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We show that visualizing large molecular and clinical datasets
enables discovery of molecularly defined categories of highly similar
patients. We generated a series of linked 2D sample similarity plots
using genome-wide single nucleotide alterations (SNAs), copy
number alterations (CNAs), DNA methylation, and RNA expression
data. Applying this approach to the combined glioblastoma (GBM)
and lower grade glioma (LGG) The Cancer Genome Atlas datasets,
we find that combined CNA/SNA data divide gliomas into three
highly distinct molecular groups. The mutations commonly used in
clinical evaluation of these tumors are regionally distributed in
these plots. One of the three groups is a mixture of GBM and LGG
that shows similar methylation and survival characteristics to
GBM. Altogether, our approach identifies eight molecularly defined
glioma groups with distinct sequence/expression/methylation pro-
files. Importantly, we show that regionally clustered samples are
enriched for specific drug targets.
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The primary brain tumors were originally classified histologi-
cally by Bailey and Cushing in 1926 (1), named for the CNS

cell types that they resembled, and subsequently graded by the
appearance of histological structures such as pseudopalisades and
vascular proliferation that correlated with outcome (2). More re-
cently, those diagnoses have been embellished by additional mo-
lecular characterization, including ki67 staining for proliferation,
MGMT methylation status predicting response to temozolomide
(3), single copy loss of regions of ch1p and ch19q found in the
oligodendrogliomas [predictive of a better outcome in lower grade
glioma (LGG)] (4), IDH1 mutations that are common in LGG are
predictive of a better outcome when found in glioblastoma (GBM)
and associated with the CpG island methylator phenotype (CIMP)
(5), and ATRX and p53 mutations that when found in IDH1
mutant tumors predict a worse outcome (6, 7). In addition, new
molecularly based classification systems have emerged in the past
decade such as a methylation profile-based classification of the
gliomas into CIMP and non-CIMP tumors with significant dif-
ferences in survival between groups and an expression-based di-
vision of the non-CIMP GBMs into three or four subclasses (8, 9).
None of the currently available molecular strategies use the

entire collection of data available to classify the tumors. Rather,
they build on, and modify, existing classifications. However, current
technology allows the very detailed measurement of multiple types
of data. In fact, the The Cancer Genome Atlas (TCGA) glioma
databases provide access to measurements of whole exome se-
quence, copy number across the genome, whole genome methyl-
ation profiles, and RNA expression by RNA-seq in a cohort of
more than 1,100 grade 4 (GBM) and LGGs (10, 11). The key ob-
stacle to integrating all of these datasets to classify the gliomas in a
meaningful way has been designing a method to relate disparate
types of high-dimensional data, and the inability to visualize this
kind of data across large numbers of patients simultaneously.
Here, we present a visual integration approach for multiple

diverse molecular datasets across large numbers of patients in
such a way as to be meaningful for researchers and clinicians who

may not have immediate access to experts in computational bi-
ology (discussed in SI Appendix). We use whole genome copy
number, exome sequence, gene expression, and genome-wide
methylation data to classify the combined GBM and LGG
datasets from the TCGA in an unbiased manner. We find that
based on genome-wide sequence and methylation data, the gli-
omas cluster into three basic groups, and the known molecular
characteristics of gliomas currently used clinically are easily
reproduced by this approach. Given the ability of our approach
to reproduce the known aspects of gliomas as a validation, we
then use this approach to make novel observations about the
fundamental molecular characteristics of gliomas.

Results
To enable intuitive exploration of high-dimensional glioma data,
we used classical multidimensional scaling (12) (MDS) to visu-
alize each data type as a series of two-dimensional scatterplots.
MDS characterizes samples in terms of their similarity to each
other, and preserves high-dimensional distance (dissimilarity)
relationships as much as possible. Moreover, distances between
samples in the full-dimensional space can be defined by a wide
variety of methods, including (1-correlation)/2, Minkowski, and
complex measures. This feature of MDS allows us to tailor ap-
propriate similarity/distance measures for each type of data, and
to explore the effectiveness of alternate measures. Additionally,
sample similarity can be measured using global, genome-wide
terms or subsets of whole-genome data (gene or probe sets). For
example, patient similarity can be explored in terms of the ex-
pression of sets of genes related to specific aspects of biology.
Finally, simultaneous coloring in of tumors on multiple similarity
plots enables visual integration of diverse data types such as spe-
cific mutations, gene expression levels, or diagnostic categories.

