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Spectral Camera based on Ghost 
Imaging via Sparsity Constraints
Zhentao Liu*, Shiyu Tan*, Jianrong Wu, Enrong Li, Xia Shen & Shensheng Han

The image information acquisition ability of a conventional camera is usually much lower than the 
Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a 
random phase modulator to code the spectral images and combining with compressive sensing (CS) 
theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC 
spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the 
information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-
dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in 
a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon 
Limit determined by Information Theory in optical imaging instruments.

Conventional Camera, as one of the most important appliances to get image information, records the image of an 
object based on the point-to-point correspondence between the object-space and the image-space. Because the 
correlation between pixels of image1 can’t be applied, the image information acquisition efficiency of such conven-
tional point-to-point imaging mode is much lower than the Shannon Limit2,3 determined by Information Theory 
in optical imaging instruments4–9. Unlike the conventional direct point-to-point imaging mode, the resolution of 
the pixels of ghost imaging is determined by the correlation of light field fluctuations corresponding to the two 
pixels respectively, which can be measured on-line or pre-determined10,11. Combining with compressive sens-
ing (CS) theory1,12–16, ghost imaging via sparsity constraints (GISC) has many potential applications including 
super-resolution imaging17–19, three-dimensional (3D) computational imaging with single-pixel detectors20, 3D 
remote sensing21,22, imaging through scattering media23,24, object tracking25, object authentication26,27 and X-ray 
Fourier transform diffraction imaging28–30.

For thermal light ghost imaging, according to the illumination source, it can be classified to two categories: 
ghost imaging with pseudo-thermal light and true thermal light. Ghost imaging with true thermal light and sun-
light have been respectively demonstrated by detecting the temporal fluctuation of thermal light and applying the 
intensity correlation between the intensity distributions at the reference arm and the test arm31–33. Comparing 
with ghost imaging with pseudo-thermal light, this scheme of ghost imaging with true thermal light has to face 
the difficulty of detecting the temporal fluctuation of true thermal light which requires the response time of detec-
tor less than the coherence time of true thermal light τ = ∝λ λ

λ
∆

∆c
/ 12

 (λ is the wavelength, Δ​λ is the linewidth, 
c is the speed of light) which can be as short as femtosecond. In order to increase the coherence time of the illu-
mining true thermal light, monochrome imaging is required which results in the vast majority of radiation energy 
from the target scene being filtered out, making the energy efficiency of ghost imaging applying the temporal 
fluctuation of true thermal light very low. Moreover, the fluctuating true thermal field needs to be split before the 
light field illuminating the object in the system and recorded in the reference path, which makes the scheme even 
more difficult to be applied in remote sensing.

In this paper, for the first time, we propose a spectral camera based on true thermal light ghost imaging via 
sparsity constraints (GISC spectral camera) without a splitter. GISC spectral camera modulates the true thermal 
light into a spatially fluctuating pseudo-thermal light using a spatial random phase modulator34,35 which, at the 
same time, also acts as a random grating generating the uncorrelated speckles for different wavelengths, the 3D 
spectral images data-cube is then modulated into a two-dimensional (2D) data plane and GISC spectral camera 
can achieve the whole wavelength image in a single exposure, leading to a more convenient detection process 
and higher energy efficiency compared to ghost imaging applying the temporal fluctuation of true thermal light. 
Combining with CS, GISC spectral camera can acquire the information at a rate significantly below the Nyquist 
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rate which opens the way of approaching the Shannon Limit determined by Information Theory in optical imag-
ing instruments3–5,7.

Schematic and Resolution
The schematic of GISC spectral camera is shown in Fig. 1. The system consists of (1) an imaging system, which 
projects the object image in the object plane ‘a’ onto the first image plane ‘b’, (2) a spatial random phase mod-
ulator, which disperses the image with different wavelengths as a random grating and modulates the image to 
generate the speckles in plane ‘c’34,35, (3) a microscope objective, which magnifies the speckles in plane ‘c’, and (4) 
a charge-coupled device (CCD) detector recording the magnified speckles.

