
1Scientific Reports | 6:25786 | DOI: 10.1038/srep25786

www.nature.com/scientificreports

Evolution of Genome Size in 
Asexual Digital Organisms
Aditi Gupta1,2,†, Thomas LaBar1,2,3, Miria Miyagi  & Christoph4  Adami1,2,3,5

Genome sizes have evolved to vary widely, from 250 bases in viroids to 670 billion bases in some 
amoebas. This remarkable variation in genome size is the outcome of complex interactions 
between various evolutionary factors such as mutation rate and population size. While comparative 
genomics has uncovered how some of these evolutionary factors influence genome size, we still do 
not understand what drives genome size evolution. Specifically, it is not clear how the primordial 
mutational processes of base substitutions, insertions, and deletions influence genome size 
evolution in asexual organisms. Here, we use digital evolution to investigate genome size evolution 
by tracking genome edits and their fitness effects in real time. In agreement with empirical data, we 
find that mutation rate is inversely correlated with genome size in asexual populations. We show 
that at low point mutation rate, insertions are significantly more beneficial than deletions, driving 
genome expansion and the acquisition of phenotypic complexity. Conversely, the high mutational 
load experienced at high mutation rates inhibits genome growth, forcing the genomes to compress 
their genetic information. Our analyses suggest that the inverse relationship between mutation rate 
and genome size is a result of the tradeoff between evolving phenotypic innovation and limiting the 
mutational load.

Genome sizes evolve by various mechanisms, some of which are common to all domains of life (insertions and 
deletions) while others are seen in some taxonomic groups more than others (horizontal gene transfer in bacteria 
and transposable element activity in eukaryotes). While one might think that genome expansion leads to the 
acquisition of more protein-coding genes and functions, genome size does not strongly correlate with organis-
mal complexity (the C-value paradox). Whole-genome sequencing data provide some explanation for this par-
adox: appreciable variation in eukaryotic genome sizes has been attributed to ploidy1, and to an expansion of 
non-coding DNA such as introns, intergenic regions, and repeats2. Yet, genome size also positively correlates with 
the number of protein-coding genes2, suggesting that larger genome size is a prerequisite for gaining new genes 
that could lead to phenotypic innovation.

The point mutation rate, relative frequencies of insertions and deletions (indels), and population size are three 
factors seen across the tree of life that are thought to influence genome size evolution. The negative correlation 
between genome size and point mutation rate is observed in all living organisms, from viruses to Homo sapiens3. 
However, a recent analysis based on more taxa found that this inverse relationship holds true only for prokaryotes 
and viruses, and that genome size and mutation rate are instead positively correlated in eukaryotes4. A high point 
mutation rate forces viruses to maintain small genome sizes in an effort to limit the number of deleterious muta-
tions5. This selection pressure to reduce genome size is so strong that viruses eliminate non-functional sequences 
inserted into their genomes6 and lose an essential gene if it is transferred to the host genome7. This suggests that 
the point mutation rate and the evolution of genome size are inherently intertwined.

Population size, together with the point mutation rate and genome size, determines the mutation supply rate 
in an evolving population: if too many mutations are occurring, then reduction in any or all of point mutation 
rate, genome size, and population size can lower the mutation supply rate. Moreover, the effect of genetic drift is 
enhanced and purifying selection is weakened in small populations, allowing non-beneficial genome edits to per-
sist for generations8. Lynch and Conery postulate that these—initially nonadaptive—edits can become a source of 
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phenotypic innovation later on2 (this model, however, has been challenged9). In symbiotic bacteria, small popu-
lation size and asexual reproduction cause bacterial genomes to shrink to the extent that they become 2–4 times 
smaller than the smallest genome seen in an independent-living organism10. In contrast, large population sizes in 
microbial populations weaken the effect of random drift, preventing accumulation of non-functional DNA and 
genome growth11.

