
RESEARCH ARTICLE

SparkBWA: Speeding Up the Alignment of
High-Throughput DNA Sequencing Data
José M. Abuín1☯*, Juan C. Pichel1☯, Tomás F. Pena1☯, Jorge Amigo2,3☯

1Centro de Investigación en Tecnoloxías da Información (CITIUS), Universidade de Santiago de
Compostela, Santiago de Compostela, Spain, 2 Fundación Pública Galega de Medicina Xenómica
(SERGAS), Santiago de Compostela, Spain, 3Grupo Medicina Xenómica, Instituto de Investigación
Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain

☯ These authors contributed equally to this work.
* josemanuel.abuin@usc.es

Abstract
Next-generation sequencing (NGS) technologies have led to a huge amount of genomic

data that need to be analyzed and interpreted. This fact has a huge impact on the DNA

sequence alignment process, which nowadays requires the mapping of billions of small

DNA sequences onto a reference genome. In this way, sequence alignment remains the

most time-consuming stage in the sequence analysis workflow. To deal with this issue,

state of the art aligners take advantage of parallelization strategies. However, the existent

solutions show limited scalability and have a complex implementation. In this work we intro-

duce SparkBWA, a new tool that exploits the capabilities of a big data technology as Spark

to boost the performance of one of the most widely adopted aligner, the Burrows-Wheeler

Aligner (BWA). The design of SparkBWA uses two independent software layers in such a

way that no modifications to the original BWA source code are required, which assures its

compatibility with any BWA version (future or legacy). SparkBWA is evaluated in different

scenarios showing noticeable results in terms of performance and scalability. A comparison

to other parallel BWA-based aligners validates the benefits of our approach. Finally, an intu-

itive and flexible API is provided to NGS professionals in order to facilitate the acceptance

and adoption of the new tool. The source code of the software described in this paper is

publicly available at https://github.com/citiususc/SparkBWA, with a GPL3 license.

1 Introduction
The history of modern DNA sequencing starts more than thirty-five years ago. These years
have seen amazing growth in DNA sequencing capacity and speed, especially after the appear-
ance of next-generation sequencing (NGS) and massive parallel sequencing in general. NGS
has led to an unparalleled explosion in the amount of sequencing data available. For instance,
new sequencing technologies, such as Illumina HiSeqX™ Ten, generate up to 6 billion sequence
reads per run. Mapping these data onto a reference genome is often the first step in the
sequence analysis workflow. This process is very time-consuming and, although state-of-art

PLOSONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 1 / 21

a11111

OPEN ACCESS

Citation: Abuín JM, Pichel JC, Pena TF, Amigo J
(2016) SparkBWA: Speeding Up the Alignment of
High-Throughput DNA Sequencing Data. PLoS ONE
11(5): e0155461. doi:10.1371/journal.pone.0155461

Editor: Ruslan Kalendar, University of Helsinki,
FINLAND

Received: March 30, 2016

Accepted: April 30, 2016

Published: May 16, 2016

Copyright: © 2016 Abuín et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The SparkBWA
software is available at the GitHub repository https://
github.com/citiususc/SparkBWA. Input data are
available from the 1000 Genomes Project (http://
www.1000genomes.org).

Funding: This work was supported by Ministerio de
Economía y Competitividad (Spain) (http://www.
mineco.gob.es) grants TIN2013-41129-P and
TIN2014-54565-JIN. There was no additional external
funding received for this study.

Competing Interests: The authors have declared
that no competing interests exist.

https://github.com/citiususc/SparkBWA
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0155461&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/citiususc/SparkBWA
https://github.com/citiususc/SparkBWA
http://www.1000genomes.org
http://www.1000genomes.org
http://www.mineco.gob.es
http://www.mineco.gob.es

aligners were developed to efficiently deal with large amount of DNA sequences, the alignment
process still remains a bottleneck in bioinformatics analyses. In addition, NGS platforms are
evolving very quickly, pushing the sequencing capacity to unprecedented levels.

To address this challenge we propose to take advantage of parallel architectures using big
data technologies in order to boost performance and improve scalability of the sequence align-
ers. In this way, it will be possible to process huge amounts of sequencing data within a reason-
able time. In particular, Apache Spark [1] has been considered as the big data framework in
this work. Spark is a cluster computing framework which supports both in-memory and on-
disk computations in a fault tolerant manner using distributed memory abstractions known as
Resilient Distributed Datasets (RDDs). An RDD can be explicitly cached in memory across
cluster nodes and reused in multiple MapReduce-like parallel operations.

In this paper we introduce SparkBWA, a new tool that integrates the Burrows-Wheeler
aligner (BWA) [2] into the Spark framework. BWA is one of the most widely used alignment
tools for mapping sequence reads to a large reference genome. It consists of three different
algorithms for aligning short reads. SparkBWA was designed to meet three requirements. First,
SparkBWA should outperform BWA and other BWA-based aligners both in terms of perfor-
mance and scalability. Note that BWA has its own parallel implementation for shared-memory
systems. The second requirement is related to keep the compatibility of SparkBWA with future
and legacy versions of BWA. Since BWA is constantly evolving to include new functionalities
and algorithms, it is important for SparkBWA to be agnostic regarding the BWA version. This
is an important difference with respect to other existent tools based on BWA, which require
modifications of the BWA source code. Finally, NGS professionals demand solutions to per-
form sequence alignments efficiently in such a way that the implementation details are
completely hidden to them. For this reason SparkBWA provides a simple and flexible API to
handle all the aspects related to the alignment process. In this way, bioinformaticians only need
to focus on the scientific problem to deal with.

SparkBWA has been evaluated both in terms of performance and memory consumption,
and a thorough comparison between SparkBWA and several state-of-art BWA-based aligners
is also provided. Those tools take advantage of different parallel approaches as Pthreads, MPI,
and Hadoop to improve the performance of BWA. Performance results demonstrate the bene-
fits of our proposal.

This work is structured as follows: Section 2 explains the background of the paper. Section 3
discusses the related work. Section 4 details the design of SparkBWA and introduces its API.
Section 5 presents the experiments carried out to evaluate the behavior and performance of our
proposal together with a comparison to other BWA-based tools. Finally, the main conclusions
derived from the work are explained in Section 6.

2 Background

2.1 MapReduce programming model
MapReduce [3] is a programming model introduced by Google for processing and generating
large data sets on a huge number of computing nodes. A MapReduce program execution is
divided into two phases:map and reduce. In this model, the input and output of a MapReduce
computation is a list of key-value pairs. Users only need to focus on implementing map and
reduce functions. In the map phase, map workers take as input a list of key-value pairs and gen-
erate a set of intermediate output key-value pairs, which are stored in the intermediate storage
(i.e., files or in-memory buffers). The reduce function processes each intermediate key and its
associated list of values to produce a final dataset of key-value pairs. In this way, map workers
achieve data parallelism, while reduce workers perform parallel reduction. Note that

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 2 / 21

parallelization, resource management, fault tolerance and other related issues are handled by
the MapReduce runtime.

