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Abstract.	 [Purpose] This study aimed to clarify the immediate effects of a combined transcutaneous electrical 
nerve stimulation and stretching protocol. [Subjects] Fifteen healthy young males volunteered to participate in this 
study. The inclusion criterion was a straight leg raising range of motion of less than 70 degrees. [Methods] Subjects 
performed two protocols: 1) stretching (S group) of the medial hamstrings, and 2) tanscutaneous electrical nerve 
stimulation (100 Hz) with stretching (TS group). The TS group included a 20-minute electrical stimulation period 
followed by 10 minutes of stretching. The S group performed 10 minutes of stretching. Muscle hardness, pressure 
pain threshold, and straight leg raising range of motion were analyzed to evaluate the effects. The data were col-
lected before transcutaneous electrical nerve stimulation (T1), before stretching (T2), immediately after stretching 
(T3), and 10 minutes after stretching (T4). [Results] Combined transcutaneous electrical nerve stimulation and 
stretching had significantly beneficial effects on muscle hardness, pressure pain threshold, and straight leg raising 
range of motion at T2, T3, and T4 compared with T1. [Conclusion] These results support the belief that transcu-
taneous electrical nerve stimulation combined with stretching is effective in reducing pain and decreasing muscle 
hardness, thus increasing range of motion.
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INTRODUCTION

One of the major purposes of physical therapy is improvement of muscle flexibility and consequently increase of the 
range of motion (ROM) of the affected joint. From the suite of manual skills available, joint range of motion exercises and 
stretching are more commonly selected. From the available selection of physical agents, thermal therapy and electrical 
stimulation therapy have been actively used to improve tightened soft tissue, alleviate pain, and reduce the muscle spasms 
that limit ROM. The aims of applying a physical agent and stretching are similar to each other, such as to decrease pain 
and aid relaxation; therefore, they are often used in combination with each other in order to be complementary and with 
the expectation of synergistic effects. Currently the main combination is thermotherapy and therapeutic exercises, such as 
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hot packs or therapeutic ultrasound with stretching. Thermotherapy modalities, when applied before therapeutic exercises, 
promote improvement in connective tissue (such as collagen fiber) extensibility; this improvement is thought to enhance the 
effect of stretching. When the pain is the primary complaint recorded and thus restricted ROM is present, transcutaneous 
electrical nerve stimulation (TENS) is initially applied to relieve the pain before the application of ROM exercises and 
stretching in the clinical setting.

In our previous study1), we clarified that TENS, when applied to the medial hamstrings in young healthy subjects, led to 
an increased pressure pain threshold (PPT), which resulted in decreased muscle hardness (MH) and an increased straight 
leg raising (SLR) range of motion(ROM). This is consistent with the findings of Espejo2), who applied interferential current 
through bipolar application with a frequency of 4 kHz and a frequency modulation amplitude of 100 Hz. They reported that 
their electrical stimulation group and stretching group had greater effects on improvement of knee extension range when 
compared with their control group.

When deep connective tissues, such as the skeletal muscle and the joint capsule, are injured, excitement of the nociceptor 
is induced, and this leads to hyperactivity in the muscle spindle and lowering of the muscle spindle threshold. This condition 
of increased muscle tone is called muscular guarding. With regards to circulatory dynamics, persistent muscle contraction 
induces a state of ischemia in the muscle, which produces algesic substances, such as inflammatory mediators, and induces 
excitation of the nociceptor3). Kubo4) stated that improvement in the ROM as caused by stretching accompanied changes in 
muscle-tendon unit viscoelasticity and increased pain tolerance at the end of the stretching range. When passively stretching 
muscles, increased pain would be a factor limiting ROM in addition to shortening of the muscle and soft tissue. Given 
the above, we hypothesized that TENS could enhance the stretching effect in a synergistic manner by decreasing MH and 
increasing both muscle flexibility and the pain threshold. The purpose of this study was to clarify the immediate effects of 
TENS in combination with stretching on MH, PPT, and the ROM in SLR in healthy individuals.