In addition to point mutation rate and population size, biases in patterns of insertions and deletions (indel 
spectra) have been suspected to contribute to the variation in genome sizes we see today12. DNA loss via deletions 
is purported to be important in determining genome size, but this perspective is derived from analysis of a small 
number of eukaryotic genomes13,14. A strong deletion bias was found in 12 bacterial species as well15, the majority 
of which have transposable element (TE) activity. Thus, it is likely that deletions outnumber insertions in taxa 
where TE proliferation leads to significant increases in non-functional DNA. This explanation, however, does not 
apply to genome size evolution in early living organisms and in taxa where TE activity is absent, and it is not clear 
how primordial genome editing mechanisms shaped the diversity in genome sizes we see today.

Digital evolution provides an apt platform for understanding the evolutionary processes that determine 
genome size. While naturally evolving biological systems can take a very long time to show observable changes, 
the short generational time of digital organisms significantly reduces the time-scale of experiments to study evo-
lutionary processes16–18. Avida is one such artificial life platform, where digital organisms are simple computer 
programs that compete for resources to replicate via a mutation-prone process, thus evolving under Darwinian 
dynamics16,17,19,20. The computer programs (or, ‘avidians’) contain a sequence of instructions that are executed to 
perform Boolean calculations (comparable to phenotypic traits in organisms) and to self-replicate by copying 
their instructions (with errors, similar to mutations in organisms) into a new avidian (see Methods for more 
details). As such, digital evolution is not a simulation of evolution, but rather an instance of evolution21 because 
avidians physically populate the computer’s memory, and reproduce mechanistically. We should think of avidians, 
therefore, as a “model organism” as opposed to a computational simulation22, capable of generating hypotheses 
that can be tested with biological organisms.

The ability to control the mutation rate, genome sizes (the number of instructions in an avidian’s genome), and 
population size allows an inquiry into the impact of mutation rate and indel spectra on the evolution of genome 
size. Avida has been previously used to test many evolutionary hypotheses that are difficult to test via biological 
experimental evolution, such as the evolution of genomic complexity17,23, the ‘survival of the flattest’ effect in 
genotypes evolving at high mutation rates24, adaptive radiation25, co-evolution as a driving force for higher phe-
notypic complexity and evolvability26, the time-dependent effect of genetic robustness on evolvability27, and how 
standing genetic variation and environment influence evolutionary response to environmental stimuli28 (among 
many others). Here we use Avida to investigate genome size evolution because in addition to tracking genome 
edits and their fitness effects, we can record the evolution of phenotypic traits and thus study the consequences of 
genome size evolution on phenotypic complexity.

Because avidians reproduce asexually and lack mechanisms of genome expansion such as TE activity, their 
evolutionary dynamics are most similar to those of viruses and prokaryotes. To examine the mechanisms of 
genome size evolution in asexual populations, we evolved populations of avidians within a range of mutation rates 
and followed the changes in their genome lengths, population fitness, genetic information, and phenotypic out-
comes. Our results confirm that genome size is negatively correlated with mutation rate. By tracking the changes 
in genome size and the fitness effects of insertions and deletions that cause these changes, we find that insertions 
drive genome growth at low mutation rates, contributing to the evolution of phenotypic complexity via a two-step 
process: genome expansion followed by repurposing of the extra genome content to evolve new traits. Finally, we 
show that the mutational load at high mutation rates increases the selection pressure for reducing the genome 
size, resulting in smaller genomes with high information density. We conclude that genome size evolution is the 
result of a compromise between acquiring phenotypic complexity and restricting the mutational load.

Results and Discussion
To test the role of mutational pressure in the evolution of asexual genomes, we evolved populations of avidians 
across a range of different point mutation rates (2.5 ×​ 10−3 mutations per locus per generation to 0.1 mutations 
per locus per generation). With an ancestral genome size of 20 instructions, these populations had ancestral 
genomic mutation rates from 5 ×​ 10−2 to 2.0 mutations per generation. These populations had a constant pop-
ulation size of 3600 individuals and evolved for 2 ×​ 105 generations. Selection coefficients of mutations are not 
pre-determined and are calculated as the effect of the mutation relative to the fitness of the ancestral organism. At 
the end of the experiment, a variety of traits from the genotype with the highest fitness were measured and used 
in the statistics below. For analyses involving insertions and deletions, the genotype’s evolutionary history was 
examined (see Methods for further details).