Apache Hadoop [4] is the most successful open-source implementation of the MapReduce
programming model. Hadoop consists, basically, of three layers: a data storage layer (HDFS—
Hadoop Distributed File System [5]), a resource manager layer (YARN—Yet Another Resource
Negociator [6]), and a data processing layer (Hadoop MapReduce Framework). HDFS is a
block-oriented file system based on the idea that the most efficient data processing pattern is a
write-once, read-many-times pattern. For this reason, Hadoop shows good performance with
embarrassingly parallel applications requiring a single MapReduce execution (assuming inter-
mediate results between map and reduce phases are not huge), and even for applications
requiring a small number of sequential MapReduce executions [7]. Note that Hadoop can also
efficiently handle jobs composed by one or more map functions by chaining several mappers
followed by a reducer function and, optionally, zero or more map functions, saving the disk I/
O cost between map phases. For more complex workflows, solutions as Apache Oozie [8] or
Cascading [9], among others, should be used.

The main disadvantage of these workflow managers is the loss of performance when HDFS
has to be used to store intermediate data. For example, an iterative algorithm can be expressed
as a sequence of multiple MapReduce jobs. Since different MapReduce jobs cannot shared data
directly, intermediate results have to be written to disk and read again from HDFS at the begin-
ning of the next iteration, with the consequent reduction in performance. It is worth noting
that even each iteration of the algorithm could consist of one or several MapReduce executions.
In this case, the degradation in terms of performance is even more noticeable.

2.2 Apache Spark
Apache Spark is a cluster computing framework designed to overcome the Hadoop limitations
in order to support iterative jobs and interactive analytics, originally developed at University of
California, Berkeley [1], now managed under the umbrella of the Apache Software Foundation.
Spark uses a master/slave architecture with one central coordinator (driver) and many distrib-
uted workers (executors). It supports both in-memory and on-disk computations in a fault tol-
erant manner by introducing the idea of Resilient Distributed Datasets (RDDs) [10]. An RDD
represents a read-only collection of objects partitioned across the cluster nodes that can be
rebuilt if a partition is lost. Users can explicitly cache an RDD in memory across machines and
reuse it in multiple MapReduce-like parallel operations. By using RDDs, programmers can per-
form iterative operations on their data without writing intermediary results to disk. In this
way, Spark is well-suited, for example, to machine learning algorithms.

RDDs can be created by distributing a collection of objects (e.g., a list or set) or by loading
an external dataset from any storage source supported by Hadoop, including the local file sys-
tem, HDFS, Cassandra [11], HBase [12], Parquet [13], etc. On created RDDs, Spark supports
two types of parallel operations: transformations and actions. Transformations are operations
on RDDs that return a new RDD, such as map, filter, join, groupByKey, etc. The resulting
RDD will be stored in memory by default, but Spark also supports the option of writing RDDs
to disk whenever necessary. On the other hand, actions are operations that kick off a computa-
tion, returning a result to the driver program or writing it to storage. Examples are collect,
count, take, etc. Note that transformations on RDDs are lazily evaluated, meaning that Spark
will not begin to execute until it sees an action.

A Spark application, at a high level, consists of a driver program which contains the applica-
tion’s main function and defines RDDs on the cluster, then applies transformations and actions
to them. A Spark program implicitly creates, from defined transformations and actions over

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 3 / 21

RDDs, a logical directed acyclic graph (DAG) of operations, which is converted by the driver
into a physical execution plan. This plan is then optimized, e.g., merging several map transfor-
mations, and individual tasks are bundled up and prepared to be sent to the cluster. The driver
connects to the cluster through a SparkContext. An executor or worker process is in charge of
effectively running the tasks on each node of the cluster.

Apache Spark provides both Python and Scala interactive shells, which let the user interact
with data that is distributed on disk or in memory across many machines. Apart from running
interactively, Spark can also be linked into applications in either Java, Scala, or Python. Finally,
we must highlight that Spark can run in local mode, in standalone mode on a cluster, or using
a cluster manager such as Mesos [14] or YARN [6].

2.3 Burrows-Wheeler aligner (BWA)
Burrows-Wheeler aligner (BWA) is a very popular open-source software for mapping sequence
reads to a large reference genome. In particular, it consists of three different algorithms: BWA-
backtrack [2], BWA-SW [15] and BWA-MEM [16]. The first algorithm is designed for short
Illumina sequence reads up to 100bp (base pairs), while the others are focused on longer reads.
BWA-MEM, which is the latest, is preferred over BWA-SW for 70bp or longer reads as it is
faster and more accurate. In addition, BWA-MEM has shown better performance than other
several state-of-art read aligners for mapping 100bp or longer reads.

As we have previously noted, sequence alignment is a very time-consuming process. For
this reason BWA has its own parallel implementation, but it only supports shared memory
machines. Therefore, scalability is limited by the number of threads (cores) and memory avail-
able in just one computing node.

Although BWA can read unaligned BAM [17] files, it typically accepts FASTQ format [18]
as input, which is one of the most common output formats for raw sequence reads. It is a plain
text format in such a way that every four lines describe a sequence or read. An example includ-
ing two reads is shown in Fig 1. The information provided per read is: identifier (first line),
sequence (second line), and the quality score of the read (fourth line). An extra field, repre-
sented by symbol ‘+’, is used as separator between the data and the quality information (third
line). BWA is able to use single-end reads (one input FASTQ file) and paired-end reads (two
input FASTQ files). When considering paired-end reads, two sequences corresponding to both
ends of the same DNA fragment are available. Both reads are included in different input files
using the same identifier and in the same relative location within the files. In this way, consid-
ering our example, the corresponding pair of sequence #2 will be located in line 5 of the other
input file. On the other hand, the output of BWA is a SAM (Sequence Alignment/Map) [17]
file, which is the standard format for storing read alignments against reference sequences. This
SAM file will be further required, for example, for performing variant discovery analysis.

Fig 1. FASTQ file format example.

doi:10.1371/journal.pone.0155461.g001

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 4 / 21

3 RelatedWork
We can find in the literature several interesting tools based on the Burrows-Wheeler aligner
which exploit parallel and distributed architectures to increase the BWA performance. Some of
these works are focused on big data technologies like SparkBWA, but they are all based on
Hadoop. Examples are BigBWA [19], Halvade [20] and SEAL [21]. BigBWA is a recent
sequence alignment tool developed by the authors which shows good performance and scal-
ability results with respect to other BWA-based approaches. Its main advantage is that it does
not require any modification of the original BWA source code. This characteristic is shared by
SparkBWA in such a way that both tools keep the compatibility with future and legacy BWA
versions.