Significance

We demonstrate that computational visualization of large-
scale molecular and clinical datasets can delineate molecularly
defined groups of highly similar patients that are well sepa-
rated from other subgroups. We show that our approach is
applicable to multiple data types (sequence, expression, DNA
methylation), and that it provides the ability to discover clus-
ters of tumors with targetable lesions. Our methods are gen-
erally applicable to all diseases and provide an intuitive means
for physicians and bench scientists to work directly with “big”
biomedical data.
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Visualizing Previous Knowledge About Gliomas. We devised dis-
tance measures for whole exome single nucleotide alterations
(SNAs) and whole genome copy number alterations (CNAs),
and their combination (CNA/SNA) and visualized the GBM and
LGG tumors by MDS (SI Appendix). Three distinct groups or
clusters were produced (Fig. 1A). Coloring the tumors by their
pathologic diagnoses showed that one cluster was mostly tumors
diagnosed as oligodendrogliomas (oligo cluster). A second cluster
was composed of primarily astrocytomas and oligoastrocytomas
(astro cluster). And the third group contained the majority of
GBM admixed with some astrocytomas and oligoastrocytomas
(GBM cluster) (Fig. 1B).
Next, we applied the same approach to DNA methylation

states using 450K methylation array data. Initially, we used the
∼1,500 probes that define CIMP (5) and observed the sample
distribution shown in Fig. 1C. Coloring in the tumors with IDH1/2
mutations and deletions in 1p19q, we identified the cluster of
tumors in this plot that are CIMP (Fig. 1D). Parenthetically, we
also used the whole genome in-gene and in-promoter probe sets
and found that these data generated very similar plots, consistent
with the CIMP phenotype being common across the entire ge-
nome (SI Appendix, Fig. S1).

We used this methylation data to define CIMP status in our
tumors and then colored the CNA/SNA plot with this coloring
scheme (Fig. 1E). We found that the CIMP and non-CIMP tu-
mors on the CNA/SNA plot are completely separated, indicating
that the methylation status and DNA variations strongly corre-
late. All of the GBM that were on the CIMP side of the meth-
ylation plot were located in and around the astro cluster and
none of them were mixed into the oligodendroglioma cloud,
consistent with the assertion that oligodendrogliomas do not
progress to grade 4 tumors (13). Finally, the survival of LGG
patients in the oligo and astro clusters is significantly longer than
patients with LGG tumors in the GBM cluster (Fig. 1F).
Through simultaneous exploration of methylation and CNA/

SNA sample similarity plots, we were able to identify several
known and expected molecular features of the glioma dataset.
For example, all of the 1p19q deleted tumors are located in the
oligo cluster (Fig. 2A). IDH1 mutations were located in both the
oligo cluster and astro cluster, with the IDH2 mutant tumors
concentrated in a particular region of the oligo cluster (Fig. 2B).
Tumors with mutations in p53 were located specifically in the
astro cluster and the diffuse portion of the GBM cluster (Fig. 2C).
Tumors with mutations in ATRX are all located in a portion of