Mutation rate is negatively correlated with genome size.  We found that genome size is negatively 
correlated with the mutation rate (Fig. 1A; Spearman’s ρ =​ −​0.72, p <​ 3.6 ×​ 10−97). The mean population fitness 
also increased as the avidians’ genomes grew (Supplementary Fig. S1). The evolved genomic mutation rates 
ranged from 0.13 to 24.85 (the genomic mutation rate was <​2 for the lowest four point mutation rates). These 
genomic mutation rates are comparable to those seen in RNA viruses (0.025 in Influenza B virus, 1.1 in Hepatitis 
C Virus, and 4.6 in Bacteriophage Qβ)29. Avidians did not evolve a constant genomic mutation rate in our exper-
iments, as Drake observed in DNA microbes and RNA viruses30,31 and Knibbe et al. reported in their digital evo-
lution experiments32. A constant rate of genomic mutation is also not observed across the tree of life3.

To test how genome size responds to changes in mutation rate, we performed experiments where we switched 
the mutation rates of the avidians evolving at the lowest (0.0025) and the highest (0.1) point mutation rate after 
100,000 generations. We found that the longer genomes that initially evolved at the low mutation rate began to 
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shrink and those evolved at the high mutation rate began to expand (Fig. 1B), further establishing the direct 
influence of mutation rate on genome size.

Since the ancestral genomes and population size were identical in all experiments, this negative correlation 
is independent of the effect of population size and the initial genomic content. By fixing the population size, we 
separated the influence of population size from that of mutation rate on genome size evolution, since it has been 
shown that population size influences genome size evolution as well2.

Large genomes carry more genetic information.  While genome expansion does not necessarily 
increase the number of functional sites in the genome, complex organisms are likely to have a higher amount 
of genetic information encoded into their genomes, which requires larger genomes. For example, even though 
C. elegans has a similar number of genes to H. sapiens (19,957 genes in the nematode compared to 20,181 in 
humans), the nematode has 20% less intergenic DNA and their mean intron size is 1/20th of that of humans1. On 
the premise that humans are more complex than C. elegans, one can argue that the expansion of non-coding DNA 
is at least partly responsible for this significant increase in complexity. Large proportions of the human genome 
are transcribed33, although much of this transcription is likely to be spurious and non-functional34,35. However, 
some of this transcription likely contributes to the non-coding RNA pool of the cell that regulates expression of 
protein-coding genes and participates in other cellular processes36. Introns are not always junk-DNA and contrib-
ute to the evolution of complexity in eukaryotes37,38. About 20% of the pseudogenes are transcribed in humans39, 
and are differentially expressed in cancers and viral infections40,41, indicating that some of these pseudogenes may 
be functional. Thus, genome expansion, even if primarily consisting of non-coding DNA, likely increases the 
potential for future increases in the number of functional sites in the genome. Even if some of this inserted DNA 
is non-functional at the outset, evolution can repurpose it to achieve higher organismal complexity and genetic 
information42,43.

In our experiments, avidians that evolved long genomes at low mutation rates had higher genetic information 
content (number of essential sites in the genome) than those that evolved at high mutation rates and had shorter 
genomes (Fig. 2; Spearman’s ρ =​ −​0.86, p <​ 6.4 ×​ 10−180). The longer genomes also evolved more traits, which 
are the computational equivalent of biological pathways that lead to observable phenotypes (see Methods for an 
explanation of traits, and Supplementary Fig. S2). The mean population fitness was also inversely related to muta-
tion rate, although the mean fitness of populations evolving at a point mutation rate of 0.0025 was still increasing 
after 200,000 generations (Supplementary Fig. S1). This suggests that larger genome size is a necessary, if not 
sufficient, requirement for evolving phenotypic novelty. The avidians on average evolved fewer traits when the 
point mutation rate was switched half-way from 0.0025 to 0.1, and evolved more traits when mutation rate was 
switched from 0.1 to 0.0025, emphasizing the relationship between genome size, mutation rate, and phenotypic 
complexity (Fig. 1B and Supplementary Fig. S3).