SEAL uses Pydoop [22], a Python implementation of the MapReduce programming model
that runs on the top of Hadoop. It allows users to write their programs in Python, calling BWA
methods by means of a wrapper. SEAL only works with a particular modified version of BWA.
Since SEAL is based on BWA version 0.5, it does not support the new BWA-MEM algorithm
for longer reads.

Halvade is also based on Hadoop. It includes a variant detection phase which is the next
stage after the sequence alignment in the DNA sequencing workflow. Halvade calls BWA from
the mappers as an external process which may cause timeouts during the Hadoop execution if
the task timeout parameter is not adequately configured. Therefore, a priori knowledge about
the execution time of the application is required. Note that setting the timeout parameter to
high values causes problems in the detection of actual timeouts, which reduces the efficiency of
the fault tolerance mechanisms of Hadoop. To overcome this issue, as it is explained in further
sections, SparkBWA uses Java Native Interface (JNI) to call the BWAmethods.

Another approach is applying standard parallel programming paradigms to BWA. For
instance, pBWA [23] uses MPI to parallelize BWA in order to carry out the alignments on a
cluster. We must highlight that pBWA lacks fault tolerant mechanisms in contrast to
SparkBWA. In addition, pBWA, as well as SEAL, does not support the BWA-MEM algorithm.

Several solutions try to take advantage of the computing power of the GPUs to improve the
performance of BWA. This is the case of BarraCUDA [24], which is based on the CUDA pro-
gramming model. It requires the modification of the BWT (Burrows Wheeler Transform)
alignment core of BWA to exploit the massive parallelism of GPUs. Unlike SparkBWA which
supports all the algorithms included in BWA, BarraCUDA only supports the BWA-backtrack
algorithm for short reads. It shows improvements up to 2× with respect to the threaded version
of BWA. It is worth to mention that due to some changes in the BWT data structure of most
recent versions of BWA, BarraCUDA is only compatible with BWTs generated with BWA ver-
sions 0.5.x. Other important sequence aligners (not based on BWA) that make use of GPUs are
CUSHAW [25], SOAP3 [26] and SOAP3-dp [27].

Some researchers have focused on speeding up the alignment process using the new Intel
Xeon Phi coprocessor (Intel Many Integrated Core architecture—MIC). For example, mBWA
[28], which is based on BWA, implements the BWA-backtrack algorithm for the Xeon Phi
coprocessor. mBWA allows to use concurrently both host CPU and coprocessor in order to
perform the alignment, reaching speedups of 5× with respect to BWA. Another solution for
the MIC coprocessors can be found in [29]. A third aligner that takes advantage of the MIC
architecture is MICA [30]. Authors claim that it is 5× faster than threaded BWA using 6 cores.
Note that, unlike SparkBWA, this tool is not based on BWA.

Another researchers exploit fine-grain parallelism in FPGAs (Field Programmable Gate
Arrays) to increase the performance of several short-read aligners including some based on
BWT [31–33].

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 5 / 21

Finally, a recent work uses Spark to increase the performance of one of the best well-known
alignment algorithms, the Smith-Waterman algorithm [34]. Performance results demonstrate
the potential of Spark as framework for this type of applications.

4 SparkBWA
This section introduces a new tool called SparkBWA, which integrates the Burrows-Wheeler
aligner into the Spark framework. As stated in the Introduction, SparkBWA was designed with
the following three objectives in mind:

• It should boost BWA and other aligners based on BWA in terms of performance and
scalability.

• It should be version-agnostic regarding BWA, which assures its compatibility with future or
legacy BWA versions.

• An intuitive and flexible API should be provided to NGS professionals with the aim of facili-
tating the acceptance and adoption of the new tool.

Next, a detailed description of the design and implementation of SparkBWA is provided,
together with the specification of the high-level API.

4.1 System design
SparkBWA workflow consists of three main stages: RDDs creation, map, and reduce phases. In
the first phase input data are prepared to feed the map phase where the alignment process is,
strictly speaking, carried out. In particular, RDDs are created from the FASTQ input files,
which are stored using HDFS. Note that, in this work, we assume HDFS as distributed file sys-
tem. In this way, data is distributed across the computing nodes so it can be processed in paral-
lel in the map phase. The read identifier in the FASTQ file format is used as key in the RDDs
(see the example of Fig 1). In this way, key-value pairs generated from an input file have the fol-
lowing appearance<read_id, read_content>, where read_content contains all the information
of the corresponding sequence with read_id identifier. These RDDs will be used afterwards in
the map phase. This approach works properly when considering single-end reads, that is, when
there is only one FASTQ input file.

However, SparkBWA should also support paired-end reads. In that case, two RDDs will be
created, one per input file, and distributed among the nodes. Spark distributes RDDs in such a
way that is not guaranteed that the i-th data split (partition) of both RDDs will be processed by
the same mapper. In this way, a mapper cannot process paired-end reads since they are always
located in the same i-th data partition of both RDDs. This behavior can be observed in the
RDD creation stage of the example displayed in Fig 2(a). Two solutions are proposed in order
to overcome this issue:

• Join: This approach is based on using the Spark join operation, which is a transformation that
merges two RDDs together by grouping elements with the same key. This solution is illus-
trated in Fig 2(a). Since the key is the same for paired reads in both input files, the result after
the join operation will be an unique RDD with the format:<read_id, Tuple<read_content1,
read_content2>> (RDDUNSORTED in the example). The resulting RDD after the join opera-
tion does not preserve the previous order of the reads from the FASTQ files. This is not a
problem because mappers will process the paired-end reads independently from each other.
However, Spark provides the sortByKey transformation to sort RDD records according to its
key. In the example, the new RDD created after applying this operation is RDDSORTED. We
must highlight that the sortByKey operation is expensive in terms of memory consumption.

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 6 / 21

For this reason this step is optional in the SparkBWA dataflow and users should enable it spe-
cifically, if they want to get a sorted output.

• SortHDFS: A new approach is presented in order to avoid the join and sortByKey operations
(see Fig 2(b)). This solution can be considered as a preprocessing stage which requires read-
ing and writing to/from HDFS. In this way, FASTQ input files are accessed directly by using
the HDFS Hadoop library from the Spark driver program. Paired-end reads (that is, those
with the same identifier in the two files) are merged into one record in a new HDFS file. As
BWA requires to distinguish between both sequences in the pair, a separator string is used to
facilitate the subsequent parsing process in the mappers. Afterwards, an RDD is created from
the new file (RDDSORTED in the figure). In this way, key-value pairs have the following for-
mat<read_id, merged_content>. This solution performs several time consuming I/O opera-
tions, but saves a lot of memory in comparison to the join & sortByKey approach as we
illustrate in Section 5.

