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Abstract

We previously established that spectroscopic microscopy can quantify subdiffraction-scale 

refractive index (RI) fluctuations in a label-free dielectric medium with a smooth surface. 

However, to study more realistic samples, such as biological cells, the effect of rough surface 

should be considered. In this Letter, we first report an analytical theory to synthesize microscopic 

images of a rough surface, validate this theory by finite-difference time-domain (FDTD) solutions 

of Maxwell’s equations, and characterize the spectral properties of light reflected from a rough 

surface. Then, we report a technique to quantify the RI fluctuations beneath a rough surface and 

demonstrate its efficacy on FDTD-synthesized spectroscopic microscopy images, as well as 

experimental data obtained from biological cells.

We have previously established that, despite the fundamental diffraction limit of optical 

microscopy, three-dimensional subdiffraction-scale refractive-index (RI) fluctuations 

internal to a linear, label-free, weakly scattered dielectric medium can be detected in the far 

zone with spectroscopic microscopy [1]. The light scattered from RI fluctuations within an 

inhomogeneous sample interferes with a strong reflection from the air-sample interface, and 

the resulting interferogram is recorded. The expected value of intensity variance  in the 

spectral domain of acquired images quantifies the statistics of RI fluctuations and senses 

structures at any length scale, limited only by the signal-to-noise ratio [2]. Thus,  can 

quantify the subdiffractional structures in biological cells (macromolecular complexes and 

organelles) that were previously inaccessible using conventional microscopy and 

spectroscopy techniques.

In our previous work [1,2], we have shown that  quantifies internal structure within an 

inhomogeneous sample with a flat surface. However, in most practical cases the sample 
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surface is not flat. In case of rough surface, the information about a sample’s internal 

structure contained in its reflected-light spectral signature is confounded by the spectrum of 

the light reflected from its rough surface (which serves as the reference wave). Hence, the 

effectiveness of detecting internal RI fluctuations could be limited by the sample’s surface 

roughness.

Although light scattering from rough surfaces has been investigated [3,4], the spectral 

characteristics of rough surface reflectance at a far-field image plane have not been well 

described. Here, we investigate how random nanoscale height variations of the sample 

impact the ability of spectroscopic microscopy to quantify the RI fluctuations beneath the 

surface. We develop a new method of signal analysis that allows measuring RI fluctuations 

internal to rough samples.

This Letter is presented in the following order: (1) a theoretical foundation used to 

synthesize spectroscopic microscope images of rough surfaces is introduced and rigorously 

validated by finite-difference time-domain (FDTD) computational solutions of Maxwell’s 

equations [5]; (2) the spectral signature of surface roughness is characterized by analyzing 

synthesized spectroscopic microscope images of rough surfaces with a range of roughness 

levels; (3) a method to measure internal RI fluctuations for media having rough surfaces is 

proposed; and (4) its performance is tested using FDTD simulations as well as experimental 

data from human buccal mucosa cells.

We first represent the sample as a homogenous dielectric medium having a refractive index n 
and a rough surface with random height variations. For simplicity, the spatial correlation of 

height variations is described by an exponential function:

(1)

where r represents the radial distance along the x–y plane and h represents the height. The 

statistics of surface roughness can be characterized by two parameters: the height variance 

 and correlation length lch.

Figure 1 illustrates an example of a rough surface having random height variations generated 

using MATLAB. An x-polarized plane wave with wavenumber ki and electric field vector Ei 

impinges on the rough surface from free space and is scattered. The scattered light 

propagates along ks at angle (θ, ϕ) with an electric field vector Es perpendicular to ks. ki and 

ks form the scattering plane. Es can be decomposed to Eθ (parallel to the scattering plane) 

and Eϕ (perpendicular to the scattering plane).

Next, we assess the scattering amplitude by Kirchhoff approximation (KA). KA was initially 

used to describe scattering from surfaces with large length scales (lcs > λ) [4], but has been 

extended to dielectrics with subdiffractional scales (lcs < λ) [6]. The validity of KA is 

dependent on n, σh, lch, and the angles of illumination and observation [6]. Thus, it is 

unclear whether KA applies to the present circumstances (n = 1.53, σh = 10–50 nm, and lch 

= 60–240 cm). The ranges of σh and lch were selected to include (but not be limited to) those 

of human buccal mucosa cells, as measured by atomic force microscopy (AFM). Referring 
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to Chapter 3 of [3], we note that the scattered electric field in the far zone can be calculated 

as

(2)

where A = −π|Ei| ln n is a constant, k represents the wavenumber in vacuum, sin2 χ = 1 − 

sin2 θ cos2 ϕ is the polarization factor, and F and Δ represent the Fourier transform and the 

Laplacian operators, respectively. n(r) equals n below the surface and n0 above the surface.

The scattered field is then focused onto an image plane with a moderate numerical aperture 

(NA) of 0.6 [7]:

(3)

where Eimg represents the field at the image plane (x′, y′) with wavenumber k in the vacuum, 

Ωimg represents the solid angle limited by the NA, and sx and sy are the direction cosines (sx, 

sy) = (cos ϕ sin θ ; sin ϕ sin θ). The image of the rough surface Ih(x′, y′, k) = |Eimg(x′, y′, k)|2 

is normalized by that of a smooth surface with the same RI, i.e., by intensity in the absence 

of roughness.