Denoting the spectral light intensity distribution in the first image plane ‘b’ by Ib(ri, λl) and the intensity dis-
tribution in plane ‘c’ by Ic(rt) respectively, we have36

λ λ λ=∬I r I r h r r dr d( ) ( , ) ( ; , ) , (1)c t b i l I t i l i l

where hI(rt; ri, λl) is the incoherent intensity impulse response function, rt is the coordinate in plane ‘c’, ri and λl 
are respectively the coordinate and wavelength of the light intensity distribution in the first image plane ‘b’. To 
record the pre-determined reference spatial intensity fluctuation of the pseudo-thermal light without objects, a 
coherent monochrome point source at pixel ′ri  with wavelength λ ′l  in the first image plane ‘b’, denoted as 

λ λ δ λ λ′ ′ = − ′ − ′I r r r r( , ; , ) ( , )b i l i l i i l lr
, is used to illuminate the spatial random phase modulator, and the 

recorded light intensity λ′ ′I r r( ; , )c t i lr
 in the plane ‘c’ is given by

λ λ λ λ
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During the imaging process, the intensity distribution in the first image plane ‘b’ λI r( , )b i lt
 is simply the image, 

denoted as Ti(ri, λl), of the object Ts(rs, λl) in the object plane ‘a’,

λ λ= .I r T r( , ) ( , ) (3)b i l i i lt

Combining Eqs (1,2) with (3), the intensity distribution I r( )c tt
 in the speckle plane ‘c’ is

λ λ λ= .∬I r T r I r r dr d( ) ( , ) ( ; , ) (4)c t i i l c t i l i lt r

Eq. (4) shows that I r( )c tt
 is the Ti(ri, λl) weighted integration of the pre-determined reference spatial intensity 

fluctuation of pseudo-thermal light λI r r( ; , )c t i lr
. Therefore, each pixel rt of CCD detector is equivalent to a meas-

urement of the bucket detector in the test arm of ghost imaging scheme. The second-order correlation function 
between the spatial intensity fluctuation in the pre-determined reference arm and test arm is defined as

λ λ λ′ = ′ ′ ′′ ′⁎ ⁎G r E r r E r E r E r r( , ) ( ; , ) ( ) ( ) ( ; , ) ,
(5)i l c t i l c t c t c t l l

r

(2)
r t t r

t

where … rt
 is the ensemble average about the coordinate of the light intensity distribution rt. Combining 

Eqs (2,4) with (5), the second-order correlation function λ′ ′G r( , )i l
(2)  is given by

λ λ λ λ λ′ ′ = ′ ′∬G r T r G r r dr d( , ) ( , ) ( , , , ) , (6)i l i i l c i l i l i l
(2) (2)

r

Figure 1.  Schematic of GISC spectral camera. (a) The object plane; (b) the first image plane; (c) the speckles 
plane; (1) an imaging system; (2) a spatial random phase modulator; (3) a microscope objective; (4) CCD 
detector.
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where λ λ λ λ λ λ′ ′ = ′ ′ ′ ′⁎ ⁎G r r E r r E r r E r r E r r( , , , ) ( ; , ) ( ; , ) ( ; , ) ( ; , )c i l i l c t i l c t i l c t i l c t i l r

(2)
r r r r r

t

 is the second-order corre-

lation function of the light fields at different pixels and wavelengths in the first image plane ‘b’. In order to calcu-
late λ λ′ ′G r r( , , , )c i l i l

(2)
r

, the height autocorrelation function of the spatial random phase modulator is assumed as37

η η ω
ζ

′ = ′ = −
− ′

= ∆ ∆ = − ′η ηR r r r r exp r r R r r r r( , ) ( ) ( ) ( ), ( ) ,
(7)

o
0 0 0 0

2 0
2
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where η r( )0  and η ′r( )0  are respectively the height of the spatial random phase modulator at r0 and ′r0, ω and ζ are 
respectively the height standard deviation and transverse correlation length of the spatial random phase modula-
tor. Assuming that the light field fluctuations in the speckles plane ‘c’ corresponding to pixel ′ri  in the first image 
plane ‘b’ with wavelength λ ′l  obeys the complex circular Gaussian distribution, λ λ′ ′G r r( , , , )c i l i l

(2)
r

 can be written 
as
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r
 is defined as the normalized second-order correlation function of the light fields at different 

pixels and wavelengths in the first image plane ‘b’. According to the Fresnel diffraction theorem, the light field in 
the speckles plane ‘c’ propagated from pixel ′ri  in the first image plane ‘b’ with wavelength λ ′l  is

