined later in this section. We use the gap expansion pro-
cess on the quantum scheduler, defined in detail in the following section, and observe that the quantum scheduler 
takes better advantage of this gap expansion technique than SA.

Table 1 shows the parameters of the 2 random graphs (15 and 20 nodes) being tested on D-Wave installed at 
Information Sciences Institute of University of Southern California (USC). The “problem size” n is the number 
of nodes of the wireless network, the “QUBO size” is |E| and thus generally scales as O(n2), where E and n are 
the edge set and order of the problem graph, resp. The “Physical Qubits” is the number of nodes N after minor 

Figure 1. An example of conflict graph conversion, QUBO generation, and minor-embedding to Chimera 
architecture. The conflict graph is generated based on the 1-hop interference model. Only 4 cells of K4,4 
structure of the Chimera architecture are shown. On D-Wave Two platform, 64 such cells are available, giving 
512 available physical qubits. Quantum annealing is performed on such architecture to theoretically give 
the ground state of the configuration, and thus the network scheduling solution to the original problem. The 
numerical data shows the conflict graph weight structure Gqubo and how it is mapped to the Ising Hamiltonian 
characterized by hIsing and JIsing. The off-diagonal entries of Gqubo are chosen as 0.1 larger than the minimum of 
the weights of the two corresponding vertices of the conflict graph.
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embedding in the D-Wave architecture. After minor-embedding in the case of the 20-node network, a signifi-
cantly large proportion of all available qubits are utilized (405 out of 502).

Simulated Annealing Setup. Here, we adapted a highly optimized simulated annealing algorithm (an_ss_
ge_fi_vdeg)47, compiling the C+ +  source code with gcc 4.8.4 with MATLAB C-mex API. Additionally, a wide 
range of parameters were tested to ensure near optimal performance of the algorithm within a reasonable run 
time (see supplemental material). All the non-time-critical tests in this section were ran on the servers of the USC 
Center for High-Performance Computing (HPC).

Quality metrics. We compare the performance of QA and SA based on three quantitative metrics: average 
network delay, throughput optimality, and ST99. The first metric reflects the actual network performance; the 
latter two metrics reflect the accuracy and speed of QA and SA compared to exact solvers (see supplemental 
material for formal definitions.)

Average network delay. We use an optimized wireless network protocol in our experiment (see supplemental 
material for protocol definitions). In Fig. 2, we show that, after gap expansion, the overall performance signifi-
cantly improves. As one would expect, the network delay is also improved and gets closer to the exact classical 
solution. It is a rather delicate issue as how to deal with non-independent solutions returned by D-Wave. In the 
experiment, we skip the time slot transmission if the lowest energy solution does not conform to the K-hop 
interference model. Sometimes, it makes sense to perform a polynomial greedy style matching when the returned 
result is non-independent, in which case the problem is more error-insensitive and thus more scalable. Here we 
consider the worst case scenario, that is, no transmission is allowed if the result is non-independent.

Throughput optimality and ST99[OPT]. Based on our previous assumption, it is of vital importance that the 
solutions given by the solver satisfy the independence constraint. Here we use the optimality measure Fquantum as 
defined in section 5.2 of supplemental material. Briefly, if there are no violations, such measure reaches 1 if the 
solution is exactly optimal, and less than 1 if suboptimal. If there are violations, >F 1quantum  if those solutions 
improve the throughput and <F 1quantum  if the violations do not even improve the throughput. In Fig. 3, we 
investigate the distribution of the optimality factors among all 120 time slots of Graph 2 (the harder graph). All 
the violations are counted inside red bars. Comparing (a) and (c) of Fig. 3 and (b) with (d) of Fig. 3, we can see 
that energy compression as shown in Fig. 2 results in substantially less violations of the independence constraint, 
and that this reduction is more pronounced in the QA case than in the SA case. This could explain the huge per-
formance improvement before and after gap expansion in Fig. 2. The test results of SA under a particular set of 
parameters are shown in (c) and (d) of Fig. 3 The ranges of our tested parameters are listed in the supplemental 
material. It is worth making the following observations:

1. QA benefits more from the gap expansion compared to SA.
2. SA either finds the very optimal ground state or gets trapped in very ‘deep’ local minima.

Problem Size QUBO Size Physical Qubits

Graph1 15 31 164

Graph2 20 57 405

Table 1.  Problem size of random graphs used in experiment. The third column represents the actual physical 
qubits used after minor embedding.

