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Abstract

Background—Blood pressure (BP) has been shown to be substantially heritable, yet identified 

genetic variants explain only a small fraction of the heritability. Gene-smoking interactions have 

detected novel BP loci in cross-sectional family data. Longitudinal family data are available and 

have additional promise to identify BP loci. However, this type of data presents unique analysis 

challenges. Although several methods for analyzing longitudinal family data are available, which 

method is the most appropriate and under what conditions has not been fully studied.

Methods—Using data from three clinic visits from the Framingham Heart Study, we performed 

association analysis accounting for gene-smoking interactions in BP at 31,203 markers on 

chromosome 22. We evaluated three different modeling frameworks: generalized estimating 

equations, hierarchical linear modeling, and pedigree-based mixed modeling.

Results—The three models performed somewhat comparably, with multiple overlaps in the most 

strongly associated loci from each model. Loci with the greatest significance were more strongly 

supported in the longitudinal analyses than in any of the component single-visit analyses. The 

pedigree-based mixed model was more conservative, with less inflation in the variant main effect 

and greater deflation in the gene-smoking interactions. The generalized estimating equations, but 

not the other two models, resulted in substantial inflation in the tail of the distribution when 

variants with minor allele frequency < 1% were included in the analysis.

Discussion—The choice of analysis method should depend on the model and the structure and 

complexity of the familial and longitudinal data.
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INTRODUCTION

Elevated blood pressure (BP) increases risk for cardiovascular disease and is the leading 

cause of global health burden [Lim, et al. 2012]. However, despite an estimated heritability 

of 30%, less than 3% of BP variation has been attributed to particular genetic variants [Ehret 

2010]. Gene-environment interactions have been suggested as one source of the genetic 

contribution to BP variability [Manolio, et al. 2009], and BP-associated factors such as age 

[Shi, et al. 2009a], sex [Ramirez-Lorca, et al. 2007], and alcohol [Simino, et al. 2013] have 

been investigated for potential interactions with genes affecting blood pressure.

For studying gene-environment interactions, longitudinal family studies have desirable 

properties by combining the features of repeated measures and family studies. A 

conventional longitudinal study involves the repeated evaluation of one or more measurable 

traits in a series of unrelated individuals. The repeated measurements help reduce error, 

increase statistical power, and provide a means to study the pattern and determinants of 

systematic changes in a phenotype of interest over time. In contrast, a cross-sectional family 

study utilizes phenotypic similarities and differences amongst close relatives to disentangle 

the genetic and environmental contributions to the trait under study [Khoury and James 

1993]. A longitudinal family study further increases the power to resolve the genetic and 

environmental determinants of traits associated with complex diseases and also to study the 

corresponding determinants of change in such traits over time [Burton, et al. 2005].

However, analysis of longitudinal phenotypes in family data is much more challenging due 

to two sources of dependence among their observations: familial relatedness across subjects 

and the longitudinal correlation across visits within a single subject. Several software 

packages readily handle either one of these sources of correlation, allowing the use of a 

variety of covariance structures to model their form. However, for analysis of longitudinal 

family data with both familial and longitudinal correlations, most software does not allow 

for the fully flexible modeling of both covariance structures. There are three R software 

packages implementing the three approaches: geepack [Halekoh, et al. 2006] implementing 

generalized estimating equations, nlme [Pinheiro J 2015] implementing hierarchical linear 

modeling, and pedigremm [Vazquez, et al. 2010] implementing pedigree-based mixed 

modeling. Some packages including pedigreemm can facilitate modeling familial covariance 

using the kinship matrix, and other packages including nlme have highly structured 

covariance structures implemented for the longitudinal component (such as an auto-

regressive structure). To our knowledge, no currently-available software does both.

