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Viruses often interfere with the DNA damage response to better
replicate in their hosts. The human immunodeficiency virus 1 (HIV-1)
viral protein R (Vpr) protein has been reported to modulate the
activity of the DNA repair structure-specific endonuclease subunit
(SLX4) complex and to promote cell cycle arrest. Vpr also interferes
with the base-excision repair pathway by antagonizing the uracil
DNA glycosylase (Ung2) enzyme. Using an unbiased quantitative
proteomic screen, we report that Vpr down-regulates helicase-like
transcription factor (HLTF), a DNA translocase involved in the repair of
damaged replication forks. Vpr subverts the DDB1–cullin4-associated-
factor 1 (DCAF1) adaptor of the Cul4A ubiquitin ligase to trigger
proteasomal degradation of HLTF. This event takes place rapidly after
Vpr delivery to cells, before and independently of Vpr-mediated G2
arrest. HLTF is degraded in lymphocytic cells and macrophages in-
fected with Vpr-expressing HIV-1. Our results reveal a previously un-
identified strategy for HIV-1 to antagonize DNA repair in host cells.
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In addition to their role in maintaining genome integrity, DNA
repair proteins participate in other cellular processes including

innate immune signaling (1, 2). Immunodeficiency diseases may
arise from defects in DNA helicases or translocases involved in
the repair of DNA replication forks, as demonstrated, for in-
stance, in Schimke immune-osseous dysplasia (SIOD) (2). An-
other example is provided by Aicardi–Goutières syndrome
(AGS), in which the overproduction of type I interferon (IFN) is
associated with mutations of proteins involved in DNA synthesis
and repair, namely SAM domain and HD domain-containing
protein 1 (SAMHD1), ribonuclease H2 (RNase H2), and three
prime repair exonuclease 1 (Trex1) (3).
Cross-talk between the HIV and DNA repair pathways occurs

at different steps of the virus life cycle, including reverse tran-
scription, integration, and sensing of viral nucleic acids (4). In
this context, the Vpr protein, expressed by both HIV-1 and HIV-
2/simian immunodeficiency virus (SIV) sooty mangabey (smm)
lineages, has drawn much attention. Vpr is not required for in-
fection of most cell lines or primary CD4+ T cells (5–7). A
replication defect for vpr-deleted viruses has been reported in
dendritic cells and macrophages, with important donor-to-donor
variability (6, 8–11). It was recently suggested that Vpr favors
infection of macrophages by counteracting a restriction factor
targeting Env expression and viral release (12). Vpr is also
necessary for efficient cell-to-cell spread of HIV-1 from macro-
phages to CD4+ T lymphocytes (13). Vpr plays an important role
in vivo. SIVMACΔvpr viruses rapidly revert to a WT version when
injected in rhesus macaques (14). A similar reversion has been
observed in a laboratory worker accidentally contaminated with
a vpr-deficient strain of HIV-1 (15, 16). Several studies also
reported mutations in the vpr gene in long-term nonprogressor
(LTNP) patients (17–20). Several lines of evidence indicate that
Vpr interferes with DNA repair pathways (21). First, the best
renowned activity of Vpr, its ability to mediate a G2 arrest of the

cell cycle, depends on the activation of the ATR-mediated (ATR:
ataxia telangiectasia mutated and Rad3 related) DNA damage re-
sponse (22). G2 arrest requires Vpr binding to DCAF1, an adaptor
of the Cul4A-DDB1 ubiquitin ligase, which is involved in DNA re-
pair in noninfected cells (23–29). More recently, Vpr has been shown
to activate the SLX4 complex (SLX4com) with the help of DCAF1
(21, 30). SLX4com associates with several endonucleases, including
Mus81, to coordinate the repair of specific replication-born double
strand breaks (DSBs) and collapsed replication forks (31–33). It has
been proposed that Vpr triggers replication stress and G2 arrest
through inappropriate activation of SLX4com (30). This activation
would lead to the elimination of viral DNA and, subsequently, virus
escape from immune sensing. Vpr also recruits uracil DNA glyco-
sylase (Ung2), an enzyme that prevents mutagenesis by eliminating
uracil from DNA molecules, thereby initiating the base-excision re-
pair (BER) pathway (34, 35). Vpr targets Ung2 for degradation
through hijacking Cul4A-DDB1 (36). Ubiquitin ligases act on sev-
eral substrates, which led us to speculate that Vpr may target ad-
ditional unknown host proteins for proteasomal degradation.
The DNA damage tolerance pathway (DDT) allows stalled