Figure 2. Network delay of classical exact algorithm, quantum annealing, quantum annealing after gap 
expansion, and simulated annealing are plotted versus time slot for two randomly generated networks. The 
left one is a simpler case with 15 nodes and 31 edges where quantum annealing reaches almost as good a result 
as the exact solution in terms of network delay; the right one is a harder case with 20 nodes and 57 edges in total.
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There is still a relatively large number of violations in the returned results of SA even after gap expansion. This 
is in agreement with our previous knowledge about SA in that it is designed to find the ground state and it is not 
optimized to search for sub-optimal results. In addition, Table 2 shows the exact numbers related to the perfor-
mances of SA and QA after gap expansion.

From the optimality data returned by D-Wave, we can plot ST99 related to the level of optimality as shown in 
Fig. 4. Note that our ST99 definition (see supplemental material) relies on optimality level, which could typically 
be 80% or 90% depending on user needs.

In Table 3, we show how setting the penalty weight β of the gap expansion consistently with the local or global 
approach would affect the quality of the returned solution. We found that setting βglobal =  1 would yield the best 
performance so far. We do not have a quantitative explanation for the wrong solutions; potential explanations on 
small problems have been discussed in refs 13–15. Intuitively, as the problem size grows, it is much more difficult 
even to find close to ground states; indeed, as the penalty weight grows too large, the local fields begin to vanish, 
thus making the problem effectively more difficult since all weights have to be scaled to [− 2, + 2]. The problem 
of quantitative connection among quality measure, network stability, and throughput optimality remains open.

Figure 3. Number of violation (red) and nonviolation (blue) cases versus throughput optimality measure 
on test graph 2 (the harder instance). D-Wave simulation runs are shown in (a,b). SA simulation runs shown 
in (c,d) are executed under the one set of optimal parameters we have tested (5000 sweeps, 5000 repetitions, 
linear schedule with initial temperature β0 =  0.1 and final temperature β1 =  10). Note that the abscissa of the 
blue vertical bars register Fquantum whereas the abscissa of the red vertical bars registers Fquantum as defined in 
supplemental material. (a) D-Wave: Before gap expansion; (b) D-wave: After gap expansion; (c) Simulated 
Annealing: Before gap expansion; (d) Simulated Annealing: After gap expansion.

Number of violations 
(out of 120)

Average optimality  
(without violations)

Quantum Annealing 13 0.8129

Simulated Annealing 31 0.9935

Table 2.  Performances After Gap Expansion.
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Methods
Gap Expansion. We try to make the problem insensitive to quantum annealing errors by properly setting 
the hi and Jij terms in Eq. (2) in order to expand the final energy gap. Note that this gap is the energy gap between 
the eigenvalues of the Ising form at the end of the adiabatic evolution, not to be confused with the gap between 
ground and first excited states during the evolution. We introduce a scaling factor βmn that multiplies the quad-
ratic part of the QUBO formulation and as such scales the various terms so as to put more penalty weight on the 
independence constraints:

∑ ∑ β… = − +
∈ ∈

f x x c x J x x( , , ) ,
(7)
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where VE and EC denote the vertex set and edge set, resp., of the conflict graph and βmn is chosen uniform. In 
theory, βmn =  1 would suffice as long as Jmn >  min(cm, cn), as the ground state has already encoded the correct 
solution of the WMIS problem48. However, since measuring the ground state correctly is not guaranteed, 
increasing βmn becomes necessary to enforce the independence constraints, so that the energy spectrum of 
the non-independence states is raised to the upper energy spectrum and the feasible energy states are com-
pressed to the lower spectrum. Figure 5 illustrates the effect of the feasible energy compression on a small 
random graph.

A natural question regarding β would be, How large is large enough? The problem is, interestingly, another 
optimization problem itself. The D-Wave V7 is subject to an Internal Control Error (ICE) that gives Gaussian 
errors with standard deviations σh ≈  0.05 and σJ ≈  0.03546. Putting too large a βmn penalty would incur two prob-
lems: 1) The local fields would become indistinguishable and 2) The minimum evolution gap would become too 
small. Accordingly, a few parameter values have been tried out and the results are shown in Table 3, which corrob-
orates the experimental results of the previous section indicating that gap expansion would significantly influence 
the optimality of the returned solution.