Once RDDs are available, the map phase starts. Mappers will apply the sequence alignment
algorithm from BWA on the RDDs. However, calling BWA from Spark is not straightforward
as BWA source code is written in C language and Spark only allows to run code in Scala, Java
or Python. To overcome this issue SparkBWA takes advantage of the Java Native Interface
(JNI), which allows the incorporation of native code written in languages as C and C++ as well
as Java code.

The map phase was designed using two independent software layers. The first one corre-
sponds to the BWA software package, while the other is responsible to process RDDs, pass the
input data to the BWA layer and collect the partial results from the map workers. We must
highlight that mappers only perform calls to the BWAmain function by means of JNI. This
design avoids any modification of the original BWA source code, which assures the compatibil-
ity of SparkBWA with future or legacy BWA versions. In this way, our tool is version-agnostic
regarding BWA. Note that this approach is similar to the one adopted in the BigBWA tool [19].

Fig 2. SparkBWAworkflow for paired-end reads using (a) Join and (b) SortHDFS approaches.

doi:10.1371/journal.pone.0155461.g002

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 7 / 21

Another advantage of the two-layers design is that the alignment process could be per-
formed using two levels of parallelism. The first level corresponds to the map processes distrib-
uted across the cluster. In the second level each individual map process is parallelized using
several threads, taking advantage of the BWA parallel implementation for shared memory
machines. We refer to this mode of operation as hybrid mode. This mode can be enabled by the
user through the SparkBWA API.

On the other hand, BWA uses a reference genome as input in addition to the FASTQ files.
All mappers require the complete reference genome, so it has to be shared among all comput-
ing nodes using NFS or stored locally in the same location of all the nodes (e.g., using Spark
broadcast variables).

Once the map phase is complete, SparkBWA creates one output SAM file in HDFS per
launched map process. Finally, users could merge all the outputs into one file choosing to exe-
cute an additional reduce phase.

4.2 SparkBWA API
One of the requirements of SparkBWA is to provide bioinformaticians an easy and powerful
way to perform sequence alignments using a big data technology as Apache Spark. With this
goal in mind a basic API is provided. It allows NGS professionals to focus only in the scientific
problem, while design and implementation details of SparkBWA are completely transparent to
them.

SparkBWA can be used from the Spark shell (Scala) or console. Table 1 summarizes the API
methods to set the SparkBWA options in the shell together with their corresponding console
arguments. For example, it is possible to choose the number of data partitions, how RDDs are
created, or the number of threads used per mapper (hybrid mode).

1. Spark Shell: Spark comes with an interactive shell that provides a simple way to learn the
Spark API, as well as a powerful tool to analyze data interactively. It is available in either
Scala (which runs on the Java VM and is thus a good way to use existing Java libraries) or
Python. Current SparkBWA version only supports the Scala shell.
An example of how to perform an alignment using SparkBWA from the Spark shell is

Table 1. API methods and console arguments to set the SparkBWA options.

Function Default Console argument Description

setUseReducer
(boolean)

False -r Use a reducer to generate one output SAM file.

setPartitionNumber
(int)

Auto none |-partitions
<num>

By default, data is split into pieces of HDFS block size. Otherwise, input data is
split into num partitions.

setSortFastqReads
(int)

Join none |-sort
|-sorthdfs

Set the RDDs creation approach for paired-end reads: Join (0), Join & sortByKey
(1) or SortHDFS (2).

setNumThreads(int) 1 -threads <num> If num > 1, hybrid parallelism mode is enabled in such a way that each map
process is executed using num threads.

setAlgorithm(int) BWA-MEM -mem |-aln |-bwasw Set the alignment algorithm: BWA-MEM (0), BWA-backtrack (1), BWA-SW (2)

setPairedReads
(boolean)

Paired -paired |-single Use single-end (one FASTQ input file) or paired-end reads (two FASTQ input
files).

setIndexPath(string) – -index <prefix> Set the path to the reference genome (mandatory option).

setInputPath(string) – Positional Set the path (in HDFS) to the FASTQ input file (mandatory option for single-end
and paired-end reads).

setInputPath2(string) – Positional Set the path (in HDFS) to the second FASTQ input file (mandatory option for
paired-end reads).

setOutputPath(string) – Positional Set the location (in HDFS) where the output SAM file/s will be stored.

doi:10.1371/journal.pone.0155461.t001

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 8 / 21

illustrated in Fig 3. First, the user should create a BwaOptions object to specify the
options desired in order to execute SparkBWA (line 1). In this example only the mandatory
options are set (lines 3–7). Refer to Table 1 for additional options.
Once the options are specified, a new BwaInterpreter should be created (line 9). At
that moment RDDs are created from the input files according to the implementation
detailed previously in Section 4.1. It is worth to mention that the RDDs creation is lazy eval-
uated, which means that Spark will not begin to execute until an action is called. This action
could be, for example, obtaining explicitly the input RDD using the getDataRDDmethod
(line 10). This method is very useful in the sense that it allows the users to apply to the input
RDDs all the transformations and actions that the Spark API provides in addition to user-
defined functions. Note that using the getDataRDDmethod is not necessary to perform
the sequence alignment with SparkBWA. Another action that triggers the RDDs creation is
runAlignment, which will execute the complete SparkBWA workflow including the map
and reduce phases (line 11).

2. Console: It is also possible to run SparkBWA from the console, that is, using the spark-
submit command. An example is shown in Fig 4. spark-submit provides a variety of
options that let the user control specific details about a particular run of an application
(lines 2–6). In our case, the user also needs to pass as arguments the SparkBWA options to
Spark (lines 7–11). All the flags supported by SparkBWA are detailed in Table 1.

Fig 3. Example running SparkBWA from the Spark Shell (Scala).

doi:10.1371/journal.pone.0155461.g003

Fig 4. Example running SparkBWA from the console.

doi:10.1371/journal.pone.0155461.g004

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 9 / 21

Therefore, SparkBWA provides an easy and flexible interface in such way that users could
perform a sequence alignment writing just a couple of lines of code in the Spark shell, or using
the standard spark-submit tool from the console.

5 Evaluation
In this section SparkBWA is evaluated in terms of performance, scalability, and memory con-
sumption. First, a complete description of the experimental setup is provided. Next,
SparkBWA is analyzed in detail paying special attention to the creation of RDDs and its differ-
ent modes of operation (regular and hybrid). Finally, in order to validate our proposal, a com-
parison to several BWA-based aligners is also provided.

5.1 Experimental Setup
SparkBWA was tested using data from the 1000 Genomes Project [35]. The main characteris-
tics of the input datasets are shown in Table 2. Number of reads refers to the number of
sequences to be aligned to the reference genome. The read length is expressed in terms of the
number of base pairs (bp).