SUBJECTS AND METHODS

Fifteen healthy young males (age, 18–26 years; height, 168.8 ± 4.7 cm; body weight, 67.8 ± 13.7 kg) volunteered to 
participate in this study. The inclusion criteria were as follows: 1) no history of neuromuscular disease or musculoskeletal 
injury involving the lower extremities and 2) less than 70 degrees ROM in SLR. All subjects were notified of the procedures 
and purpose of this study, and informed written consent was obtained from all of the volunteers before initiation of the study. 
The protocol was approved by the Koriyama Tohto Academy Educational Foundation Ethics Committee (approval number: 
R-1401).

Subjects performed two protocols, which were 1) stretching alone (S group) and 2) TENS and stretching (TS group). The 
TS group received a 20-minute TENS application and immediately afterwards performed 10 minutes of stretching, while 
the S group completed only 10 minutes of stretching. Both protocols included 10-minute rest, periods with the subjects in 
the supine position before and after the protocols. Static stretching (i.e., stretching) was used as the stretching method in our 
study. Stretching was done at 90% of the maximum SLR ROM for 30 seconds followed by a 30-second rest a total of 10 
times over 10 minutes.

Electrical stimulation was generated via a TENS unit (EU-940, ITO Co., Ltd., Tokyo, Japan). The TENS parameters 
were s symmetrical biphasic pulse current waveform, 100 Hz frequency, and 200 μs pulse duration. TENS lasted for 20 
minutes. The stimulation intensity was set at 80% of the sense of pain threshold and in which a muscular contraction was 
also produced. TENS was delivered through two self-adhesive carbon rubber electrodes (5 cm × 9 cm) positioned over the 
medial hamstrings and attached to the middle portion between the ischial tuberosity and the popliteal region, and they were 
located 20  cm apart.

Three parameters were used for the experiment: PPT, soft tissue hardness as expressed by MH, and SLR ROM. The data 
were collected before TENS (T1), before stretching (T2, immediately after the end of TENS application for the TS group), 
immediately after stretching (T3), and 10 minutes after stretching was concluded (T4).

A digital clinometer was used to measure the SLR ROM. The clinometer was placed on the patellar ligament and adjusted 
to zero at the starting point of the SLR ROM, and then the maximum SLR ROM was measured manually. The knee and hip 
joints of the contralateral leg were maintained in full extension. For the measurements of MH and PPT, an Outcome Evalua-
tion System (OE-220, ITO Co., Ltd., Tokyo, Japan) was used5), and MH and PPT were measured on the medial hamstrings at 
an angle of 90% of the maximum SLR ROM. In order to maintain this angle, the distal part of the lower leg was suspended in 
a sling, and the sling was fixed at the position in which the traction force was applied perpendicular to the lower leg through 
a pulley (Fig. 1). MH and PPT were measured three times, and the mean values were calculated. The experimental room was 
controlled at a temperature of 25 °C and a humidity of 50%. The two protocols were performed on two separate occasions at 
least one day apart but no more than seven days apart. The order of testing was randomized.

Statistical analysis with a paired t-test was used to compare the differences in values at T1 in the TS group and at T2 in 
the S group. Additionally, a one-way repeated measures analysis of variance (ANOVA) was performed to determine the 
time-dependent changes (between T1, T2, T3, and T4) in each group, and a Bonferroni’s test was undertaken at the point at 
which a significant main effect was observed. The difference values were calculated based on T2 in the S group and T1 in 
the TS group. Difference value 1 (D1) indicates the difference between T2 and T3 in the S group or between T1 and T3 in 
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the TS group, while difference value 2 (D2) indicates the difference between T2 and T4 in the S group or between T1 and 
T4 in the TS group. These differences can be expressed as D1=T3−T2 and D2=T4−T2 for the S group and as D1=T3−T2 
and D2=T4−T2 for the TS group. Following calculation of the difference values, a paired t-test was performed to detect 
significant differences between the S and TS groups. IBM SPSS Statistics for Windows, version 22.0 (IBM Japan, Ltd., 
Tokyo, Japan), was used, and statistical significance was accepted for values of p < 0.05 in all analyses.

RESULTS

The changes in MH, PPT, and SLR ROM (mean ± SD) in the S and TS groups are shown in Table 1, 2, and 3. There was 
no significant difference between T2 in the S group and T1 in the TS group. Therefore, the starting values were relatively 
similar between the S group and the TS group for all three parameters.