Beneficial insertions drive genome expansion at low mutation rates.  To understand how genomes 
gain meaningful increases in size, we followed the genome edits (indels and mutations; only the indel size is con-
sidered and not the sequence inserted/deleted or the context where the indel occured), the corresponding effect 

Figure 1.  Point mutation rate is a strong determinant of genome size. (A) Genome size and mutation rate 
are negatively correlated in asexual populations. The initial conditions, i.e. the ancestral genome and population 
size, were identical for all point mutation rates in our study (0.0025, 0.005, 0.0075, 0.01, 0.05, and 0.1). The 
avidian populations at the lowest mutation rate (0.0025) are still evolving (mean population fitness is still 
increasing, Supplementary Fig. S1) after 200,000 generations, explaining the higher variation in genome length 
for this mutation rate. Red lines are median values from 100 replicates, while the upper and lower bounds of 
the box are the third and first quartile, respectively. Whiskers are either 1.5 times the the quartile value or the 
extreme value in the data, whichever is closer to the median. Plus signs are outliers. (B) The direct link between 
point mutation rate and genome size is further reinforced by switching the point mutation rate of population 
evolving at 0.0025 to 0.1 after 100,000 generations (black circles), and vice versa (green circles). The black line 
represents the generation where the mutation rates were switched. The long genomes shrink when mutation 
rate is increased and short genomes expand when mutation rate is decreased. Error bars represent ±1 SE. Values 
represent the mean genome length across the population, averaged over 20 replicates.



www.nature.com/scientificreports/

4Scientific Reports | 6:25786 | DOI: 10.1038/srep25786

on fitness (s), the number of traits evolved, and overall genome size along the line of descent (LOD, see Methods) 
in avidians evolving at different mutation rates (Fig. 3). At the lowest point mutation rate in our experiments 
(Fig. 3A), the beneficial changes in the genome (green spikes) often align with evolution of new traits (blue line), 
as well as with insertions in the genome (red spikes). Insertions are largely beneficial compared to deletions at 
low mutation rate (Fig. 4). Phenotypic innovation (evolving a new trait) was preceded by insertion events 87% 
of the time (within the previous 20 ancestors along the line of descent), while deletions preceded innovation 
60% of the time (null hypothesis: presence or absence of insertions is irrelevant to trait evolution, rejected with 
p <​ 1.0 ×​ 10−100, χ2 test statistic =​ 2.23 ×​ 105). Thus, avidian genomes are likely to evolve new traits after an inser-
tion event, suggesting that phenotypic innovation happens in a two-step process: genome expansion followed by 
evolution of a new trait by substitutions. Insertions are not deleterious per se (inset plots in Fig. 4) and thus persist 
on the line of descent. In fact, these inserted sequences may serve as substrates for evolving new phenotypic traits 
later on, contributing to an increase in fitness and phenotypic complexity. In contrast, indels are infrequent at 
high mutation rates on the line of descent (Fig. 3B, also see Supplementary Fig. S4). As a result, the genomes do 
not grow and evolve fewer traits compared to the genomes evolved at low mutation rates.

This prominent role of beneficial insertions in the genome evolution of asexual organisms is in contrast to how 
genome sizes are shaped by DNA loss in eukaryotes. The reported biases in indel spectra (rarity of long insertions 
and abundance of short deletions) are seen primarily in eukaryotic genomes44. Yet, a thermodynamic argument 
suggests that large indels are likely to increase genome size, since insertion events require only one breakpoint in 
the genome rendering large insertions less disruptive than large deletions14,44. By the same argument, DNA loss 
is more likely to happen by small deletions to minimize the fitness cost to the organism. Thus, while eukaryotic 
genomes may evolve by rapid expansion due to whole genome duplication events and TE proliferation, asexual 
populations such as RNA viruses may have grown their genomes gradually via beneficial insertions. However, 
gradual increases in avidian genomes at low mutation rates is still followed by small deletions that fine-tune the 
genome size (Fig. 3).