Fig. 1. Sample similarity plots reveal four distinct subtypes of gliomas. (A) Two-dimensional MDS projection of sample similarities based on combined ge-
nome-wide sample SNA and CNA profiles. Three distinct sample clusters stand out. (B) Same as A, but with samples colored by their histologic subtype. The
cluster on the Left is primarily GBMs, whereas the Top Right cluster is composed mostly of astrocytomas and oligoastrocytomas and the Bottom Right cluster is
predominantly oligodendrogliomas. (C) Sample similarity visualized using a collection of ∼1,500 DNA methylation probes distinguishing CIMP versus non-
CIMP tumors. (D) Coloring of all samples with mutations of IDH1/2, codeletions of chromosome arms 1p and 19q, and GBM samples previously shown to be
G-CIMP shows that samples in the Left cluster are G-CIMP, whereas samples in the Right cluster are non-CIMP. (E) CIMP GBM samples all fall within or near the
astro sample cluster in the SNA/CNA plot (B). Non-CIMP LGGs are genomically more like non-CIMP GBMs rather than like CIMP-LGGs. (F) Kaplan–Meier survival
plot shows non-CIMP LGGs are much shorter-lived than CIMP-LGGs (P value ∼0).
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the astro cluster, whereas tumors with CIC and FUBP1 mutations
are localized in a specific region of the oligo cluster (Fig. 2D).
NRAS was found commonly gained in a specific diffuse region of
the GBM cluster, whereas single copy deletion of NRAS was
found in all members of the oligo cluster (Fig. 2E). The sum of the
above molecular alterations allowed us to define eight subregions
of the plot that are notated in Fig. 2F. To assess the strength of
these visually detected clusters, we use a permutation schema to
compute approximate P values for visually observing these cluster
patterns (all approximate P values are much less than 0.01, see SI
Appendix, Fig. S2).
Tumors marked as having low-copy gain of ch7 and hemi-

zygous deletion of ch10 were located in the GBM cluster, irre-
spective of whether they were LGG or GBM, and no CIMP-LGG
showed combined ch7 gain and heterozygous ch10 deletion (Fig.
3A), whereas the majority of non-CIMP LGG showed these
combined alterations, similar to non-CIMP GBM (Fig. 3B). And
in fact as noted above, these non-CIMP LGGs have survival
similar to GBM rather than CIMP-LGGs in the oligo or astro
clusters. One possible explanation for this observation is that these
non-CIMP LGGs are simply misdiagnosed GBM. However, fur-
ther analysis suggests otherwise. If we distribute the same TCGA
gliomas based on expression data limited to 396 genes associated

with stemness (Fig. 3C and SI Appendix, Table S1) or 1,157 genes
associated with metabolism (SI Appendix, Table S2 and Fig. 3D)
and color the plot as in Fig. 1E we find the non-CIMP LGGs have
stemness and metabolism gene expression patterns that are dis-
tinct from all other gliomas.
There are a few observations worth noting because of their

absence. For example, as shown in SI Appendix, Fig. S3, there
was no regional distribution of GBMs by their expression-based
subclass (14), suggesting that although there are specific muta-
tions that are asymmetrically distributed among the expression
subclasses, these mutations are dwarfed by the overall genomic
heterogeneity of the GBMs. It is also worth noting that within
any of these three CNA/SNA clusters, there was not a regional
distribution by tumor grade (SI Appendix, Fig. S4), suggesting
that tumor grade was not correlated with specific DNA structure
characteristics. Consistent with this observation, there was no
regionality in expression of MKI67 or PCNA (as surrogates for
proliferation) in the CNA/SNA plot (SI Appendix, Fig. S5).

Stability of the Plot Structure. We wanted to know which genes
were contributing most to the distribution of samples in the above
plots, and so we performed leave-one-out recalculations of the
plot and ranked each gene by its impact on the sum of intersample