In the present study, we evaluated three analysis options for the longitudinal family data 

while considering gene-smoking interactions for association with BP using data in the 

Framingham Heart Study (FHS). Cigarette smoking is a risk factor for cardiovascular 

disease [Lubrano and Balzan 2015] with complex effects on BP, including increased BP 

from acute exposure and decreased BP from longer-term exposure [Green, et al. 1986]. We 

recently investigated interactions between genes and cigarette smoking for association with 

BP using a cross-sectional data from FHS [Sung, et al. 2014]. FHS is a longitudinal study 

from 1948, constituting a seminal contribution to the field and a heavily documented 

population. Analysis of longitudinal data for gene-smoking interactions may provide greater 
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power than cross-sectional analysis by taking advantage of the greater number of 

observations and strength of longitudinal trends. We focused our analysis at 31,203 SNPs on 

chromosome 22 based on our findings with a cross-sectional subset of data from FHS study 

[Sung, et al. 2014]. We evaluated several issues including the extent to which results show 

agreement, control over type I error, sensitivity to low minor allele frequencies, and utility 

relative to cross-sectional analysis.

METHODS

Subjects

These analyses were based on Framingham SNP Health Association Resource (SHARe) 

data released in 2005 from the database of Genotypes and Phenotypes (dbGaP; http://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000342.v12.p9). The 

Framingham Heart Study is a longitudinal study founded in 1948 with the recruitment of the 

first of three cohorts (the ‘Original’ cohort). The Original cohort returned for follow-up 

visits every 4 to 8 years, accumulating over 30 clinic visits. In 1971, the offspring, spouses, 

and children of the Original cohort were enrolled (‘Offspring’ cohort) and this cohort 

completed 7 clinic visits through 2005. The ‘Third Generation’ cohort, consisting of the 

biological and adopted offspring of the Offspring cohort, was recruited in 2002 and 

completed its first visit in 2005.

Table I shows the sample size by cohort and visit. All 7 visits of the Offspring cohort are 

shown, along with the single Third Generation visit, whose average visit date best matches 

Offspring visit 7, and the 7 Original cohort visits whose average visit date most closely 

matches each of the 7 Offspring visits. For the current study we analyzed data from visits 1, 

4, and 7 for computational ease as these had the largest sample size and span the length of 

time for which data on multiple cohorts was available. All analyzed subjects had complete 

genotyped and imputed SNP data for chromosome 22 and systolic blood pressure (SBP), 

cigarettes per day (CPD), age, sex, and use of anti-hypertension medication. Descriptive 

statistics for the sample are shown for each of the three analyzed visits in Table II.

Most cross-sectional data analysis for longitudinal data often chooses a single visit with the 

largest sample size. For this reason, we particularly included visit 7 in our longitudinal 

analysis. Although age and the proportion of medication users usually increase with visits in 

most longitudinal studies, our data in visit 7 have somewhat lower ages and a smaller 

proportion of medication users than data in visit 4. This is because the Third Generation, a 

younger generation, only participated in visit 7.

The combination of cohorts does raise complications in the structure of the population and 

in the appropriate terminology (e.g. ‘longitudinal’ vs ‘cross-sectional’). Even in a fully 

‘rectangular’ dataset (most subjects measured at all visits, missing data distributed 

randomly) the presence of some subjects missing observations such that they were only 

measured once would not invalidate that label ‘longitudinal’ for the study as a whole. In this 

case the ‘missing’ data are for the most part distributed non-randomly (by cohort). We 

wanted to explore the extent to which a longitudinal analysis of this Framingham Heart 
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Study data, which constitutes a seminal contribution to the field and a heavily documented 

population, would be possible with various methodologies in spite of this complication.

Phenotypes and Genotypes

Three SBP readings (one taken by a nurse/technician and two by a physician) were averaged 

for the analysis. Although efficacy of anti-hypertensive medication is not the same, detailed 

data on the number and kinds of medications was not available for large numbers of the 

subjects to allow this type of analysis. It’s also worth noting that often times subjects are 

given a 2nd (or 3rd) class of anti-hypertensive medication specifically because the 1st class 

had a weak (or no) effect, and as such the relationship between the degree of blood pressure 

reduction and the number of medications taken is not straight-forward or linear. Following a 

standard medication adjustment for blood pressure, the SBP value was adjusted for subjects 

taking anti-hypertension medication by adding 15 mm Hg.