High mutation rates force genomes to be small and informationally dense.  If beneficial inser-
tions drive genome expansion at low mutation rates, what keeps genomes small at high mutation rates? We 
find that the fitness cost of deleterious mutations is high at high mutation rates (Fig. 5A; Spearman’s ρ =​ −​0.71, 
p <​ 1.1 ×​ 10−90). Since genotypes evolving at high mutation rates are compact, genetic information is forced to be 
distributed over a small number of sites (Fig. 5B), as in the overlapping genes commonly seen in viral genomes. 
A deleterious mutation at a single such site can unfavorably affect multiple traits, increasing the overall fitness 
cost of deleterious mutations. Digital evolution experiments also find that gene knockouts are more deleterious 
when pleiotropy is high, as is common in compact genomes45. Thus, not only is the mutational load high at high 
mutation rates, the deleterious mutations are costlier than they are at low mutation rates. This compounding fac-
tor only strengthens the selection pressure to decrease mutational load by reducing genome size, especially since 
population size is fixed in our experiments.

It should be noted that mutation rate can itself evolve if an increased mutation rate facilitates adaptation 
(reviewed in3,46). For example, a mutator strain of E. coli with a higher mutation rate than the wild-type bacteria 
showed the ability to adapt faster47. Even though the majority of mutations are deleterious, the ability to quickly 
find adaptive beneficial mutations was enough to increase the population of the mutator strain relative to the 
wild-type47. However, this evolutionary advantage is short-lived and disappears once the beneficial mutations are 
found and there is no more fitness peak to climb47,48. The mutator strain also does not propagate faster than the 
wild-type when a higher mutation supply is achieved by increasing the population size47,48. Furthermore, envi-
ronmental stresses such as starvation can trigger a response in bacteria that elevates the mutation rate, making it 
possible to quickly find beneficial mutations to adapt to temporarily adverse conditions49.

Figure 2.  Genomes evolved at low mutation rates had higher genetic information (number of essential 
sites in the genome, see Methods) than genomes evolved at high mutation rates. The information measure is 
reported for the fittest genotype in each of the 100 replicate populations. Red lines are median values from 100 
replicates, while the upper and lower bounds of the box are the third and first quartile, respectively. Whiskers 
are either 1.5 times the the quartile value or the extreme value in the data, whichever is closer to the median. 
Plus signs are outliers.
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Figure 3.  The line of descent (LOD) of the most fit genome is shown for a single replicate population evolving 
at the lowest (0.0025, A) and the highest (0.1, B) point mutation rate in our study. The fitness effects of genome 
edit events (insertions, deletions, base substitutions) are shown in green, the number of evolved traits is shown 
in blue, the size of indels is shown in red, and the genome length is shown in black. At low mutation rate 
(top panel, A), new traits (in blue) often evolved following beneficial genomic events (green spikes), and are 
sometimes concurrent with insertion events (red spikes). These beneficial insertions appear to increase the 
genome size (black line) over time. At the high mutation rate (bottom panel, B), insertion events are not as 
frequent as at low mutation rates (also see Supplementary Fig. S4), with genome size staying relatively constant. 
The line of descent (LOD) maps for other mutation rates can be found in Supplementary Fig. S5.