Fig. 2. Genomic variations divide gliomas into eight distinct subtypes. (A) (1p,19q) codeletions occur exclusively in the Lower Right (oligo) cluster of samples.
(B) IDH1 mutations occur in both astro and oligo LGG clusters, but most IDH2 mutations occur in the oligo CIMP-LGG cluster. (C) TP53 mutations are largely
confined to the astro CIMP-LGG cluster and the diffuse portion of the non-CIMP cluster. (D) Mutations in ATRX primarily impact a subset of the astro cluster
(Top Right), whereas CIC and FUBP1 mutations define a subset of the oligo cluster. (E) Heterozygous deletions and low-copy gains of NRAS mark the oligo
cluster and a diffuse portion of the non-CIMP cluster. (F) Together, the genomic markers described in A–E define eight distinct tumor subtypes, as follows.
Group1 = nonCIMP & gainNRAS & mutTP53. Group2 = nonCIMP & gainNRAS & wtTP53. Group3 = nonCIMP & wtNRAS & wtTP53. Group4 = nonCIMP &
wtNRAS & mutTP53. Group5 = CIMP.LGG & not1p19q & mutATRX & mutTP53. Group6 = CIMP.LGG & not1p19q & wtATRX & mutTP53. Group7 = (CIMP.LGG &
del.1p19q) & (mutCIC OR mutFUBP1). Group8 = CIMP.LGG & del.1p19q & wtCIC & wtFUBP1.
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distances (Fig. 4A). Consistent with earlier findings by TCGA (10),
the top 3 genes that noticeably impacted the layout when removed
were TP53, IDH1, and ATRX. As shown in Fig. 4 B and C, removal
of the top 2 or 3 genes substantially impacts the separation of the
eight glioma clusters. However, when we took the mutation and
copy number of the top 4 genes and used them to distribute the
gliomas and then compared this to the data from the whole ge-
nome, we clearly did not get an adequate distribution (Fig. 4D). At
least 15 of the top-impact genes are necessary to produce a sample
similarity plot in which the eight sample clusters of Fig. 2F are
spatially distinct (Fig. 4D), and as few as the 45 top-impact genes
(listed in SI Appendix, Table S3) are sufficient to adequately rep-
licate the cluster distribution seen in Fig. 2F. These data suggest
that the majority of the variance across the genome in gliomas can
be largely accounted for by fewer than 50 genes.
Next, we wanted to know how stable the distribution was with

respect to adding new patients to the dataset. We first deter-
mined how well the location of any given tumor could be de-
termined from the location of the three nearest neighbors and
found that this worked well for all tumors with nearby neighbors.
We then performed a leave-one-out analysis in which we re-
moved one sample at a time, regenerated the plot distribution,
and then estimated the location of the removed sample using the
three most-similar samples in the plot. We found that the dis-
tribution was remarkably stable, i.e., “new samples” not used in
the generation of the plot can be added in accurately based on
sample similarity. (SI Appendix, Fig. S6 and associated text).

Methylation and Gene Expression Distinguish the Oligo from Astro
Cluster. The overall DNA sequence differences between the
clouds are noted above, and the methylation differences between
the GBM cluster and the other two clusters are well known
(CIMP vs. non-CIMP). We wanted to identify the set of gene
expression and methylation patterns that distinguish the two

CIMP glioma clusters and use that to infer biologic processes
that distinguish these two tumor types. Excluding non-CIMP
samples and comparing genome-wide methylation differences
between the astro and oligo clusters, we found that ∼1,000
methylation probes were sufficient to distinguish the two groups
perfectly (SI Appendix, Figs. S7 and S8A). A larger number of
probes are needed to distinguish the three clusters. As shown in
SI Appendix, Fig. S8A, combining 3,000 of our LGG classifier
probes with the 1,500 CIMP marker probes clearly identifies the
three main sample clouds in Fig. 2F. Thus, DNA methylation
alone is sufficient to divide gliomas into at least five distinct
subtypes (CIMP/non-CIMP GBMs, non-CIMP LGGs, and two
subtypes of CIMP-LGGs). We found that 111 genes are both
differentially methylated and differentially expressed between
the oligo and astro clusters (SI Appendix, SI Methods and Table
S4). Remarkably, 22 of these genes are associated with neuronal
G-protein–coupled receptor (GPCR) signaling (SI Appendix,
Table S5). Further, 30 of these 111 genes are transcription factors,
a threefold enrichment compared with the genome-wide ratio.
One of the transcription factors significantly both DNA