As the alignment can be performed for single or paired-ended reads, it is needed to deter-
mine which one is going to be used during the evaluation. As the paired-ended DNA sequenc-
ing reads provide superior alignment across DNA regions containing repetitive sequences
reads, it is the one that is considered in this work. In this way, each dataset consists of two
FASTQ files.

Experiments were carried out on a six-node cluster. Each node consists of four AMD
Opteron 6262HE processsors (4×16 cores) with 256 GiB of memory (i.e., 4 GiB per core).
Nodes are connected through a 10GbE network. The Hadoop and Spark versions used are 2.7.1
and 1.5.2, respectively, running on a CentOS 6.7 platform. OpenMPI 4.4.7 was used in the
experiments that require MPI. The cluster was configured assigning about 11 GiB of memory
per YARN container (map and reduce processes) in such a way that a maximum of 22 contain-
ers per node can be executed concurrently. This memory configuration allows each SparkBWA
container to execute one BWA process, including the memory required to store the reference
genome index. Note that the master node in the cluster is also used as computing node.

The behavior of SparkBWA is compared to several state of the art BWA-based aligners. In
particular, we have considered the tools detailed in Table 3. A brief description of these tools is
provided in Section 3. pBWA and SEAL only support the BWA-backtrack algorithm because
both are based on BWA version 0.5 (2009). For fair comparison with these tools, SparkBWA
obtains its performance results for the BWA-backtrack algorithm also using BWA version 0.5.
In the case of BWA-MEM, three different aligners are evaluated: BigBWA, Halvade and BWA
(shared-memory threaded version). For the BWA-MEM performance evaluation, the latest
available BWA version at the moment of writing the paper is used (version 0.7.12, December
2014). We must highlight that all the time results shown in this section were calculated as the
average value (arithmetic mean) of twenty executions.

Table 2. Main characteristics of the input datasets from the 1000 Genomes Project.

Tag Name Number of reads Read length (bp) Size (GiB)

D1 NA12750/ERR000589 12×106 51 3.4

D2 HG00096/SRR062634 24.1×106 100 11.8

D3 150140/SRR642648 98.8×106 100 48.3

doi:10.1371/journal.pone.0155461.t002

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 10 / 21

5.2 Performance Evaluation
5.2.1 RDDs creation. The first stage in the SparkBWA workflow is the creation of the

RDDs, which can include a sorting phase (see Section 4.1). Two different approaches were con-
sidered to implement this phase: Join and SortHDFS. The first one is based on the Spark join
operation, and includes an additional optional step to sort the input paired-end reads by key
(sortByKey operation). The latter approach requires reading and writing to/from HDFS. As we
pointed out previously, this solution can be considered as a preprocessing stage. Both solutions
have been evaluated in terms of the overhead considering different datasets. Results are dis-
played in Fig 5.

The performance of the Join approach (with and without the sortByKey transformation)
depends on the number of map processes, so this operation was evaluated using 32 and 128
mappers. As the number of mappers increases, the sorting time improves because the size of

Table 3. Algorithms and BWA-based aligners evaluated.

Algorithm Tools Parallelization Technology

BWA-backtrack pBWA [23] MPI

SEAL [21] Hadoop

SparkBWA Spark

BWA-MEM BWA [16] Pthreads

BigBWA [19] Hadoop

Halvade [20] Hadoop

SparkBWA Spark

doi:10.1371/journal.pone.0155461.t003

Fig 5. Overhead of the RDDs sorting operation considering different datasets.

doi:10.1371/journal.pone.0155461.g005

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 11 / 21

the data splits computed by each worker is smaller. This behavior was observed for all the data-
sets, especially when D3 is considered.

The overhead for all the approaches, as it was expected, increases with the size of the dataset.
However, the increment rate is higher for SortHDFS. For example, sorting D3 is 10× slower
than sorting D1, while the Join approach with and without sortByKey is at most only 5× and 7×
slower respectively. Note that D3 is more than 14× bigger than D1 (see Table 2).

The Join approach is always better in terms of overhead, especially as the number of map
processes increases. For example, sorting D3 takes only 1.5 minutes with 128 mappers (join
only), which means a speedup of 8.7× with respect to SortHDFS. It can also be observed that
sorting the RDDs by key consumes extra time. In particular, the overhead means on average
doubling the time required by the sorting process when only the join transformation is
performed.

On the other hand, speed is not the only parameter that should be taken into account when
performing the RDDs sorting. In this way, memory consumption has also been analyzed. In
order to illustrate the behavior of both sorting approaches we have considered D3 as dataset.
Fig 6 shows the memory used by a map process during the sorting operation period.

According to the results, the Join approach always consumes more memory than SortHDFS.
This is caused by the join and sortByKey Spark operations on the RDDs, which both are in-
memory transformations. It is especially relevant the differences observed when the elements
of the RDDs are sorted by key with respect to applying only the join operation. In this way, the
sortByKey operation consumes about 3 GiB extra per mapper for this dataset, which means
increasing more than 30% the memory required by SparkBWA in this phase. Note that when
considering 32 workers the maximum memory available per container is reached. The memory
used by 128 workers is lower because RDDs are split into smaller pieces with respect to consid-
ering 32 workers. On the other hand, SortHDFS requires a maximum of 4 GiB to preprocess

Fig 6. Memory consumed by SparkBWA during the RDDs sorting operation when considering dataset
D3.

doi:10.1371/journal.pone.0155461.g006

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 12 / 21

the dataset in the example. In this way, SortHDFS is the best choice if the memory resources
are limited or not enough to perform the Join operation (with or without sortByKey). Note that
the overall behavior illustrated in Fig 6 agrees with the observations for the other datasets.

5.2.2 Hybrid mode. As stated in Section 4.1, the design of SparkBWA in two software lay-
ers allows to use several threads per worker in such a way that the alignment process is per-
formed taking advantage of two levels of parallelism. In this way, SparkBWA has two modes of
operation: regular and hybrid. The hybrid mode refers to using more than one thread per map
process, while the regular behavior executes each mapper sequentially.

The memory used by each mapper when hybrid mode is enabled increases with the number
of threads involved in the computation. However, since the index reference genome required
by BWA is shared among threads, this increase is moderate. This behavior is illustrated in Fig
7, where BWA-MEM is executed using different number of threads with a small split of D1 as
input. It can be observed that the difference between the memory used by one SparkBWAmap-
per considering regular and hybrid mode with 8 threads is only 4 GiB. It means an increase of
about 30% in the total memory consumed, while the threads per mapper grows by a factor of 8.

So, taking into account that our experimental platform allows 22 containers per node with
11 GiB of maximum memory, SparkBWA in hybrid mode for this example could use all the 64
cores in the node, e.g., running 16 mappers and 4 threads/mapper. This is not the case of the
regular mode, which only allows to use a maximum of 22 cores of the node. Therefore, the
hybrid mode can be very useful in scenarios where the computing nodes consist of a high num-
ber of cores but, due to memory restrictions, only a few of them can be used.