replication forks to bypass DNA lesions, such as gaps or DSBs,
both in S and G2 phases (37, 38). In response to DNA damage or
replicative stress, proliferating cell nuclear antigen (PCNA) is
monoubiquitylated by Rad6/Rad18, leading to the recruitment of
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translesion synthesis polymerases. PCNA can be further poly-
ubiquitinated by the budding yeast Rad5 ubiquitin ligase or its hu-
man orthologs helicase-like transcription factor (HLTF) and SNF2
histone linker PHD finger RING finger helicase (SHPRH) (37, 38).
By ensuring the completion of S-phase following DNA damage,
Rad5/HLTF/SHPRH contribute to genome integrity. HLTF is a
DNA-binding protein (39–41) first described as a transcription factor
(42, 43), but later authenticated as a protein involved in DNA repair,
in tumor suppression, and in the early stages of carcinogenesis (44–
47). Although both HLTF and SHPRH are able to polyubiquitinate
PCNA, they do not act redundantly (48). HLTF facilitates fork
reversal activity but also DNA strand invasion and formation of a
D-loop structure in an ATP-independent manner (49–51). Further-
more, HLTF and SHPRH might not be only dedicated to the DDT
pathway but more generally involved in DNA repair (48).
Here, we undertook a quantitative proteomic approach, based

on a stable-isotope labeling by amino acids in cell culture (SILAC)
strategy coupled with LC-MS/MS, to describe global changes in
the cellular landscape under Vpr treatment (52). We used the
property of Vpr to be incorporated into virions and virus-like
particles (VLPs) (53, 54) to deliver the protein to target cells. We
report that HIV-1 Vpr induces the early degradation of HLTF in
primary cellular targets of HIV and analyzed the underlying
molecular mechanisms.

Results
HLTF Is Down-Regulated by HIV-1 Vpr in a Proteasome-Dependent
Manner. We first examined which cellular proteins are modu-
lated on HIV-1 Vpr delivery in HeLa cells. These cells represent
a convenient model to perform a SILAC analysis, and Vpr is
known to be active in HeLa cells, promoting, for instance, cell
cycle arrest (26). To this aim, VLPs containing WT Vpr or a G2
arrest-defective Vpr mutant (Vpr S79A), both tagged with an
HA epitope, or Vpr-negative (empty) VLPs were delivered to
HeLa cells stably labeled respectively with light, medium, or
heavy isotopes (Fig. S1A) (55). Using VLPs enabled us to focus
on cellular changes that may occur without de novo Vpr ex-
pression. The experiment was performed in pseudoduplicate (S1
and S2) by switching VLPs and isotopes (Fig. S1A). The presence
of Vpr in target cells was confirmed by Western blot, with similar
levels of WT and Vpr S79A being detected (Fig. S1B). As
expected, WT Vpr, but not the Vpr S79A mutant, induced G2
arrest (Fig. S1C) (55). The efficiency of the cell cycle block was
modest because cells were harvested 12 h after Vpr delivery, to
focus on early events (Fig. S1C). A total of 2,196 and 2,272
proteins were detected by MS, respectively, in S1 and S2 nuclear
fractions; among them, 1,572 and 1,601 proteins could be reliably
quantified. The levels of most of these proteins (82% in S1; 92%
in S2) were not affected by WT Vpr relative to the control
(empty VLPs). About 10% of the proteins showed variations in
quantity of at least 20% with only 33 proteins reproducibly found
in S1 and S2 (Fig. S1D). Most of these proteins were stabilized or
enhanced by Vpr (Fig. S1D) and only eight had reduced levels.
HLTF, detected with 13 peptides and with a reduction of more
than 60% of its relative quantity, appeared as a preferential
cellular target of Vpr. Vpr S79A also affected HLTF levels but
less than WT Vpr (Fig. S1E). Interestingly, most of the proteins
stabilized by WT but not by S79A Vpr are known to be up-
regulated in the G2 phase of the cell cycle (Cyclin B/CCNB1,
Aurora kinases A/AURKA and B/AURKB, inner centromere
protein (INCENP), Annilin/ANLN, or Polo kinase 1/PLK1, for
example; Fig. S1E). The presence of this G2 arrest protein sig-
nature indirectly validates our strategy. Taken together, these
data indicate that SILAC represents a powerful tool to study
rapid large-scale proteomic changes in the cellular environment
induced by HIV-1 Vpr, as has been recently demonstrated for
other HIV proteins (56). Of note, we also validated our SILAC
procedure with the observation that SAMHD1 levels were
strongly decreased on delivery of HIV-2/SIVsmm Vpx protein as
expected (57, 58).