To validate that KA applies to the selected roughness levels, we compared KA-predicted 

spectroscopic microscope images with those synthesized by FDTD solutions of Maxwell’s 

equations. FDTD simulations were performed using Angora [8], an open-source FDTD 

software package developed in our lab.

We establish that, for all tested levels of surface roughness, the KA-synthesized microscope 

images agreed very well with those synthesized by FDTD, with coefficients of determination 

(R2) exceeding 0.8. Figures 2(a)–2(d) illustrate the high level of agreement (R2 = 0.92) of 

the FDTD- and KA-synthesized grayscale microscope images of a rough surface (σh = 35 

nm, lch = 170 nm). Moreover, an excellent pixel-specific match is observed between 

wavelength-dependent spectra of rough surface reflectance predicted by FDTD and KA [as 

illustrated in Fig. 2(f)].

To study the spectral signature of the rough surface reflectance, we average the image 

spectra Ih(x′, y′, k) over the surface area and multiple samples to obtain a unique 

characteristic spectrum (mean spectrum) for each combination of σh and lch [Fig. 3(c)]. By 

analyzing the mean spectra, we observed that, regardless of surface roughness levels, the 

intensity decreases with k [Figs. 3(a) and 3(b)]. Further, we compared the Fourier transform 

of Ih(x′, y′, k) with that of In(x′, y′, k), the reflectance spectrum from a smooth 

inhomogeneous sample. We find that Fk{Ih(x′, y′, k)} contains predominantly low-frequency 

components and rapidly decays at higher frequencies, while Fk{In(x′, y′, k)} is distributed 

along all frequencies bounded by the thickness of the sample [Fig. 3(d)]. Analysis of these 

spectral characteristics of surface roughness establishes the foundation for the development 

of techniques to measure internal RI fluctuations in media having rough surfaces.
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We next consider the case where a sample has RI fluctuations underlying a rough surface. 

The internal RI fluctuations have an exponential form of spatial correlation function, 

described by the correlation length lcn and variance . Our goal is to extract the spectral 

variance component that describes the internal RI fluctuations ( ) from the wavelength-

resolved microscope image of the sample I(x′, y′, k). By estimating , we can quantify 

the statistics of RI fluctuations at the nanoscale. For clarity, we denote  to represent the 

expected value of spectral variance directly measured from I(x′, y′, k) and  to represent 

the estimation of  from samples having rough surfaces.

We first present analytical equations to represent I(x′, y′, k) reflected from an 

inhomogeneous sample with smooth and rough surfaces. Ignoring the energy loss during 

light transmitting through the top surface of the sample, the microscope image intensity for a 

random media with a smooth surface can be expressed as

(4)

where Γ01 is the amplitude Fresnel reflectance coefficient and Im denotes “the imaginary 

part of.” n1D(r) denotes nΔ(r) (zero-mean RI fluctuations normalized by the average n) 

convolved with the point spread function of the microscope. The expected value of the 

recorded spectral variance is proportional to . For smooth surfaces, .

In the case when the surface of the inhomogeneous sample is rough, the reflectance from the 

air-sample interface becomes wavelength- and position-dependent. Therefore, the image 

intensity becomes

(5)

By analyzing (5), one sees that, in order to obtain , we must acquire Is(x′, y′, k) first. 

With a known surface profile, Is(x′, y′, k) can be accurately determined by KA or FDTD. 

Without surface information, one should seek a signal processing approach to estimate Is(x′, 
y′, k) from I(x′, y′, k). Based on our previous analysis, the first term on the right-hand side 

contains predominantly low-frequency components. The second term is an interference term 

that has higher frequency components, multiplied by . Therefore, it is possible 

to separate Is(x′, y′, k) by fitting I(x′, y′, k) with low-frequency functions at each individual 

pixel (x′, y′). Here, we propose to use second-order polynomial fitting to acquire Is(x′, y′, k). 

Once Is(x′, y′, k) is obtained,  may be readily estimated from Eq. (5).

We then evaluate the efficacy of the proposed method via a challenge to distinguish samples 

with different lcn and the same surface profile. The test was performed in the following 
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sequence. First, 2 μm thick inhomogeneous media with smooth surfaces were generated 

numerically with σn = 0.033, and lcn = 20 nm for one group (N =10) and 100 nm for another 

(N = 10). FDTD simulations were performed to obtain the spectroscopic microscopic 

images. For each group,  was calculated and averaged over 25 pixels per sample and 10 

samples per group. This is the spectral variance caused only by RI fluctuations (no influence 

from the rough surface), and the difference of  between lcn of 20 and 100 nm represents 

the baseline for the power of spectroscopic microscopy to distinguish different lcn. As 

expected, Σn of lcn 100 nm is significantly higher than that of 20 nm [Fig. 4(b), p < 0.001].