As the measure of smoking we used cigarettes per day (CPD), the number of cigarettes that 

the subject smoked on average per day if he/she smoked at the time of each visit. Pack-years 

is another smoking measure, the average number of packs smoked per day times the total 

number of years a subject smoked during his/her lifetime. The CPD reflects the rate/

intensity of smoking, whereas the pack-years information represents the total volume of 

smoking in one’s life (up to that time), which therefore is a function of one’s age. Pack-years 

information may be preferred for analysis of other traits, for example, cancer risk, which 

accumulates with continued smoking and does not decrease after cessation. However, we 

chose CPD for our analysis of blood pressure because the effects of smoking on blood 

pressure are relatively short-lived, largely disappearing within a year of smoking cessation. 

We used zero value of CPD for former smokers based on our understanding of the 

underlying physiology.

Framingham Heart Study participants were genotyped using the GeneChip Human Mapping 

500K Array Set (Affymetrix, Santa Clara, CA) which assays 487,988 SNPs; an additional 

2.5 million SNPs were imputed based on HapMap using MACH [Li, et al. 2010]. SNPs with 

fewer than 2 minor alleles or poor imputation quality (r2 > 0.3) were removed from the 

analysis. We focus our analysis on chromosome 22 because an association between BP and a 

region on chromosome 22 was detected in a previous analysis including gene-smoking 

interactions in a cross-sectional subset of these data [Sung, et al. 2014]. This resulted in 

31,203 imputed SNPs.

Analysis

Three modeling frameworks were implemented in R packages available on the 

Comprehensive R Archive Network (CRAN): generalized estimating equations (GEE) in 

geepack [Halekoh, et al. 2006], a hierarchical linear model (HLM) in nlme [Pinheiro J 

2015], and a pedigree-based mixed model implemented in pedigreemm (pedMM) [Vazquez, 

et al. 2010]. Each approach used the same set of predictors but differed in their modeling of 

the covariance structure across visits within individuals and across individuals within 

families. The basic model included a SNP-CPD interaction term as well as age and sex as 

covariates:
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Although body mass index (BMI) is a well-known risk factor, we elected not to include BMI 

as a covariate. The choice of whether to include BMI as a covariate in a genetic analysis of 

blood pressure is not straight-forward. This is because, unlike the covariates age and sex, 

BMI itself has a genetic component, and adjusting for BMI will likely have the effect of 

eliminating or substantially diminishing the effects of variants whose mechanism of 

influence on blood pressure is via an influence on BMI. As our model also includes cigarette 

smoking, which has a complicated effect on blood pressure that includes an effect on BMI as 

one of its mechanisms, genetic variants acting on blood pressure through BMI were of 

particular interest in these analyses. Therefore, while we sacrificed some power for variants 

NOT acting through BMI, we chose not to include BMI in the baseline analysis.

To compare three modeling frameworks, we performed three tests. First, we tested the 

genetic main effect in the presence of SNP-CPD interaction effect by using Wald test 

statistic that follows a chi-squared distribution with 1 degrees of freedom (df) under the H0: 

β4=0. Second, we performed the standard approach to identify SNP-CPD interactions by 

using the Wald test statistic that follows a chi-squared distribution with 1 df under the H0: 

β5=0 (i.e., testing for the interaction effect in the presence of the genetic main effect). 

Finally, we performed the 2df test that jointly tests the genetic main and SNP-CPD 

interaction effects [Kraft, et al. 2007]. In particular, we used a Wald test statistic that follows 

a chi-squared distribution with 2 df under the H0: β4=β5=0. This Wald test statistic is based 

on estimates of β4 and β5 and their corresponding 2×2 covariance matrix.