Western blot analysis of the nuclear fraction of HeLa cells that
had been incubated with VLPs containing WT Vpr confirmed
the HLTF steady-state amount reduction together with cyclin
B/CCNB1 stabilization (Fig. 1A). HLTF was not detected in the
cytoplasmic fraction (Fig. 1A). HLTF down-regulation was also
observed in Jurkat T cells similarly treated with VLPs (Fig. 1B).
The G2 arrest-defective Vpr S79A mutant also decreased HLTF
levels, but to a lesser extent than WT Vpr (Fig. 1 A, B, and D),
supporting our SILAC results. A Flag-tagged HLTF expressed
under the control of a CMV promoter was also down-regulated by
Vpr, suggesting that Vpr does not reduce HLTF expression through
transcriptional modulation of the HLTF promoter (Fig. 1C, Flag
panel for exogenous HLTF and HLTF panel for total HLTF).
We then asked whether HLTF down-regulation was protea-

some dependent. To this aim, we incubated cells with MG132, a
proteasome inhibitor. HLTF down-regulation in the presence of
WT or S79A Vpr was inhibited by MG132 (Fig. 1D). Of note, a
second G2 arrest-defective Vpr mutant, Vpr K27M, was unable to
decrease HLTF levels (Fig. 1D). Furthermore, knockdown by
siRNA of the DCAF1 ubiquitin ligase adaptor, previously shown
to be hijacked by Vpr, inhibited Vpr-mediated HLTF down-reg-
ulation (Fig. 1E). Altogether, these results support a model in
which HIV-1 Vpr uses the Cul4A-DDB1 ubiquitin ligase through
DCAF1 binding to induce the proteasomal degradation of HLTF.

HLTF Degradation Occurs Independently from Vpr-Mediated G2 Arrest
in HeLa Cells. HLTF is an enzyme that stabilizes and repairs
stalled replication forks and controls G2/M transition (49, 59,
60). Considering HLTF activities led us to investigate its role in
Vpr-mediated G2 arrest. In an experiment in which HLTF levels
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Fig. 1. HIV-1 Vpr down-regulates HLTF in a DCAF1-dependent manner.
(A) HLTF expression in HeLa cells is down-regulated by VLP-encapsidated WT
HIV-1 Vpr. Cells were transduced with the VLP used for SILAC. After 24 h, cells
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were monitored over time, we observed its down-regulation 6 h
after VLP treatment (Fig. 2A). The effect of Vpr on G2 cell cycle
arrest was modest at 6 h and increased over time (Fig. 2B).
Rad18, a protein that interacts with HLTF at the replication
fork, was not affected by Vpr (Fig. 2A) (48). We then examined
the effect of Vpr at earlier time points. Strikingly, down-regu-
lation of HLTF was detected as soon as 30 min after VLP
treatment (Fig. 2C, Upper) and intensified over time from 0 to 4 h
(Fig. 2C). An increase in G2 arrested cell number also started
to be detected at 4 h after VLP treatment (Fig. 2D). Vpr S79A
induced HLTF degradation, but not as efficiently as Vpr WT as
previously mentioned (Figs. 1 and 2C), with 23% and 31% HLTF
remaining with the WT and mutant protein, respectively, 4 h after
VLP addition. HLTF levels did not significantly changed from 0 to
4 h in the presence of Vpr K27M, as already observed in Fig. 1E.
Thus, Vpr-mediated HLTF degradation is unlikely a consequence of
Vpr-mediated G2 arrest but rather precedes this arrest. Further-
more, the partial ability of the G2 arrest-defective Vpr S79A mutant
to induce HLTF degradation suggests that a block in the cell cycle is
not a prerequisite for the modulation of HLTF expression.
Vpr triggers the degradation of the SLX4-associated Mus81

endonuclease, although conflicting results have been reported
regarding the link between Vpr-mediated Mus81 degradation
and G2 arrest (30, 61). We confirmed that Vpr degrades both
Mus81 and HLTF and that this degradation required DCAF1
(Fig. 3A). In addition, silencing of HLTF did not inhibit Mus81
degradation and, inversely, silencing of Mus81 did not prevent
HLTF degradation, suggesting that the two events occur in-
dependently of each other (Fig. 3A). Although DCAF1 siRNA