In the S group, one-way repeated measures ANOVA revealed significant main effects in MH and SLR ROM (MH, F = 
11.07, p < 0.01; PPT, F = 2.07, p = 0.146; SLR, F = 66.50, p < 0.01). Multiple comparison revealed significant differences 
in T3 compared with T2 in MH (p < 0.01) and in T3 and T4 compared with T2 in SLR ROM (p < 0.01). On the other hand, 
there were significant main effects in MH, PPT, and SLR ROM in the TS group (MH, F = 65.54, p < 0.01; PPT, F = 107.56, 
p < 0.01; SLR, F= 162.40, p < 0.01). Multiple comparison showed significant differences in T2, T3, and T4 compared with 
T1 in all parameters (p < 0.01 except p < 0.05 at T4 in MH).

With regards to the results of MH, D1 in the S group was −0.2 ± 0.2 N, and D1 in the TS group was −0.5 ± 0.2 N; thus, 
there was a significant difference between the groups (p < 0.01). Similarly, D2 in the S group was −0.1 ± 0.1 N, and D2 in the 
TS group was −0.3 ± 0.2 N; thus, there was a significant difference between the groups (p < 0.01).

Secondly, the changes in PPT were as follows: D1 in the S group was 0.6 ± 1.2 N, and D1 in the TS group was 5.9 ± 2.0 
N; there was a significant difference between the groups (p < 0.01). Similar results were shown for D2. D2 in the S group 
was 0.1 ± 1.0 N, and D2 in the TS group was 2.6 ± 1.4 N; there was a significant difference between the groups (p < 0.01).

In terms of SLR ROM, D1 in the S group was 5.4 ± 2.0°, and D1 in the S group was 12.2 ± 2.8°; there was a significant 
difference between the groups (p < 0.01). Similarly, D2 in the S group was 4.5 ± 2.2°, and D2 in the TS group was 8.3 ± 1.9°; 
there was a significant difference between the groups (p < 0.01).

DISCUSSION

We examined the influence of TENS on muscle hardness and pressure pain threshold in a previous study1). As a new 
initiative, this study aimed to clarify the immediate effects of the combination of TENS, which is widely known to have a 
pain inhibitory effect, and stretching by using the three parameters of muscle hardness, pressure pain threshold, and SLR 
ROM. The main findings in this study show that the combination of TENS and stretching is more effective than stretching 
alone, since the results for all three parameters, muscle hardness, pressure pain threshold, and SLR ROM, in the TS group 
showed significantly beneficial changes compared with the S group.

A large number of studies have reported the pain inhibitory effect of TENS6–14). Previous studies10, 15, 16) have shown that 
the TENS parameter used in this study has a high hypoalgesic effect. As in these studies, the present study also revealed sig-
nificantly increased values for pressure pain threshold in the TS group, although the S group did not show such a significant 
change. Calculation of the percentage (the rate of change) of D1 based on T1 in the TS group (based on T2 in the S group) 
revealed that the TS group had a 41.0 ± 15.9% difference and that the S group had a 3.8 ± 7.9% difference in pressure pain 
threshold. From the above, the pain inhibitory effect of TENS and stretching when used in combination was readily recog-
nized, and the results indicated that stretching might not achieve the same amount of inhibitory effect when performed solely.

Fig. 1.  Block diagram of the experimental setup
In the position of 90% SLR ROM, the muscle hardness (MH) and pressure pain threshold (PPT) were 
measured on the medial hamstrings, and the measurement sensors were attached to the lower leg.
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There are several earlier reports that examined the method and time parameters and conditions of stretching17–23). Akagi17) 
reported that 2 minutes of stretching of the gastrocnemius significantly increased ROM and decreased muscle-tendon unit 
stiffness; however, it did not change the joint torque. Nakamura18) assessed passive torque as an index of muscle-tendon unit 
resistance and myotendinous junction displacement as an index of muscle extensibility using ultrasonography and a dyna-
mometer during 5 minutes of stretching. Their results suggested that stretching for more than 2 minutes effectively increased 
muscle extensibility, which in turn decreased muscle-tendon unit resistance. Matsuo19) and Umegaki20) also reported that 
5 minutes of stretching, the protocol for which comprised of 5 repeated 1-minute stretching periods with a 30-second rest 
period between each stretching period, decreased the stiffness of the hamstring’ muscle-tendon unit. Additionally, Magnus-
son21) also reported the effectiveness of 5 minutes of stretching in improving the flexibility of the hamstrings. Based on the 
above studies, the time set for stretching in this study (a total of 5 minutes of stretching over an allocated 10-minute period) 
seemed to be adequate to obtain a sufficient effect.