The GEE approach treated each family as an independent cluster, using an ‘exchangeable’ 

(or compound symmetric) working correlation to model the covariance between all 

observations from any subject and any visit within the family. The other two models each 

treat the longitudinal and family correlations separately. The HLM model used compound 

symmetry for the covariance among family members, while the covariance across visits 

within a single subject was modeled with a first order auto-regressive (AR1) structure 

(implying a decaying correlation as the time between visits increases). The pedMM model 

incorporated a fully-specified kinship matrix for the covariance across family members, and 

used compound symmetry to model the covariance across visits within subjects. All 

participants in the Framingham Heart Study population were used to build the kinship 

coefficient matrix. These models are referred to as GEE-CS, HLM-AR1, and pedMM-CS, 

respectively.

In addition to these three primary models, three other analyses were performed. These 

included two analyses, one with HLM and one with pedMM, using no modeling of the 

longitudinal correlation (i.e. across visits within subjects). These models retained their 

treatment of the familial correlation (compound symmetry and kinship, respectively) for 

these analyses and are referred to as HLM-NoLong and pedMM-NoLong. Finally, an 

additional analysis used the HLM approach and modeled the correlation across visits using 

an auto-regressive moving average (ARMA) structure; it is referred to as HLM-ARMA. The 
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covariance structures employed for both the familial and longitudinal components of each of 

the six analyses are summarized in table III.

RESULTS

For each of the six analyses, table IV shows the genomic inflation factor λ for the SNP main 

effect, 1df SNP-CPD interaction, and 2df joint test of the SNP main effect and SNP-CPD 

interactions. QQ plots for the three primary analyses are shown in Figure 1. All three 

analyses show substantial inflation in the SNP main effect (λSNP 1.17–1.28) and deflation in 

the SNP-CPD interaction (λSNP-CPD 0.87–0.98).

Figure 2 shows the Manhattan plots for SNPs with MAF > 1% for the three primary 

analyses and for the SNP main effect, 1df interaction test and 2df joint test. Table V 

summarizes the strongest association signals. No loci showed significant (p<1.7e-6) results 

in any model with any test. Several suggestive (p<1.7e-5) associations were found in 2df and 

main effect tests in the HLM-AR1 and GEE-CS models; the number of loci implicated by 

these associations are shown in Table VI. The GEE-CS model showed a suggestive 2df 

association in a PARVB intron which appears to be driven by main effects, and a second 

suggestive 2df association in a FAM227A intron which is driven primarily by the 1df SNP-

CPD interaction (p=1.27e-4). In addition to the PARVB locus, the GEE-CS model also 

detected 3 other suggestive main effects: in FAM19A5, DERL3, SLC35E4. The HLM-AR1 

model detected a subset of these suggestive loci: the 2df association with PARVB and the 

main effects in PARVB, FAM19A5 and DERL.

The pedMM-CS analysis did not detect any suggestive or significant associations. However, 

pedMM-CS provided the strongest support for two other main effect loci, one in a 

GRAMD4 intron (p=2.6e-5) and one near BRD1 (p=4.3e-5), which also received modest 

support from the HLM-AR1 (p=8.2e-5 and p=5.0e-5) and GEE-CS (p=4.2e-5 and p=6.6e-5). 

The pedMM-CS main effects also lent additional support (p<1e-4) to the PARVB and 

FAM19A5 loci.

Figure 3 shows the p-value comparisons for each test and model for all SNPs with MAF 

greater than 1% in the top row and for all SNPs with MAF less than 1% in the bottom row. 

Approximately one dozen rare and low frequency variants gave rise to strong interaction 

signals (both 1df and 2df) in the GEE analysis but not in the HLM or pedMM analyses. 

Inclusion of rare and low frequency variants did not give rise to apparent inflation of SNP 

main effects for any analysis.

The QQ plots in Figure 4 compare the HLM model with AR1 longitudinal covariance 

structure to the HLM model assuming independence among the visits (HLM-AR1 vs HLM-

NoLong). The independence model is dramatically inflated relative to the AR1 model for the 

SNP main effect and both 1df and 2df joint tests of the SNP-CPD interaction (Table IV). 