Thereafter, the same media were generated with rough surfaces (σh = 35 nm and lch = 170 

nm). FDTD simulations were performed to obtain the spectroscopic microscopic images, 

and  and  were calculated. Figure 4(a) illustrates second-order polynomial fits to 

image spectra from inhomogeneous media having smooth and rough surfaces. The results 

showed that the proposed method ( ) allowed the difference in internal structure to be 

identified [Fig. 4(c), p < 0.001]. Note that this approach did not disturb the ability of 

distinguishing different lcn for media with smooth surfaces [Fig. 4(b), p < 0.001]. Moreover, 

 were close to Σn [Figs. 4(b) and 4(c)] with acceptable error (11% for lcn of 20 nm and 

7% for 100 nm).

We further investigated the validity of the proposed approach by evaluating  from 

homogenous samples having rough surfaces ( ). Using the FDTD, we found that, for 

λ = 500–700 nm, NA = 0.6, and sample thickness L > 0.8 μm, the proposed method holds 

for a wide range of parameters: σh = 10–35 nm, lch = 60–240 nm, σn > 0.03, and lcn > 20 

nm.

Lastly, we illustrate the efficacy of the proposed method experimentally by identifying 

nanoscale structural alterations within human buccal mucosa cells during development of 

lung cancer. Histologically (microscopically) normal buccal epithelium is known to undergo 

genetic and epigenetic alterations during the progression of lung cancer [9]. This implies 

that the buccal nanoscale organization in lung cancer patients may be distinct from that of 

healthy individuals. Herein, we use spectroscopic microscopy, followed by the spectral 

analysis method developed above, to quantify and compare the nanoscale structure within 

buccal cells of patients with and without lung cancer. AFM measurements on these fixed 

buccal cells revealed that L = 0.8–1.5 um, σh = 19.7 ± 5.1 nm, and lch = 167 ± 36 nm. σn of 

biological tissue is estimated 0.04–0.10 [10]. Similarly, after collecting spectroscopic 

microscopy images from 23 patient samples (30 cells each),  and  were calculated. 

Our results showed that the recorded spectral variance by itself is identical between the two 

groups. However, when the spectral contribution from the samples surface roughness is 

removed, a significant difference in the buccal intracellular nanoscale structures between 

patients with and without lung cancer is revealed ( , p < 0.01, Fig. 5).
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We conclude that the second-order polynomial fitting method accurately separates the 

spectral variance component caused by internal RI fluctuations from that caused by the 

rough surface. We demonstrate that  is a roughness-independent measurement of RI 

fluctuations within an inhomogeneous sample, which was validated by FDTD for all 

roughness levels tested (including smooth surface).

In this Letter, we validated the precision of KA for modeling light scattering from rough 

surfaces of biological cells. With the characteristic mean spectra obtained from 

spectroscopic microscopic images of homogenous samples having rough surfaces, we 

described the signature of surface roughness on the spectral component of microscopic 

images. Furthermore, we developed a method for detecting RI fluctuations in media with 

rough surfaces. This Letter enables spectroscopic microscopy measurement of 

nanoarchitectural alterations beneath rough surfaces in biological cells, leading to more 

accurate identification of multiple human cancers.

The analysis and technique reported in this Letter have two primary limitations. First, the 

autocorrelation of the random surface was modeled as exponential. It is possible that 

surfaces of biological cells have different types of autocorrelation functions. Second, the 

accuracy of predicting  relies upon an appropriate fitting for Is(x′, y′, k). Although 

second-order polynomial fitting was demonstrated to have considerable accuracy, there may 

be more accurate methods. Potential alternatives include various types of filters and 

windows.
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Fig. 1. 
Geometry of a rough surface.
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Fig. 2. 
Comparisons of (a), (c) FDTD-synthesized and (b), (d) KA-synthesized microscope images 

of a rough surface with σh = 35 nm and lch = 170 nm: λ = 400 nm for (a) and (b); λ = 800 

nm for (c) and (d). (e) Height map of the same surface. (f) Comparative FDTD-and KA-

synthesized center pixel (x0, y0) spectra.
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Fig. 3. 
(a) Mean spectra for a fixed lch of 150 nm and σh from 10–50 nm. (b) Mean spectra for a 

fixed σh of 35 nm and lch from 60–240 nm. (c) Mean spectra are calculated by averaging 

over pixels in the red circle and further averaging over 10 samples. (d) Averaged Fourier 

transforms of Ih(x′, y′, k) (surface) and In(x′, y′, k) (RI fluctuations). The frequencies of 

spectra are translated into the depths from surface.
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Fig. 4. 
(a) Example of image spectra from the same pixel of the same medium having smooth and 

rough surfaces. The dash lines represent second-order polynomial fits for Is(x′, y′, k); 

comparison of estimated Σn from inhomogeneous media with lcn of 20 and 100 nm, 

calculated from sample with smooth surfaces (b) or rough surfaces (c), without ( ) or with 

( ) second-order polynomial fitting.
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Fig. 5. 
(a) Example of bright field reflectance image of a human buccal mucosa cell. (b) 

Performance of  and  in distinguishing the buccal intracellular structure between 

patients with and without lung cancer. The outline within the cell in (a) indicates the region 

of interest.
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