With regards to the actual method of stretching for the hamstrings, Umegaki24) studied the use of ultrasonic shear wave 
elastography and reported that adding hip rotation to the stretching position for the hamstrings (i.e., internal rotation for the 
medial hamstrings and external rotation for the lateral hamstrings) may not have a significant effect on muscle elongation 
of each hamstring. Given the above, we stretched the medial hamstrings at the intermediate position between internal and 
external rotation in the present study.

Regarding the application of a combined physical agent and stretching protocol, there are many studies that have reported 
on the combination of thermal therapy, such as hot packs, and stretching. A meta-analysis completed by Nakano25) reviewed 
12 randomized clinical trials involving 352 healthy participants and concluded that treatments combining thermal therapy 
and stretching improved ROM when compared with stretching alone. Additionally, they stated that this is due to increased 
collagen extensibility and reduced connective tissue viscosity and viscoelasticity of muscle fiber at higher temperatures as 
caused by the thermal therapy.

As for the combined usage of TENS and stretching, general clinical recommendations are as follows: stretching is applied 
after reducing pain by TENS in orthopedic disorders, and stretching is applied during or after electrically stimulating the 
antagonist of muscles displaying high levels of spasticity in central nervous system disorders26, 27). However, the mechanisms 
of their effects have not been fully clarified.

Hou et al.6) reported on the combination of physical agents and therapeutic exercises and stated that some combinations 
were effective for easing cervical myofascial pain and increasing cervical ROM. They compared five therapeutic combina-
tions of ischemic compression, TENS, stretching, interferential current or the myofascial release technique combined with 
hot packs and active ROM exercise. The results showed that a combination of a hot pack plus active ROM exercise coupled 
with TENS or interferential current was more effective for pain relief and that a combination of a hot pack plus active ROM 
exercise coupled with stretching or the myofascial release technique was more effective in increasing cervical ROM than 

Table 1.  Changes in MH of each group and comparison between groups 		  Mean±SD (N) n=15

T1 T2 T3 T4 D1 D2
 S group 3.6±0.5 3.4±0.4 3.5±0.4 −0.2±0.2 0.1±0.1
TS group 3.6±0.5 3.1±0.5 3.1±0.5 3.4±0.5 −0.5±0.2** −0.3±0.2**
S group: stretching alone; TS group: TENS and stretching
**D1&D2: S group vs. TS group (p<0.01)

Table 2.  Changes in PPT of each group and comparison between groups 		  Mean±SD (N) n=15

T1 T2 T3 T4 D1 D2
 S group 15.1±1.3 15.6±1.3 15.2±1.3 0.6±1.2 0.1±1.0 
TS group 14.7±1.9 21.9±1.9 20.6±2.3 17.3±1.1 5.9±2.0** 2.6±1.4**
S group: stretching alone; TS group: TENS and stretching
**D1&D2: S group vs. TS group (p<0.01)

Table 3.  Changes in SLR ROM of each group and comparison between groups 	     Mean±SD (degrees) n=15

T1 T2 T3 T4 D1 D2
 S group 65.3±2.4 70.7±3.0 69.8±2.8 5.4±2.0 4.5±2.2
TS group 64.8±1.8 73.2±3.2 76.9±4.1 73.1±0.4 12.2±2.8** 8.3±1.9**
S group: stretching alone; TS group: TENS and stretching
**D1&D2: S group vs. TS group (p<0.01)
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other combinations. These results partially support our findings, particularly regarding the results indicating a pain inhibitory 
effect caused by the combined usage of TENS and the therapeutic exercise. However, the precise influence of TENS on 
muscle hardness and ROM is not clear.