Next, we evaluate the performance of SparkBWA using both modes of operation. Experi-
ments were conducted using the BWA-MEM algorithm and considering 2 and 4 threads per
map process when hybrid mode is enabled. Performance results are shown in Fig 8 for all the
datasets and using different number of mappers. There are no results for the 128 mappers with
4 threads/mapper case because it implies that 512 cores are necessary for an optimal execution,
while our cluster only consists of 384 cores.

Fig 7. Memory consumed by a worker process executing the BWA-MEM algorithmwith different
threads.

doi:10.1371/journal.pone.0155461.g007

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 13 / 21

Several conclusions can be extracted from the performance results. SparkBWA shows a
good scalability with the number of mappers, especially in the regular mode (that is, when each
mapper is computed sequentially). Assuming the same number of mappers, more threads per
mapper in the hybrid mode is only beneficial for the biggest dataset (D3). This behavior points
out that the benefits of using more threads in the computations do not compensate the over-
head caused by their synchronization.

Fig 8. Execution times obtained by SparkBWA using regular and hybrid modes of operation for the BWA-MEM algorithm.

doi:10.1371/journal.pone.0155461.g008

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 14 / 21

On the other hand, considering the cores used in the computation (#threads × #mappers
cores), we can observe that the regular mode performs better than the hybrid one. For instance,
points A, B and C in Fig 8(b) were obtained using the same number of cores. SparkBWA in reg-
ular mode (point C) clearly outperforms the hybrid version. This behavior is observed in most
of the cases. In this way, as we have indicated previously, SparkBWA hybrid mode should be
the preferred option only in those cases where limitations in memory do not allow to use all
the cores in each node.

Table 4 summarizes the results of SparkBWA in terms of performance for all the datasets. It
shows the minimum time required by SparkBWA to perform the alignment on our hardware
platform, the number of mappers used, the speed measured as the number of pairs aligned per
second and also the corresponding speedup with respect to the sequential execution of BWA.
The sequential times are respectively 258, 496 and 5,940 minutes for D1, D2 and D3. In the
particular case of D3 it means more than 4 days of computation. It is worth noting that using
SparkBWA this time was reduced to less than an hour reaching speedups higher than 125×.

Finally, we verified the correctness of SparkBWA for regular and hybrid modes by compar-
ing their output with the one generated by BWA (sequential version). We only found small dif-
ferences in the mapping quality scores (mapq) on some uniquely mapped reads (i.e., reads with
quality greater than zero). Therefore, the mapping coordinates are identical for all the cases
considered. Differences affect from 0.06% to 1% of the total number of uniquely mapped reads.
Small differences in the mapq scores are expected because the quality calculation depends on
the insert size statistics, which are calculated on sample windows on the input stream of
sequences. These sample windows are different for each read in BWA (sequential) and any
other parallel implementation that splits the input into several pieces (SEAL, pBWA, Halvade,
BWA-threaded version, SparkBWA, etc.). In this way, any parallel BWA-based aligner will
obtain slightly different mapping quality scores with respect to the sequential version of BWA.
For instance, SEAL reports differences on average in 0.5% of the uniquely mapped reads [21].

5.2.3 Comparison to other aligners. Next, a performance comparison among different
BWA-based aligners and SparkBWA is shown. The evaluated tools are enumerated in Table 3
together with their corresponding parallelization technology. Some of them take advantage of
classical parallel paradigms, as Pthreads or MPI, while the others are based on big data technol-
ogies as Hadoop. All the experiments were performed using SparkBWA in regular mode. For
comparison purposes all the graphs in this subsection include the corresponding results con-
sidering ideal speedup with respect to the sequential execution of BWA.

Two different algorithms for paired-end reads have been considered: BWA-backtrack and
BWA-MEM. The evaluation of the BWA-backtrack algorithm was performed using the

Table 4. Summary of the performance results of SparkBWA.

Dataset Mode of operation No. of mappers Time (minutes) Pairs aligned/s Speedup

D1 regular 128 4.3 46,512 60×

hybrid (2 th/map) 128 3.8 52,632 67.9×

hybrid (4 th/map) 96 4.1 48,780 62.9×

D2 regular 128 6.9 58,213 71.9×

hybrid (2 th/map) 128 5.5 73,030 90.2×

hybrid (4 th/map) 96 5.7 70,468 87.0×

D3 regular 128 69.4 23,727 85.6×

hybrid (2 th/map) 128 47.5 34,667 125.0×

hybrid (4 th/map) 96 47.3 34,813 126.2×

doi:10.1371/journal.pone.0155461.t004

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 15 / 21

following aligners: pBWA, SEAL and SparkBWA. When paired reads are used as input data,
BWA-backtrack consists of three phases. First, the sequence alignment must be performed for
one of the input FASTQ files. Afterwards, the same action is applied to the other input file.
Finally, a conversion to the SAM output format is performed using the results of the previous
stages. SparkBWA and SEAL take care of the whole workflow in such a way that it is
completely transparent to the user. Note that SEAL requires a preprocessing stage to prepare
the input files, so this extra time was included in the measurements. On the other hand, pBWA
requires to perform each phase of the BWA-backtrack algorithm independently despite they
are executed in parallel. In this way, pBWA times were calculated as the sum of each phase
time. No preprocessing is performed by pBWA.

As BWA-backtrack was especially designed for shorter reads (<100 bp), we have considered
D1 as input dataset but, for completeness, D2 is also included in the comparison. Fig 9 shows
the alignment times using different number of mappers. In this case, each map process uses
one core, so both terms, mappers and cores, are equivalent. Results show that SparkBWA
clearly outperforms SEAL and pBWA for all the cases. As we have mentioned previously,
SEAL times include the overhead caused by the preprocessing phase which takes on average
about 1.9 and 2.9 minutes for D1 and D2 respectively. This overhead has a large impact on per-
formance, especially for the smallest dataset.

The corresponding speedups obtained by the aligners for BWA-backtrack are displayed in
Fig 10. As reference we have used the BWA sequential time. Results confirm the good behavior
of SparkBWA with respect to SEAL and pBWA. For instance, SparkBWA reaches speedups up
to 57× and 77× for D1 and D2 respectively. The maximum speedups achieved by SEAL are
only about 31× and 42×, while the corresponding values for pBWA are 46× and 59×. In this
way, SparkBWA is on average 1.9× and 1.4× faster than SEAL and pBWA respectively.

