Skip to main content
. 2016 May 16;11(5):e0154406. doi: 10.1371/journal.pone.0154406

Table 4. Diagnostic values of combined PET biomarkers and clinical assessments in predicating Alzheimer’s disease progression.

Variables AUC 95%CI Sensitivity (%) Specificity (%) Accuracy (%) Compared with the combined variable
Z statistics P level
NC convert
ADAScogTOTALMOD 0.782 0.723–0.834 53.3 97.7 94.8 2.582 0.0098**
PosPrecuneus of FDG 0.722 0.659–0.779 60.0 87.4 85.6 1.324 0.1855
Parietal of FDG 0.804 0.747–0.854 66.7 83.3 82.2 0.860 0.3900
Model A 0.877 0.827–0.916 80.0 94.9 93.9
MCI convert
ADAScogTOTALMOD 0.898 0.861–0.927 86.2 85.4 85.5 2.587 0.0097**
MMSE 0.916 0.882–0.943 83.6 85.1 84.9 2.202 0.0277*
PosCingulate of FDG 0.726 0.676–0.772 54.4 79.9 75.7 5.127 <0.0001**
Model B 0.932 0.901–0.956 96.4 81.2 83.6
MMSE 0.870 0.759–0.942 77.8 78.8 78.7 1.173 0.2409
MedTemporal of PiB 0.759 0.632–0.859 88.9 57.4 61.9 1.989 0.0467*
Model C 0.915 0.814–0.971 77.8 90.4 88.5

Note: NC: cognitively normal control (NC), MCI: mild cognitive impairment, ADAS-cog: Alzheimer’s Disease Assessment Scale-Cognitive Sub-scale, AUC: area under curve, PosCingulate: posterior cingulate; PosPrecuneus: posterior precuneus. The 3 logistic regression models are listed below in detail: Model A: Logit(P) = 1.624+0.284*(ADAScogTOTALMOD)+7.832*FDG(PosPrecuneus)-17.957*FDG(Parietal); Model B: Logit(P) = 15.467+0.084*(ADAScogTOTALMOD)-0.553* (MMSE)-3.950*FDG (PosCingulate); Model C: Logit(P) = 3.847–0.634* (MMSE)+7.192*11C-PiB (MedTemporal).

* p<0.05

** p<0.01.