∫
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where λ π η λ′ = − ′t r exp j n r( , ) [ 2 ( 1) ( )/ ]l l0 0  is the transmission function of the spatial random phase modulator. 
λ′ ′I r r( ; , )c t l lr

 and λI r r( ; , )c t i lr
 are respectively given by
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Substituting Eqs (7,9,11) into (10) yields
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z
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, and the diameter σ of the illuminated region in the spatial random phase modulator by 

each cells of 3D data-cube in calibration satisfies πσ2/λlz2 <​ 1, λ λ′ ′r rg (( , , , )c i l i l
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r
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Taking Eqs (8,12,13,21) into (6), we get the correlation function of intensity fluctuations38
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l
, ⊗​ denotes the operation of convolution. Eq. (22) specifies that λ′ ′T r( , )i i l  can be separated 

from the correlation function of intensity fluctuations λ∆ ′ ′G r( , )i l
(2) , and the resolution is determined by the 

normalized second-order correlation λ λ′ ′g r r(( , , , )c i l i l
(2)
r

 at different pixels and wavelengths in the first image 
plane ‘b’. When = ′r ri i , according to Eq. (14), the normalized second-order correlation function of the light fields 
at pixel ′ri  in the first image plane ‘b’ with two different wavelengths is given by
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Similarly, when λ λ= ′l l , according to Eq. (14), the normalized second-order correlation function of the light 
fields at two different pixels in the first image plane ‘b’ with wavelength λ ′l  is given by

λ λ πω λ
ζ

′ ′ ′ =










− − ′
















−







−





∆ ′

+






























.g r r exp n exp z r
z z

( , , , ) 2[2 ( 1)/ 1
( )

(24)
c i l i l l

i(2)

2

2

1 2

2

r

Figure 2(a,b) respectively show the comparison of λ λ′ ′ ′r rg ( , , , )c i l i l
(2)

r
 and λ λ′ ′ ′r rg ( , , , )c i l i l

(2)
r

 between experi-
ment and theory, and the experiment diagram is given in Fig. 1 with z1 =​ 20 mm, z2 =​ 0.3 mm, ω =​ 2.1 μm, 
ζ =​ 16.75 μm, n =​ 1.516 and the central wavelength λ ′ = nm600l .

The Measurement Matrix & Reconstruction Algorithm
There are many methods to improve the imaging quality of ghost imaging39–41. However, ghost imaging recon-
structions based on the ensemble statistics cannot provide the criterion of the necessary number of sampling for 
a perfect imaging, which makes it impossible to optimize the design of ghost imaging system. Combining with CS 
which provides the recovery condition of perfect reconstruction, the quantitative analysis for the necessary meas-
urements data can be made. Under the framework of CS theory, the measurement matrix of GISC spectral camera 
is obtained as follows: each of the speckle intensity distributions generated by a point light source at pixel ′ri  in the 
λ λ± ∆ ′l  spectrum band in the first image plane ‘b’ is recorded by the randomly selected Mrt

 pixels of CCD 
detector and reshaped as a column vector of length M of the measurement matrix. Repeating the process for all 
the N image pixels in the first image plane ‘b’ and all the L spectral bands, one may have the pre-determined ran-
dom measurement matrix AM×K, where K =​ L ×​ N. If we denote the unknown spectral object image as a 
K-dimensional column vector XK×1, and reshape the modulated object intensity distribution recorded by the 
same M pixels of CCD detector in a similar way as a column vector YM×1, then we may have the discrete from 
Eq. (4),

= .Y AX (25)

Figure 2.  (a) The normalized second-order correlation function of the light fields λ λ′ ′ ′r rg ( , , , )c i l i l
(2)

r
 at pixel in 

the first image plane ‘b’ with two different wavelengths; (b) The normalized second-order correlation function 
of the light fields λ λ′ ′ ′r rg ( , , , )c i l i l

(2)
r

 at two different pixels in the first image plane ‘b’ with wavelength λ ′l .
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Spectral object image is usually both spatially and spectrally correlated, which has already been utilized in 
spectral image reconstructions42–44. The reconstruction of the spectral object image can generally be regarded 
as solving a minimization problem which penalizes both the l1 norm and the nuclear norm of the data matrix:

µ ψ µ+ . . =
∼

⁎X X s t Y AXmin , , , (26)X l1 21

where ×
∼X L N  a matrix representation of the spectral object image whose columns represent different bands of the 

spectral object image, ψ the sparsifying transform, μ1 and μ2 the weight coefficients and μ1, μ2 >​ 0. In this work, 
we use a modified approach based on the method described by Eq. (26)45:

µ ψ µ+ ∆ . . = ≥X s s t Y AX Xmin , , , 0, (27)X l l1 21 1

where ∆ = −+s s si i 1 1, is the subtraction of the largest singular value s1 and the other si. The solution of Eq. (27) 
tends to have a simultaneous low-effective-rank and sparse structure, which much improves the reconstruction 
quality with low sampling rate.