Finally, the BWA-MEM algorithm is evaluated considering the following tools: BWA,
BigBWA, Halvade, and SparkBWA. Fig 11 shows the corresponding execution times for all the
datasets varying the number of mappers (cores). BWA uses Pthreads in order to parallelize the

Fig 9. Execution times considering several BWA-based aligners running the BWA-backtrack algorithm (axes are in log scale).

doi:10.1371/journal.pone.0155461.g009

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 16 / 21

alignment process, so it can only be executed on a single cluster node (64 cores). Both BigBWA
and Halvade are based on Hadoop, and they require a preprocessing stage to prepare the input
data for the alignment process. BigBWA requires, on average, 2.4, 5.8 and 23.6 minutes to pre-
process each dataset, whereas Halvade spends 1.8, 6.6 and 22.7 minutes, respectively. Prepro-
cessing is carried out sequentially for BigBWA, while Halvade is able to perform it in parallel.
This overhead does not depend on the number of mappers used in the computations. For com-
parison fairness, the overhead of this phase is included in the corresponding execution times of
both tools, since times for BWA and SparkBWA encompass the whole alignment process.

Performance results show that BWA is competitive with respect to Hadoop-based tools
(BigBWA and Halvade) when 32 mappers are used, but its scalability is very poor. Using more
threads in the computations do not compensate the overhead caused by their synchronization
unless the dataset was big enough. BigBWA and Halvade show a better overall performance
with respect to BWA. Both tools behave in a similar way, and differences in their performance
are small. Finally, SparkBWA outperforms all the considered tools. In order to illustrate the
benefits of our proposal it is worth noting that, for example, SparkBWA is on average 1.5×
faster than BigBWA and Halvade when using 128 mappers, and 2.5× with respect to BWA con-
sidering 64 mappers.

Performance results in terms of speedup with respect to the sequential execution of BWA
are shown in Fig 12. The scalability problems of BWA are clearly revealed in the graphs.
Hadoop-based tools show a better scalability but it is not enough to get closer to SparkBWA.
The average speedup is respectively 50× and 49.2× for BigBWA and Halvade using 128 work-
ers. This value increases up to 72.5× for SparkBWA. Note that the scalability of SparkBWA is
especially good when considering the biggest dataset (Fig 12(c)), reaching a maximum speedup
of 85.6×. In other words, the parallel efficiency is 0.67.

In this way, SparkBWA has proven to be very consistent in all the scenarios considered,
improving the results obtained by other state of the art BWA-based aligners. In addition, we
must highlight that SparkBWA behaves better as the size of the dataset increases.

Fig 10. Speedup considering several BWA-based aligners running the BWA-backtrack algorithm (axes are in log scale).

doi:10.1371/journal.pone.0155461.g010

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 17 / 21

6 Conclusions
In this work we introduce SparkBWA, a new tool that exploits the capabilities of a Big Data
technology as Apache Spark to boost the performance of the Burrows-Wheeler Aligner
(BWA), which is a very popular software for mapping DNA sequence reads to a large reference
genome. BWA consists of several algorithms especially tuned to deal with the alignment of
short reads. SparkBWA was designed in such a way that no modifications to the original BWA

Fig 11. Execution times considering several BWA-based aligners running the BWA-MEM algorithm (axes are in log scale).

doi:10.1371/journal.pone.0155461.g011

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 18 / 21

source code are required. In this way, SparkBWA keeps the compatibility with any BWA soft-
ware release, future or legacy.

The behavior of SparkBWA was evaluated in terms of performance, scalability and memory
consumption. In addition, a thorough comparison between SparkBWA and several state of the
art BWA-based aligners was performed. Those tools take advantage of different parallel
approaches as Pthreads, MPI, and Hadoop to improve the performance of BWA. The evalua-
tion shows that when considering the algorithm to align shorter reads (BWA-backtrack),
SparkBWA is on average 1.9× and 1.4× faster than SEAL and pBWA. For longer reads and the

Fig 12. Speedup considering several BWA-based aligners running the BWA-MEM algorithm (axes are in log scale).

doi:10.1371/journal.pone.0155461.g012

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 19 / 21

BWA-MEM algorithm, the average speedup achieved by SparkBWA with respect to BigBWA
and Halvade tools is 1.4×.

Finally, it is worth noting that most of the next-generation sequencing (NGS) professionals
are not experts in Big Data or High Performance Computing. For this reason, in order to make
SparkBWA more suitable for these professionals, an easy and flexible API is provided which
will facilitate the adoption of the new tool by the community. This API allows to manage the
sequence alignment process from the Apache Spark shell, hiding all the computational details
to the users.

The source code of SparkBWA is publicly available at the GitHub repository (https://github.
com/citiususc/SparkBWA).

Acknowledgments
This work was supported by Ministerio de Economía y Competitividad (Spain—http://www.
mineco.gob.es) grants TIN2013-41129-P and TIN2014-54565-JIN. There was no additional
external funding received for this study.

Author Contributions
Conceived and designed the experiments: J. Abuín JCP TFP J. Amigo. Performed the experi-
ments: J. Abuín. Analyzed the data: J. Abuín JCP. Contributed reagents/materials/analysis
tools: J. Abuín JCP TFP J. Amigo. Wrote the paper: J. Abuín JCP TFP J. Amigo.

References
1. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: Cluster Computing with Working

Sets. In: Proc. of the 2Nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud); 2010.
p. 10–10.

2. Li H, Durbin R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinfor-
matics. 2009; 25(14):1754–1760. doi: 10.1093/bioinformatics/btp324 PMID: 19451168

3. Dean J, Ghemawat S. MapReduce: Simplified Data Processing on Large Clusters. In: Proceedings of
the 6th Conference on Symposium on Opearting Systems Design & Implementation—Volume 6.
OSDI’04. Berkeley, CA, USA: USENIX Association; 2004. p. 10–10.

4. Apache Hadoop home page;. http://hadoop.apache.org/.

5. Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop Distributed File System. In: Pro. of the IEEE
26th Symposium on Mass Storage Systems and Technologies (MSST); 2010. p. 1–10.

6. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al. Apache Hadoop YARN: Yet
Another Resource Negotiator. In: Proc. of the 4th Annual Symposium on Cloud Computing (SOCC);
2013. p. 5:1–5:16.

7. Srirama SN, Jakovits P, Vainikko E. Adapting Scientific Computing Problems to Clouds Using MapRe-
duce. Future Generation Computer Systems. 2012; 28(1):184–192. doi: 10.1016/j.future.2011.05.025

8. Islam M, Huang AK, Battisha M, Chiang M, Srinivasan S, Peters C, et al. Oozie: towards a scalable
workflow management system for Hadoop. In: Proceedings of the 1st ACM SIGMODWorkshop on
Scalable Workflow Execution Engines and Technologies. ACM; 2012. p. 4.

9. Cascading home page;. http://www.cascading.org/.

10. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient Distributed Datasets: A
Fault-tolerant Abstraction for In-memory Cluster Computing. In: Proc. of the 9th USENIX Conference
on Networked Systems Design and Implementation; 2012. p. 2–2.