As for the effect of TENS on muscle hardness, our previous study15) showed that TENS significantly reduced muscle 
hardness values, although at 10 minutes after application, the reduction level was not as much as that immediately after 
application. In the present study, we could maintain the TENS effect for 10 minutes after application by adding stretching 
after TENS. The results show that the change rate of D1 for muscle hardness was −14.1 ± 4.7% in the TS group and −6.3 ± 
5.0% in the S group; the TS group had a significant decrease in the muscle hardness compared with the S group.

Regarding the SLR ROM, the change rates of D1 were 18.7 ± 4.0% and 8.0 ± 3.0% in the TS and S groups; thus there 
was almost a 19% increase in SLR ROM in the TS group. Espejo2) reported that interferential current and stretching both 
had significant effects on improvement of ROM in the knee joint compared with the control group, although there was 
almost no difference between the two interventions. The reason why a significant difference was not seen between the two 
interventions is likely due to the length of the interferential current application and stretching. In the study, the length of the 
stretching procedure was 80 seconds, which included 2 sets of 30-seconds of stretching and 10 seconds of rest. The length 
of electrotherapy also matched the procedure for stretching, i.e., a total of 80 seconds, which included 2 sets of 30-seconds 
of stimulation with 10 seconds of rest. In our experiment, we applied TENS for 20 minutes; therefore, this could have led to 
a significant effect compared with the previous study. Furthermore, the combined application in our study was found to be 
more effective for increasing hamstrings extensibility than a single solely applied protocol.

Passive ROM has been recognized as a less reliable index in assessment of improvement in muscle flexibility and the 
effects of stretching. This is because it tends to be affected by psychological factors, such as increased tolerance of pain and 
repeated extension stimulation28). Because of this, several measurement methods, such as measuring passive torque when 
moving a joint passively and measuring the amount of displacement of the muscle-tendon junction, have been developed 
recently as new tools for evaluating muscle flexibility and the effects of stretching. However, these methods require expen-
sive devices, such as an isometric dynamometer and ultrasonography; additionally, passive torque is generally used only as 
a parameter of limited joint movement. Nakamura29) reported that significant positive correlations were observed between 
muscle hardness and passive torque or displacement of the myotendinous junction and suggested that muscle hardness when 
measured by a muscle hardness meter is both an accurate index and an easy-to-use method. In our study, a muscle hardness 
meter was used to assess the changes in muscle hardness while maintaining the same SLR ROM before and after the interven-
tion. Since a significant decrease in muscle hardness was shown post intervention, it could be deduced that the intervention 
significantly increased muscle tissue flexibility.

In our previous study1), an increased pressure pain threshold was observed after applying TENS. Based on this finding, 
the mechanism of the decrease in muscle hardness might be explained as follows: firstly, decreased input from the sensory 
system caused by the pain inhibitory effect of TENS led to a decline in γ-motor neuron activity and thus a decline in muscle 
spindle sensitivity. Therefore, the overactivity of muscle tone was controlled, and this resulted in decreased muscular visco-
elasticity and an increase in ROM.

In addition to the above mechanism, further increased muscle flexibility resulting from stretching could be the reason for 
the significant increase in the SLR ROM. Increased muscle flexibility caused by stretching has been indicated to be due to an 
increase in the flexibility and movement of the aponeurosis and the connective tissue, such as the endomysium, perimysium, 
and epimysium, and not to be due to lengthening of muscle fiber30, 31).

There are several limitations in this study. Firstly, we did not investigate how the physical stimulation of TENS had 
influenced the connective tissue, including the perimysium and the epimysium, because of the parameters used in this study. 
Secondly, since the intensity of the electrical stimulation used in this study was set at a level that induced muscle contraction, 
electrical stimulation might have additionally produced local muscle fatigue. Thus, electrical stimulation might also influence 
the changes in muscle hardness. Furthermore, this study targeted healthy young males as subjects, and so further clinical 
study is required to clarify the effects of combined usage of TENS and stretching on elderly people and people with pain and 
muscle tone abnormalities.

We investigated the immediate outcomes caused by combined application of TENS and stretching on muscle hardness, 
pressure pain threshold, and SLR ROM. The findings in this study revealed that combined usage led to a significant decrease 
in muscle hardness, a significant increase in the pressure pain threshold, and a significant increase in SLR ROM when 
compared with stretching alone. Therefore, it is suggested that a combination of TENS and stretching is an effective method 
of increasing muscle flexibility.
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