Experimental Results
In the experimental setup of GISC spectral camera shown in Fig. 3, the imaging system (Tamron AF70-300 mm 
f/4-5.6) with focal length of f =​ 180 mm projects the object image onto the first image plane, a beam splitter (BS) 
with split ratio 50:50 splits the light field into two paths, CCD1 detector (AVT Sting F-504C with pixel size of 
3.45 μm ×​ 3.45 μm) is placed in one of the two paths at the position of the first image plane of the system to obtain 
the conventional image of the object for comparison, a spatial random phase modulator (SIGMA KOKI CO., 
LTD. DFSQ1-30C02-1000) disperses the images with different wavelengths acting as a random grating and mod-
ulates the image to generate the speckles, a microscope objective with magnification β =​ 10 and the numerical 
aperture N.A. =​ 0.25 magnifies the speckles which are then recorded by CCD2 detector (Andor iKon-M) with the 
pixel size 13 μm ×​ 13 μm. The first image plane is divided into Nx ×​ Ny =​ 140 ×​ 140 pixels with the square of each 
pixel approximately equal to Δ​rs determined by the Eq. (24). The number of spectrum bands for single exposure 
is 7, and the images in two wavelength ranges of 520 ~ 580 nm and 620 ~ 680 nm are respectively obtained in two 
exposures, while the theoretical spectral resolution is 20 nm in the experimental setup according to Eq. (23).

In order to compare the spectral & spatial resolution of GISC spectral camera with the theoretical resolution, 
as shown in Fig. 4, the spectral object ‘SIOM’ with different parts passing through different wavelengths has been 
selected, and the illuminating source is a xenon lamp. The original spectral images of ‘SIOM’ obtained by CCD1 
detector placed in the first image plane ‘b’ with corresponding narrowband filter in front of it are shown in Fig. 4 
(pixel size is equal to the theoretical resolution of reconstructed images by GISC spectral camera for comparing 
them). The corresponding modulated object intensity distribution Y is achieved by CCD2 detector of GISC spec-
tral camera and the reconstructed spectral images of ‘SIOM’ with 30% sampling rate of 3D date-cube are shown in 
Fig. 5. The comparison between the original and reconstructed spectral images shows that the resolution of GISC 
spectral camera is in accordance with the theoretical calculation.

The images of the outdoor scene consisting of Mario & Luigi with sunlight illumination are shown in Fig. 6. 
Figure 6(a) is obtained by a camera, while Fig. 6(b,c) respectively show the pictures taken by CCD1 detector with 

Figure 3.  Experimental setup of GISC spectral camera. 
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narrowband filters of 550 ±​ 10 nm and 650 ±​ 10 nm in front of it (pixel size is equal to the theoretical resolution 
of reconstructed images by GISC spectral camera for the sake of comparison). The reconstructed spectral images 
of Mario & Luigi with 30% sampling rate of 3D date-cube are shown in Fig. 7. The experimental results show that 
the spectral imaging ability of GISC spectral camera for complex scenes is also pretty good.

Discussion and Conclusion
Based on Information Theory, the transmitted information of an imaging system can be described by the 
entropy2,3

∑= −H X p x p x( ) ( )log ( ),
(28)i

i i

where p(xi) is the probability of xi occurrence. For the conventional direct point-of-object-space to 
point-of-image-space imaging mode, the conditional entropy H(X|Y) =​ 0, and thus the channel capacity of the 
conventional monochrome camera is

= = − | = =C I X Y H X H X Y H X H Xmax ( ; ) max[ ( ) ( )] max ( ) ( ),
(29)p x p x p x

C
( ) ( ) ( )i i i

where I(X; Y) is the mutual information, =H X H X( ) max ( )C
p x( )i

 the maximum information entropy of source X for 

conventional imaging instrument, which is the Shannon Limit of the imaging system. According to the principle 
of maximum entropy1, the information content of an image is maximized when p(xi) is Gaussian distribution with 
average power constraints, which doesn’t contain any useful information. Therefore, the entropy of the image with 
structured information H(X) has

Figure 4.  The original spectral images of ‘SIOM’ obtained by CCD1 detector placed on the first image 
plane ‘b’ with corresponding narrowband filter in front of it, showing all the channels from 620 ~ 680 nm. 