Comparison of the HLM-AR1 model with an HLM model using the ARMA covariance 

structure to model longitudinal correlations revealed minimal differences in the resulting p-

values (supplemental Figure 1). As the AR1 structure is more parsimonious, using one 

parameter instead of the two used by ARMA, we focus here on the HLM-AR1 model.
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DISCUSSION

These analyses were motivated by the desire to leverage longitudinal data to detect BP loci 

missed by single visit analyses, as predicted in simulations [Shi, et al. 2009b]. Suggestive 

evidence in the longitudinal data was found by more than one model for several loci lacking 

evidence of association from single-visit analyses. At the FAM227A locus, for example, 

rs9619089 was implicated by the 2df joint test in the GEE-CS model at p = 5.47e-6 (and 

supported by the HLM-AR1 and pedMM-CS models at p = 2.74e-4 and 6.93e-5, 

respectively, Table IV) but gave rise to a 2df p-value of 2.69e-1, 7.88e-3, and 3.18e-4 for the 

GEE-based analyses run separately on visits 1, 4, and 7, respectively. Similarly, the 2df 

interaction involving rs2267606 at the PARVB locus was associated at 8.57e-6 in the GEE-

CS model (8.91e-6 from HLM-AR1 and 2.24e-4 from pedMM-CS) but the single visit HLM 

2df p-values were 2.69e-1, 7.88e-3, and 3.18e-4 for analysis of visits 1, 4, and 7, 

respectively. These results demonstrate the additional contributions longitudinal data can 

make relative to cross-sectional data. To effectively make use of these data, it was important 

to model the repeated measures as correlated. We note that the results from the GEE-CS 

model at the two loci may be due to incorrect covariance structure, leading to inflation of 

type I error. Figure 4 shows QQ plots contrasting the HLM-AR1 model (which assumes that 

the correlation between clinic visits decreases over time) with the HLM-NoLong model 

(which assumes no correlation between the visits). The SNP main effect and both 1df and 

2df interaction tests were all dramatically inflated in the NoLong model relative to the AR1 

model.

Although the three models differ substantially in their handling of familial and longitudinal 

correlations, their overall results are quite comparable, with similar patterns of inflation 

(Figure 1) and highly correlated p-values (Figure 3) for the main effect and both interaction 

tests. There was also considerable overlap among the most strongly associated loci (Figure 

2, Table V). In general, pedMM-CS was the most conservative model, which in the present 

analysis most likely reflects relatively less inflation for SNP main effects and the 2df 

interaction test as well as some deflation for the 1df interaction test. The other major 

distinction apparent in these results is in the handling of low frequency SNPs (those with 

MAF less than 1%). The HLM-AR1 and pedMM-CS models show strong agreement for 

these SNPs, with p-value correlations across all three tests greater than 0.8. The GEE-CS 

model, however, shows strong 1df and 2df interaction signals for a number of rare SNPs that 

are not supported by the other two models, resulting in much lower correlations with those 

models (Figure 3). Given the agreement between the other two models and the fact that 

GEEs have previously been shown to have convergence problems and increased type I error 

for low frequency variants in other contexts [Chen, et al. 2011], we interpret these results to 

reflect increased type I error rather than increased power. Although the FHS includes a small 

subset of non-European subjects, our analysis restricted to subjects with European ancestry. 

We performed main-effect only analysis for the data, confirming the absence of population 

stratification.

The power gained relative to single visit analyses and the convergent results across modeling 

frameworks support the use of longitudinal family data for gene discovery. To choose from 

among the available approaches, the investigator must weigh the complexity of the family 
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structures against the complexity of the repeated measures. Large multi-generational 

families will include a wide variety of relationships ranging from no correlation (mother-

father) to high correlation (parent-child, sibling-sibling). Assuming a single covariance 

across all intra-family pairs of subjects (as the HLM and GEE models do) may introduce 

substantial familial mis-specification, and the pedMM model, which instead uses the kinship 

matrix to model familial covariance, may be more suitable. Some studies, however, have a 

more uniform set of relationships within their families, such as those designed around first 

degree relatives. The single covariance assumed by the HLM and GEE models may be 

adequate in such cases, and the use of the HLM model allows for a more finely structured 

specification of the longitudinal correlations. Similarly, a finely specified longitudinal 

covariance matrix may not be necessary for studies with just a few closely spaced visits, for 

which a single longitudinal covariance term (as is used by pedMM) may fit the data well. If 

there are numerous widely spaced visits in a study, however, the correlation between any two 

observations may depend on the distance between them and it may be necessary to use a 

structured covariance matrix (such as AR1) rather than assume a single constant correlation.