Figure 4.  The average fitness effect of insertions (blue) and deletions (red) as a function of indel size is 
shown for 100 replicate populations evolving at the point mutation rate of 0.0025. Indels above the gray 
line (s =​ 0) are beneficial and those below the gray line are deleterious. Small insertions (blue dots) are usually 
beneficial, while small deletions (red dots) are usually deleterious. The inset plot shows the histograms of fitness 
effects of insertions (blue bars, total 19,262 insertions) and deletions (red bars, total 16,998 deletions) along the 
line of descent in 100 replicate populations. Insertions (blue bars) are usually beneficial (i.e., fitness effect > 0), 
and deletions (red bars) are usually deleterious (fitness effect < 0). The two distributions are significantly 
different (Kolmogorov-Smirnov two-sided test, p <​ 1 ×​ 10−100).
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Since a high mutation rate increases the mutational load in an evolving population, it makes sense that when 
the environmental stress is no longer present, the mutation rate would revert to the lower level. After all, the fit-
ness cost of accumulating deleterious mutations would be too high if the rapid rate of adaptation afforded by high 
mutation rate is not needed. Mutator strains in well-adapted bacterial populations evolve decreased mutation 
rates as the opportunity for adaptation diminishes50, an observation supported by digital evolution experiments51. 
Perhaps a continual need for adaptation is responsible for consistently high mutation rates in viruses, parasites, 
and sometimes in pathogenic bacteria where rapid adaptation to host immune responses is critical for surviving 
such an evolutionary arms race3,52–54. The selection pressure to adapt quickly to a changing environment appears 
to trump the selection pressure to decrease mutational load by minimizing the mutation rate. However, muta-
tional load can restrict virus adaptability due to an abundance of deleterious mutations55. Thus, the compromise 
between evolutionary forces for reducing the mutation load and maintaining high adaptability might shape the 
genome size and information density in RNA viruses.

Conclusions
While empirical studies reveal significant aspects of genome size evolution, digital evolution systems pro-
vide an opportunity to observe evolution-in-action and to manipulate evolutionary parameters in ways that 
allows exploring the relative importance of the many evolutionary forces that simultaneously act on genomes. 
Comparative genomics analyses have unearthed important relationships between population size, mutation rate, 
gene content, genome size, and their combined influence on evolution of complexity. Digital evolution experi-
ments complement these retrospective observations by investigating evolutionary processes that are difficult to 
test experimentally.

In our experiments across a range of mutation rates, we find concurrence with the empirical finding that the 
point mutation rate is negatively correlated with genome size. By tracking the genomes along the line of descent, 
we find insertions to be significantly beneficial compared to deletions, suggesting that before the advent of com-
plex mechanisms of genome edits such as TE activity, beneficial insertions drove genome expansion. That these 
insertions are followed by phenotypic innovations further explains why insertions are evolutionarily favored in 
asexual populations. At the same time, the point mutation rate influences genome size via the mutational load. 
Thus, unless a high mutation rate provides a critical evolutionary advantage such as rapid adaption to a tempo-
rary environmental stress, the selection pressure to reduce the mutational load forces genomes to shrink at high 
mutation rates. This shrinkage results in genomes packed with genetic information, and this compactness likely 
increases the fitness cost of deleterious mutations, further compounding the severity of the mutational load. Still, 
a high point mutation rate is frequently seen in natural populations, especially in viruses, suggesting that the 
selection pressure to maintain high evolvability (for example, against a highly adaptive host immune system56) 
can take precedence over the pressure to reduce mutational load in ensuring virus propagation.

It is natural to wonder whether evolution experiments with digital organisms can truly shed light on biolog-
ical evolutionary processes. To some extent, this skepticism is no different from wondering whether evolution 
experiments with E. coli bacteria can shed light on the evolution of, say, elephants, as Monod famously quipped. 
Model organisms provide the opportunity to obtain results in well-characterized settings57, and invite us to inter-
pret these results in a broader context. In this respect, we may find that “what is true for digital organisms may be 
true for E. coli only more so”58, or the experiments could offer up insights into why and how this model organism 
is fundamentally different from others. However, as an experimental system the outcome of experiments are 
reproducible and specific: it is not possible to obtain “any result one might want”, just as this is not possible when 
evolving bacterial or fungal model organisms.