Figure 5.  The reconstructed spectral images of ‘SIOM’ with 30% sampling rate of 3D date-cube, showing all 
the channels from 620 ~ 680 nm. 

Figure 6.  Mario & Luigi taken by (a) a camera; (b) CCD1 detector passing through narrowband filters of 
550 ±​ 10 nm; (c) CCD1 detector passing through narrowband filters of 650 ±​ 10 nm.
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< = .H X H X C( ) ( ) (30)C

Eq. (30) shows that the image information acquisition efficiency of such conventional point-to-point imaging 
mode is lower than the Shannon Limit determined by Information Theory in optical imaging instruments. The 
channel capacity of an imaging system based on Information Theory for conventional optical imaging instru-
ments is4–7

= +C N mlog (1 ), (31)DOF 2

where m is signal to noise ratio (SNR), NDOF is degrees of freedom and has

= ⋅ ⋅ ⋅ φN N N N N , (32)DOF t s c

where Nt, Ns, Nc and Nφ are respectively time, spatial, color and polarization degrees of freedom. Spatial degrees 
of freedom Ns has6

λ
α

λ
α λ α λ α

= =




. 









. 




= .N SW N N N N0 61 0 61 1

/(2 )
1

/(2 )
1 22 ,

(33)
s x

x
y

y x y
x y

2

where S is the image area, W is the space bandwidth, αx, αy and Nx, Ny are respectively the image-space aperture 
angle and the resolved pixel number in the image-space of coordinate x and y. The color degrees of freedom  
Nc depend on the number of spectral channels, while polarization degrees of freedom Nφ is determined  
by the independent polarization state. According to Eqs (28,31,33), the channel capacity of the con- 
ventional camera in our experiment (where = = = × = × =φN N N N N m1, 1, 1, 140 140, 255t c x y 11 1 1 1 1

) is 
= + ≈ . ×C N mlog (1 ) 2 33 10DOF1 2 1

5
1

, and the corresponding transmitted information of Fig.  6(b) is 
≈ . × <H X C( ) 1 07 101

5
1. In order to transmit the 520 ~ 580 nm wavelength ranges data, the required channel 

capacity of the conventional camera (where = = = × = × =φN N N N N m1, 7, 1, 140 140, 255t c x y 22 2 2 2 2
) is 

C ≈​ 1.63 ×​ 106, while the required channel capacity in GISC spectral camera with 30% sampling rate in our exper-
iment is C3 ≈​ 4.90 ×​ 105. C3 <​ C2 shows that GISC spectral camera has the higher information acquisition effi-
ciency in a single exposure compared to the conventional camera. With the development of optical imaging 
technology, many new imaging technologies (such as CT image46) are not based on the point-to-point imaging 
mode. However, because the correlation between pixels of image data doesn’t be applied in the imaging recon-
struction algorithm, the information acquisition efficiency of those new coding imaging technology also can’t 
approaching the Shannon Limit determined by Information Theory for conventional optical imaging instru-
ments. However, GISC imaging solution applies a spatial random phase modulation to satisfy the restricted isom-
etry property (RIP)17 required by applying CS that makes the improvement of information acquisition efficiency 
of the imaging system possible. Comparing with CS imaging technology (such as Single-Pixel Imaging via 
Compressive Sampling47, coded aperture snapshot spectral imagers48), which forces on the compressive sampling 
of electric signal after photoelectric conversion to improve the channel capacity utilization efficiency of the elec-
tric signal, GISC imaging solution improves the optical channel capacity utilization efficiency and achieves the 
compressive sampling of the image data during the imaging acquisition process, which opens the way of 
approaching the Shannon Limit determined by Information Theory in optical imaging instruments. As a new 
optical imaging technology, GISC spectral camera provides a unique solution for the spectral imaging of dynamic 
processes. This GISC imaging solution may also be expanded to other multi-dimensional information (such as 
polarization information) acquisition49, ultra-fast measurement50, and super-resolution imaging18,51,52.
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