The GEE approach has been useful and will continue to do so, as it provides robust standard 

errors to protect against mis-specification of the mean model [Tchetgen Tchetgen and Kraft 

2011; Voorman, et al. 2011]. For analysis of longitudinal family data, the GEE approach 

treats each family as a cluster and all pairs of observations across family members and visits 

as equally correlated. Because of this, the GEE approach provided different results from two 

other model-based approaches that we evaluated. This approach may be most suitable when 

both the familial and longitudinal complexity is low. For studies such as FHS with a high 

degree of complexity in both the families and the repeated measures, no existing software 

allows the finely structured modeling of both sources of dependence. Although this 

limitation may contribute to the inflation observed in the SNP main effect in all three 

models, concordance of results across these models suggests that it is not a fatal flaw. The 

increased association signal observed relative to single visit analyses supports the need to 

develop analysis methods for longitudinal family data.

Limitations

FHS has large, multi-generational families and numerous widely separated visits, both of 

which reduce the suitability of the compound symmetric covariance structures implemented 

in the three modeling frameworks discussed. The results reported here may therefore have 

limited generalizability to other study designs with smaller families or fewer, more closely 

spaced measurements. These analyses only include subjects of European ancestry, also 

potentially limiting the applicability of these results to other racial and ethnic groups. The 

smoking trait (cigarettes per day) was based on self-reports spanning more than 30 years; the 

impact of social desirability bias on self-reported data may have changed as attitudes 

regarding smoking have evolved over that period.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table II

Study Sample Descriptive Statistics

Visit 1 Visit 4 Visit 7

Sample Size 4,451 4,050 7,066

CPD 11.4 ± 14.6 4.6 ± 10.7 8.8 ± 12.6

Age, years 40.6 ± 14.0 55.7 ± 13.1 50.8 ± 15.3

Male, % 45.3 (2014) 46.0 (1861) 46.1 (3260)

Taking Anti-hypertensive meds, % 5.9 (261) 22.4 (905) 21.3 (1505)

SBP, mm Hg 122.8 ± 16.1 130.0 ± 20.2 132.4 ± 17.2

Data presented as % (n) or mean ± standard deviation
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Table III

Familial and Longitudinal Covariance Structure by Analysis

Primary Analyses Familial Covariance Longitudinal Covariance

GEE-CS Compound Symmetry (joint with longitudinal) Compound Symmetry (joint with familial)

HLM-AR1 Compound Symmetry First Order Auto-Regressive

pedMM-CS Kinship Compound Symmetry

Secondary Analyses

HLM-NoLong Compound Symmetry Independence

pedMM-NoLong Kinship Independence

HLM-ARMA Compound Symmetry First Order Auto-Regressive Moving Average
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Table IV

Genomic Control (λ)

Model SNP Main 1df Int 2df Int

HLM-AR1 1.27 0.98 1.09

HLM-ARMA 1.28 1.00 1.11

HLM-NoLong 1.9 1.23 1.53

GEE-CS 1.29 0.96 1.13

pedMM-CS 1.18 0.86 0.96

pedMM-NoLong 0.73 1.26 0.87

For each model, Table IV shows the genomic control λ value for the SNP main effect, 1df SNP*CPD interaction, and 2df joint test of the SNP main 
effect and SNP*CPD interaction.
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Table VI

Number of Loci Suggestively Associated by Model and Test

HLM-AR1 GEE-CS pedMM-CS

Main 3 4 0

1df 0 0 0

2df 1 2 0
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