Figure 5.  Deleterious mutations at high mutation rates are more costly due to informationally dense 
genomes. The inverse of the harmonic mean of deleterious selection coefficients for the fittest genotype from 
each replicate shows that deleterious mutations are costlier at high mutation rates (A). This can be explained 
by the high coding density in these genomes (B). Traits/site/trait represents how many traits are encoded per 
site, normalized by the total number of evolved traits, and thus is a measure of coding density of the genome. 
Red lines are median values from 100 replicates, while the upper and lower bounds of the box are the third and 
first quartile, respectively. Whiskers are either 1.5 times the the quartile value or the extreme value in the data, 
whichever is closer to the median. Plus signs are outliers.



www.nature.com/scientificreports/

7Scientific Reports | 6:25786 | DOI: 10.1038/srep25786

In conclusion, our analyses of asexual populations evolving at fixed point mutation and indel rates reveal 
the fundamental roles that indel spectra and mutational load play in determining genome size and phenotypic 
diversity. The evolution of genome size is a complex phenomenon, especially in eukaryotes due to TE activity 
and expansion of non-coding DNA. Future investigations into eukaryotic genome size evolution by including 
recombination and TE activity in digital evolution platforms will allow comparisons with asexual genome size 
evolution, and can shed light on evolution of complex genome editing mechanisms.

Methods
Avida digital evolution platform.  Avida is a digital evolution platform that provides an environment 
within which digital organisms, using sets of instructions analogous to codons, experience selective pressures to 
evolve genes that encode logical operations16,19,59. These digital organisms are simple computer programs (avid-
ians) that compete for the resources needed to self-replicate via error-prone mechanisms. The avidian genome 
consists of computer instructions (thus, avidian genome length =​ number of instructions) that are executed dur-
ing its life cycle to perform Boolean logic calculations, as well as to replicate its genome. Since evolution in Avida 
comprises genetic variation affecting the ability to evolve phenotypic traits and to replicate, differential fitness 
dependent on this heritable variation and competition for computational resources causes avidians to undergo 
evolution very much like biological populations.

The Avida world consists of a 60 ×​ 60 toroidal grid with at most one avidian per cell, resulting in a fixed popu-
lation size of 3600. Each child avidian is placed in any one of the 3600 cells after successful replication (although 
new offspring are preferentially placed in empty cells if available), making the population well-mixed. When the 
population is at its carrying capacity, the avidian occupying the cell chosen for a new offspring will be removed 
from the population. This random selection of individuals for removal adds an element of genetic drift to avidian 
populations.

Absolute time in Avida is divided into updates. During each update, the population executes 30 ×​ N instruc-
tions, where N is the population size. The resource necessary to execute these instructions (comparable to energy 
units in cells–ATP) is called the “Single Instruction Processing Unit” (SIP), which are distributed across the 
population. How these SIPs are distributed to the individuals in the population is dependent on a characteris-
tic possessed by each individual, called ‘merit’. Merit is increased when an organism is capable of performing 
logic calculations, a process that is the computational equivalent of metabolic processes in biochemical cells (see 
below).

In a clonal population, every individual will obtain on average 30 SIPs per update. However, if one individual 
has a greater merit than others in the population, it is expected to receive more SIPs per update than the other 
individuals. This allows it to execute and copy its genome faster than other individuals. Therefore, as reproduction 
speed is the primary target of selection in this type of simple environment, increased merit results in increased fit-
ness, and organisms with an increased merit will be under positive selection. In our experiments, we record data 
every generation, starting from the ancestral population, which marks generation 0. All progeny of the ancestral 
population constitute generation 1, and so forth.

Avidians increase their merit through the evolution of phenotypic traits. These traits are the ability to perform 
Boolean logic computations. In the default Avida environment (the “Logic-9” environment20) populations can 
evolve up to 9 of these traits. Performing these traits result in a multiplicative increase in an individual’s merit 
(ranging from a multiple of 2 for simple traits to 32 for the most complex trait). The evolution of these traits 
require many point mutations and a genome size large enough to contain the instructions necessary to perform 
these computations. Because these traits increase merit, and thus replication speed, the evolution of these traits 
are also under strong selection. Each individual can perform each trait once during their lifespan, and there is no 
limit to the number of times a trait can be performed in a population. Because an individual’s performance of a 
trait does not limit the others in the population, there is only one niche in the environment. Therefore, fitness is 
frequency-independent.