11. Apache Cassandra home page;. http://cassandra.apache.org/.

12. Apache HBase home page;. http://hbase.apache.org/.

13. Apache Parquet home page;. http://parquet.apache.org/.

14. Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz R, et al. Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center. In: Proc. of the 8th USENIX Conference on Networked
Systems Design and Implementation; 2011. p. 295–308.

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 20 / 21

https://github.com/citiususc/SparkBWA
https://github.com/citiususc/SparkBWA
http://www.mineco.gob.es
http://www.mineco.gob.es
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://hadoop.apache.org/
http://dx.doi.org/10.1016/j.future.2011.05.025
http://www.cascading.org/
http://cassandra.apache.org/
http://hbase.apache.org/
http://parquet.apache.org/

15. Li H, Durbin R. Fast and Accurate Long-Read Alignment with Burrows-Wheeler Transform. Bioinformat-
ics. 2010; 26(5):589–595. doi: 10.1093/bioinformatics/btp698 PMID: 20080505

16. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv:13033997v2. 2013;.

17. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. doi: 10.1093/bioinformatics/btp352
PMID: 19505943

18. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with
quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research. 2010; 38(6):1767–
1771. doi: 10.1093/nar/gkp1137 PMID: 20015970

19. Abuín JM, Pichel JC, Pena TF, Amigo J. BigBWA: Approaching the Burrows—Wheeler Aligner to Big
Data Technologies. Bioinformatics. 2015; 31(24):4003–4005.

20. Decap D, Reumers J, Herzeel C, Costanza P, Fostier J. Halvade: Scalable Sequence Analysis with
MapReduce. Bioinformatics. 2015; 31(15):2482–2488. doi: 10.1093/bioinformatics/btv179 PMID:
25819078

21. Pireddu L, Leo S, Zanetti G. SEAL: A Distributed Short Read Mapping and Duplicate Removal Tool.
Bioinformatics. 2011; 27(15):2159–2160. doi: 10.1093/bioinformatics/btr325 PMID: 21697132

22. Leo S, Zanetti G. Pydoop: a Python MapReduce and HDFS API for Hadoop. In: Proc. of 19th Sympo-
syum on HPDC; 2010. p. 819–825.

23. Peters D, Luo X, Qiu K, Liang P. Speeding Up Large-Scale Next Generation Sequencing Data Analysis
with pBWA. Journal of Applied Bioinformatics & Computational Biology. 2012; 1(1):1–6.

24. Klus P, Lam S, Lyberg D, Cheung MS, Pullan G, McFarlane I, et al. BarraCUDA—a fast short read
sequence aligner using graphics processing units. BMC Research Notes. 2012; 5:27. doi: 10.1186/
1756-0500-5-27 PMID: 22244497

25. Liu Y, Schmidt B, Maskell DL. CUSHAW: a CUDA compatible short read aligner to large genomes
based on the Burrows-Wheeler transform. Bioinformatics. 2012; 28(14):1830–1837. doi: 10.1093/
bioinformatics/bts276 PMID: 22576173

26. Liu CM, Wong TKF, Wu E, Luo R, Yiu SM, Li Y, et al. SOAP3: Ultra-fast GPU-based parallel alignment
tool for short reads. Bioinformatics. 2012; 28(6):878–879. doi: 10.1093/bioinformatics/bts061 PMID:
22285832

27. Luo R, Wong T, Zhu J, Liu CM, Zhu X, Wu E, et al. SOAP3-dp: Fast, Accurate and Sensitive GPU-
Based Short Read Aligner. PLoS ONE. 2013; 8(5). doi: 10.1371/journal.pone.0065632

28. Cui Y, Liao X, Zhu X, Wang B, Peng S. mBWA: A Massively Parallel Sequence Reads Aligner. In: 8th
Int. Conference on Practical Applications of Computational Biology & Bioinformatics. vol. 294 of
Advances in Intelligent Systems and Computing; 2014. p. 113–120.

29. You L, Congdon C. Building and Optimizing BWA ALN 0.5.10 for Intel Xeon Phi Coprocessors;. https://
github.com/intel-mic/bwa-aln-xeon-phi-0.5.10.

30. Luo R, Cheung J, Wu E, Wang H, Chan SH, LawWC, et al. MICA: A fast short-read aligner that takes
full advantage of Many Integrated Core Architecture (MIC). BMC Bioinformatics. 2015; 17:7.

31. Arram J, Tsoi KH, LukW, Jiang P. Hardware Acceleration of Genetic Sequence Alignment. Reconfigur-
able Computing: Architectures, Tools and Applications Lecture Notes in Computer Science. 2013;
7806:13–24.

32. Sogabe Y, Maruyama T. An acceleration method of short read mapping using FPGA. In: International
Conference on Field-Programmable Technology (FPT); 2013. p. 350–353.

33. Waidyasooriya H, Hariyama M. Hardware-Acceleration of Short-read Alignment Based on the Burrows-
Wheeler Transform. IEEE Transactions on Parallel and Distributed Systems. 2015; PP(99):1–1.

34. Zhao G, Ling C, Sun D. SparkSW: Scalable Distributed Computing System for Large-Scale Biological
Sequence Alignment. In: 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid); 2015. p. 845–852.

35. Altshuler D et al. A map of human genome variation from population-scale sequencing. Nature. 2010;
467:1061–1073. doi: 10.1038/nature09534 PMID: 20981092

SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data

PLOS ONE | DOI:10.1371/journal.pone.0155461 May 16, 2016 21 / 21

http://dx.doi.org/10.1093/bioinformatics/btp698
http://www.ncbi.nlm.nih.gov/pubmed/20080505
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/nar/gkp1137
http://www.ncbi.nlm.nih.gov/pubmed/20015970
http://dx.doi.org/10.1093/bioinformatics/btv179
http://www.ncbi.nlm.nih.gov/pubmed/25819078
http://dx.doi.org/10.1093/bioinformatics/btr325
http://www.ncbi.nlm.nih.gov/pubmed/21697132
http://dx.doi.org/10.1186/1756-0500-5-27
http://dx.doi.org/10.1186/1756-0500-5-27
http://www.ncbi.nlm.nih.gov/pubmed/22244497
http://dx.doi.org/10.1093/bioinformatics/bts276
http://dx.doi.org/10.1093/bioinformatics/bts276
http://www.ncbi.nlm.nih.gov/pubmed/22576173
http://dx.doi.org/10.1093/bioinformatics/bts061
http://www.ncbi.nlm.nih.gov/pubmed/22285832
http://dx.doi.org/10.1371/journal.pone.0065632
https://github.com/intel-mic/bwa-aln-xeon-phi-0.5.10
https://github.com/intel-mic/bwa-aln-xeon-phi-0.5.10
http://dx.doi.org/10.1038/nature09534
http://www.ncbi.nlm.nih.gov/pubmed/20981092