There exist several strategies in setting heavier penalty weights to expand the gap. We compare two different 
approaches to set the penalty weights:

Figure 4. ST99, defined as − .
− P

log(1 0 99)
log(1 )OPT

, versus required optimality level OPT specified by network, before 
and after gap expansion on Graph 1 and Graph 2 (the harder instance). Note that the probability is calculated 
based on all solutions returned by D-Wave; thus, an ST99 of 103 corresponds to one set of annealing runs, which 
in our case costs 20 ms (1000 annealing runs with 20 μs for each run). Curve for Graph 2 before gap expansion 
ends at 0.9 optimality level, because there are no solutions that satisfy such optimality level after a total of 
120,000 annealing runs.

Avg. Optimality - G1 Delay - G1 Avg. Optimality - G2 Delay - G2

βmn =  1 +  ε 0.781 384.9 0.077 NC

βmn =  2 0.928 376.3 0.312 1213

βglobal =  1 0.974 268 0.741 566.1

βglobal =  1.5 −0.165 NC − 0.331 NC

βglobal =  2 − 0.185 NC − 0.356 NC

Table 3.  Penalty weight with different β setup and resulting quality measure of returned solution 
averaged over 120 time slots. Graph 2 is a larger size instance than Graph 1. Delay refers to average network 
delay in steady state, and NC refers to the non-convergent case where steady state is not reached within 
tested time span.
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In the local adjustment48, the constraint on Jmn depends only on the fields at ∂ mn, whereas in the global adjst-
ment, contrary to48, Jmn depends on all fields.

Discussion
We have presented the first experimental D-Wave application of network scheduling—a problem widely inves-
tigated in the field of wireless networking understood in the classical sense. The problem is reduced to a WMIS 
problem, itself reformulated in the form of the minimum energy level of an Ising Hamiltonian, itself mapped 
to the Chimera architecture by utilizing a differential geometrical approach49 that immediately rules out cases 
where minor-embedding is impossible. We increased the success rate of the quantum annealer and the simulated 
annealer to return non-violation solutions by classically increasing the energy gap, so that the range of acceptable 
solutions is greatly increased.

By comparing QA with SA, though omitting Quantum Monte Carlo (QMC), we found a potential compari-
son point where QA outperforms SA in the sense of benefit from gap expansion as seen in Fig. 3. Gap expansion 
reduces by 89% the number of violation cases for QA, while it only reduces by 67.5% the number of violation 
cases for SA. Although, as seen from Table 2, SA has an optimality advantage in non-violation cases, it is how-
ever interesting to observe that among suboptimal solution cases QA has less violations than SA. By deliberately 
constructing cases suitable for suboptimal solutions, one could potentially demonstrate a quantum advantage in 
terms of less violations.

As far as speed is concerned, we noted that on Graph 2, and disregarding all overhead, the 1,000 runs of QA 
took a total of 1000 ×  20 μsec =  20 msec on D-Wave II to render the solution utilized in the performance analysis. 
On SA on the other hand, 5,000 runs, totaling 1 minute in the adopted simulation environment, were needed to 
get solutions comparable with those of QA. This comparison might however be misleading as there is room for 
considerable speed up of SA on specialized architecture. It is also argued14,15 that even 20 μs might be too large for 
particular problems; however, this is the minimum programmable annealing time on D-Wave platform.

Despite encouraging results, due to the very limited experimental data, we cannot positively assert a general 
sizable advantage of quantum annealing against simulated annealing. However, we plan to generalize this poten-
tial advantage in the future by utilizing a broader class of graphs and the 1152-qubit chip. It is hoped that this 
could help resolve the speedup issue13–15.

The classical wireless protocols (Backpressure, Dirichlet and Heat Diffusion, see supplemental material for 
protocol definition) return solutions with the interference constraints always satisfied—so that there is forward-
ing at every time slot. Here, the QA and SA interference problem solvers allow solutions that violate the inter-
ference constraints in the interest of speed. Unfortunately, should an interference constraint be violated even at 
a remote corner of the network, our simulation stops the transmission, so that the Dirichlet protocol as it now 
stands cannot take advantage of the proposed algorithm speedup. As to whether the Dirichlet protocol could be 
tweaked to take advantage of the faster QA solution to the interference problem is widely open.

Figure 5. Hamiltonian energy level evolution with H(s) = (1 − s)Htrans + sHIsing, demonstrating the 
feasibility of energy compression on a small, randomly generated test wireless graph with 7 nodes on the 
conflict graph, plotting all 128 possible energy states in both before and after gap expansion cases. Both 
Hamiltonians are rescaled to have a maximum energy level of 2 for both coupling strengths and local fields. 
Note that for a typical desktop computer, such plots are impossible to construct once the size of the conflict 
graph goes higher than 12.
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