During an avidian’s lifespan, it will eventually start to undergo genome replication. As it copies its genome’s 
instructions into a blank daughter genome, some instructions may be copied inaccurately at a point mutation 
rate set by the experimenter. Additionally, insertion and deletion mutations can occur either during genome 
replication or during genome division into new daughter genomes. In the experiments performed here, insertion 
and deletion mutations (indels) were enacted upon genome division. Genome sizes can change every generation 
by at most 10% (the default is a maximum change of 100%). For every indel, two spots in the genome were ran-
domly selected. If the indel was a deletion, everything between those two spots was deleted. If the indel was an 
insertion, that section of the genome was duplicated. Insertions and deletions occurred at equal frequencies in 
our experiments.

Experimental Design.  To test the role of the mutation rate in driving genome size evolution, we evolved 
100 replicate populations at various point mutation rates (μ =​ {0.0025, 0.005, 0.0075, 0.01, 0.05, 0.1}) for 200,000 
generations. Insertions and deletions occurred with equal frequency at a constant rate of 0.05 indels per genera-
tion. Indel size was uniformly distributed, with genome size changing at most by 10% in any given generation. All 
populations were initialized with an identical ancestral genome of size 20. Population size was fixed at the default 
3600 individuals. There was no structure in the evolving populations (i.e. a well-mixed environment). An addi-
tional 40 populations were evolved for 200,000 generations where the mutation rates were switched after 100,000 
generations as follows: 20 populations that initially evolved at a point mutation rate of 0.0025 were switched to a 
point mutation rate of 0.1 after 100,000 generations, and the remaining 20 populations were switched from point 
mutation rate of 0.1 to 0.0025 after 100,000 generations.



www.nature.com/scientificreports/

8Scientific Reports | 6:25786 | DOI: 10.1038/srep25786

Line of Descent.  To track the effect of genome edits on genome size and phenotypic evolution, we analyzed 
the Line of Descent (LOD) of the fittest individual from each replicate population at the end of the evolution 
experiments. A LOD is a lineage of every ancestor of the evolved genotype that had the highest fitness at the end 
of 200,000 generations. It tracks every genome edit (and its corresponding effect on fitness) that was fixed in the 
lineage. This genotypic “fossil record” allows identifying those mutations that lead to evolutionary innovations 
and determine the respective role of insertions and deletions in genome size evolution.

Data Analysis.  We calculated statistics at both the population level and for individual genotypes. The mean 
genome length and the mean fitness was calculated by averaging the relevant values across all genotypes in each 
population which was then averaged over 100 replicate populations. For the rest of our reported data, we calcu-
lated statistics from the fittest genotype in the final evolved population. A genotype’s information content was 
estimated as ν= − ∑I L ilog ( )i

L
26 , where L is the genome size, 26 is the alphabet size for avidian genomes, and 

ν(i) is the number of mutations that are neutral or beneficial (see17 for further explanation of this estimation). 
Thus, information content is a measure of the number of essential sites in a genome. The number of phenotypic 
traits a genotype possesses is calculated as the number of different boolean logic calculations it can perform.

Selection coefficients of mutations were calculated as the ratio of the mutant’s fitness to its ancestor’s fitness 
minus 1 (i.e., the relative change in fitness). Fitness in Avida is estimated as a genotype’s merit divided by its rep-
lication time: the number of instruction executions, i.e., SIPs, needed to successfully copy its genome. In other 
words, in a population consisting of genotypes with the same merit, an avidian’s fitness is simply the number of 
offspring generated per unit time (that is, per update).

The “traits-per-site-per-trait” measure is determined by performing knockout mutations at every site in the 
genome and then counting the number of traits that are lost due to each knockout mutation (lethal knockouts are 
not considered). This gives the number of traits that use each genomic site, and the average of this quantity over 
the length of the genome gives the overall number of traits encoded per site. The normalized trait/site/trait is then 
calculated by dividing the traits/site by the total number of traits evolved by the genome.
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