methylated and down-regulated in the oligo cluster relative to
the astro cluster (SI Appendix, Fig. S8 B and C) is REST (NRSF).
REST, which normally represses neuronal genes in nonneuronal
tissues is known to silence its target genes through both histone
modifications and DNA methylation (15). Consistent with a
previous report (16), we find that the expression of the ubiquitin-
ligase BTRC, which degrades Rest protein, is higher in tumors
where REST is transcriptionally down-regulated. Moreover, as
shown in SI Appendix, Fig. S8D, expression of the REST co-
repressor HDAC1 is highly down-regulated in samples with low
REST expression. Abnormal expression of REST in neurons blocks
differentiation and leads to tumors (17), and GBMs with high
REST expression are refractory to chemotherapy (16). Indeed,
REST degradation has been proposed as a possible treatment

Fig. 3. Co-occurrences of chromosome 7 low-copy
gain, and chromosome 10 single-copy deletion (7+/10−).
Samples with whole chromosome copy number
changes were defined as those with more than 85%
of their thresholded per gene GISTIC2.0 scores
matching the expected value. (A) The 7+/10− code-
letion does not occur in CIMP-LGGs. (B) Non-CIMP
LGGs are highly enriched for 7+/10−. (C and D) Ex-
pression similarity plots. Although non-CIMP LGGs
are genomically very similar to non-CIMP GBMs, the
expression patterns of stemness (C) and metabolism
(D)-associated genes are very different in non-CIMP
LGGs and GBMs.
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option in GBM (18). Thus, our discovery of REST-high and REST-
low LGG subtypes has potential clinical implications.

Regional Enrichment of Tumor Phenotypes. Not all tumors with
specific mutations respond similarly to drugs targeting those
particular genetic alterations. Presumably, the state of the rest of
the genome/epigenome impacts the tumor’s response. The dis-
tribution of tumors in the SNA/CNA plot is created by genome-
wide mutation and copy number data. Therefore, the regional
location of tumors on the plot might provide additional information
reflecting the overall biology of those tumors. As an illustration of
the concept, we determined if the regional location of tumors in this
plot might have therapeutic implications. We chose HER2 as an
example of a potentially therapeutic target, and defined tumors as
high HER2 if they had either the top 10% expression of Her2
mRNA (Fig. 5A), Her2 protein, or pHer2 (Fig. 5B). The high Her2
tumors were regionally concentrated (Fig. 5C) ranging from 4% of
the LGG in the oligo and astro clusters to 33% of tumors in the
tight region of the GBM cluster. Most strikingly, 84% of the group 3
tight-region LGGs were high for Her2 (Fig. 5D), accounting for
54% of all of the high Her2 gliomas in the TCGA. These findings
suggest that this kind of analysis may be used to identify regions of
sample similarity enriched for tumors with elevated signaling activity
and potentially similar response to a specific therapy.

Discussion
Visualizing cancer big data in terms of sample similarity allows
for several novel observations of the molecular and clinical

features of the gliomas as a group. First, the three clouds seen in
the CNA/SNA plot are very distinct from each other and have
very few tumors in the intervening space between them. This
observation suggests that these three diseases are distinct rather
than existing as a spectrum. The distinction between GBM and
the astro and oligo clusters are IDH mutation and methylation
status largely, but the GBM cluster also has many unique ge-
nomic characteristics. The distinction between the oligo and
astro clusters is not only due to genomic differences between the
two clusters, but methylation and gene expression differences
enriched with transcription factors including REST. Second,
given the distinct molecular structures of these tumors, the di-
agnoses of these tumors are intriguing. For tumors in the oligo
cluster, multiple pathologists are frequently (but not always) able
to make the same diagnosis of oligodendroglioma either grade 2
or grade 3. By contrast, neuropathologists diagnose tumors in the
astro cluster, as a mixture of astrocytoma, oligoastrocytoma, and
oligodendroglioma grades 2 and 3, and all of the GBM with
CIMP methylation status are located in this group. Finally, the
GBM cluster contains tumors diagnosed as either GBM or LGG
(mostly astrocytoma and oligoastroctyomas) and includes a com-
pact region of genomically very similar tumors (by definition) and
a more diffuse region. As noted above, the LGGs in the GBM
cluster (non-CIMP) are much more aggressive than the LGGs of
the other two clusters, but appear to be more than simply mis-
diagnosed GBMs. These tumors seem to have unique expression
patterns related to stemness and metabolism and are highly
enriched in certain potential therapeutic targets, including Her2.

Fig. 4. Stability of the plot structure. (A) Change in total intersample distances (y-axis, arbitrary units) when each gene in the genome is removed individually
and the sample similarity plot is recalculated. Three genes (IDH1, TP53, and ATRX) have a large effect on the plot layout. (B) Coremoval of the two highest
impact genes leaves the three major sample clusters largely distinct, but the subgroupings within these large clusters are lost. (C) Coremoval of the three
highest-impact genes further degrades the sample clustering. However, as shown in D, the three highest-impact genes by themselves are not sufficient to
reproduce any of the sample clustering. (E) The 15 highest-impact genes are sufficient to capture a large portion of the sample clustering obtained from
genome-wide data. (F) The 45 highest-impact genes reasonably reproduce the clustering pattern obtained by using genome-wide data.
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Our findings can be explored interactively online at oncoscape.
sttrcancer.org.
TCGA recently published an updated panglioma analysis (19).

The new analysis is based on a complete reprocessing of all data,
making a direct comparison difficult. Moreover, the subtypes we
have identified are based entirely on DNA-sequence variations,
whereas the new TCGA analysis uses combined mRNA and
DNA-methylation clustering to identify seven glioma subtypes.
As noted earlier and illustrated in SI Appendix, Fig. S3, the
TCGA expression subclasses are not correlated with sequence-
based sample similarity. In terms of DNA-sequence variations,
the seven TCGA clusters fall into five groups, including two
LGG groups. A total of 88% of each of our LGG groups 5 and
6 fall within the TCGA cluster defined as (LGm1/2 and LGr3)
and enriched for (mutATRX and mutIDH1 and mutTP53).
Likewise, 66% of our oligo group fall within the TCGA cluster
defined as (LGr1/2 and LGm3) and enriched for (mutIDH1
and del1p19q). Surprisingly, the non-CIMP LGG group that we

identified (Fig. 1 E and F) with a markedly short survival, which
has also been reported by others (20), is not among the seven
TCGA groups.

Materials and Methods
Data for the TCGA LGGs and GBMs were downloaded from the University of
California Santa Cruz cancer browser https://genome-cancer.ucsc.edu/ (August
2014 update). Expression data are from “RNA-seq V2” runs and methylation
data are from Illumina Infinium 450K arrays. All copy number data are
thresholded GISTIC2.0 scores. Expression data were batch corrected using
the “ComBat” algorithm in the R package “swamp” (cran.r-project.org/web/
packages/swamp). Methylation data were batch corrected using “functional
normalization” from the Bioconductor package “minfi” (bioconductor.org/
packages/release/bioc/html/minfi.html).
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Fig. 5. Tightly defined regions of the genomic
sample similarity plot are highly enriched for specific
drug targets. (A) Distribution of samples with high
and low levels of Her2 mRNA. Here “high” and
“low” are defined as the Top and Bottom decile of
the samples. (B) Samples with total and phosphory-
lated Her2 protein levels in the Top decile are con-
centrated in a tight region of the non-CIMP cluster
that coincides with the region of high Her2 mRNA
expression. (C) Red disks mark the non-CIMP tight
region of genomically highly similar samples. Blue
disks mark samples with high levels of Her2 mRNA/
protein/phosphorylated protein. (D) Within the tight
non-CIMP sample cluster delineated in C, a large
majority of LGG samples are high in Her2 mRNA/
protein/phosphoprotein levels.
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