inhibited Vpr-mediated G2 arrest as expected, four distinct
HLTF siRNA did not affect Vpr-mediated cell cycle arrest (Fig.
3B and Fig. S2 A and B). Furthermore, HLTF siRNA alone did
not perturb the cell cycle (Fig. 3B and Fig. S2 A and B).
We further studied the links that may exist between HLTF

degradation and G2 arrest. To this aim, we analyzed the ability
of a panel of Vpr mutants to block the cell cycle and to degrade
HLTF (Fig. S2C). The proteins were expressed in HeLa cells by
transfection. We identified mutants that displayed various abil-
ities to degrade HLTF (Fig. S2C). We then selected three mu-
tants (G56A, K27M, and S79A) that we delivered in HeLa cells
through VLPs (Fig. 3 C and D). The K27M mutant was inactive
in both assays, whereas S79A partly degraded HLTF (47%
HLTF remaining, compared with 18% with the WT protein)
without altering the cell cycle (Fig. 3 C and D). In contrast, the
Vpr G56A mutant induced G2 arrest but did not degrade HLTF
(Fig. 3 C and D). Altogether our results strongly suggest that
HLTF degradation and G2 arrest can be genetically uncoupled.

Vpr Down-Regulates HLTF in Infected T Cells and Primary
Macrophages. We then investigated whether HLTF is degraded in
HIV-1–infected cells. MT4 and Jurkat T cells, as well as HeLa cells,
were infected with WT or ΔVpr HIV-1, and HLTF levels were
measured after 3 d. The levels of HLTF were strongly decreased in
the presence of Vpr in the three cell types (Fig. 4A; 1%, 16%, and
38% HLTF remaining after infection with WT HIV-1 in compari-
son with the ΔVpr virus in MT4, Jurkat, and HeLa cells, re-
spectively). Nonetheless, as expected from the literature, Vpr had
no effect on viral replication in these cells. WT or ΔVpr HIV sim-
ilarly infected MT4 cells, as assessed by measuring Gag expression
by flow cytometry at different time points (Fig. S3). Moreover,
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HLTF was silenced in MT4 cells by using a doxycycline-inducible
shRNA (Fig. 4A, Left). HLTF silencing did not alter infection levels
of WT or ΔVpr HIV (Fig. S3).
We then examined the activity of Vpr in primary human mac-

rophages, in which Vpr has been reported to give an advantage to
the virus in multicycle infection assays (6, 8–11). The role of
HLTF has not yet been examined in such nondividing cells. We
found that HLTF is expressed at day 4 or day 7 following differ-
entiation of freshly isolated monocytes into macrophages (MDMs)
(Fig. 4B; two donors). HLTF levels were decreased by two- to
sixfold following macrophage incubation for 24 h with Vpr-con-
taining HIV-1 VLPs compared with Vpr-negative VLP (Fig. 4B).
This decrease was similarly observed with macrophages at day 4 or
7 after differentiation (Fig. 4B). This experiment demonstrated
that incoming Vpr is sufficient to decrease endogenous levels of
HLTF on viral entry. HLTF levels were also reduced following
productive infection with the YU2 macrophage-tropic strain
expressing Vpr compared with the isogenic ΔVpr virus (Fig. 4C;
two donors, Western blot at day 16 after infection). As expected,

viral replication was delayed and less efficient in the absence of
Vpr (Fig. S4) (6, 8–11). However, depletion of HLTF by siRNA
did not impact viral replication (Fig. S4).
Altogether, our results indicate that Vpr degrades HLTF in

natural cell targets of HIV-1.

Discussion
HLTF, a Bona Fide Cellular Substrate of HIV-1 Vpr. SILAC provides
an unbiased view of global changes in protein levels under dif-
ferent parallel conditions. Surprisingly, HLTF was the sole cel-
lular target that was clearly down-regulated in the presence of
HIV-1 Vpr, among more than 2,000 proteins quantified. Several
other host proteins have been proposed to be targeted by Vpr,
but previous results were mostly based on candidate-based ap-
proaches and with often modest down-regulation (62–64). Im-
portantly, HLTF is down-regulated by Vpr in infected T cells.
The effect of Vpr on HLTF is reminiscent of Vpx-induced
SAMHD1 degradation (57, 58). Both Vpr and Vpx act rapidly,
when incoming virions enter the cell, to trigger proteasomal
degradation of their target proteins by hijacking ubiquitin ligases.
Vpr is closely related to Vpx. These two proteins have a common
evolutionary origin (65, 66), share similar amino acid sequences,
and are incorporated into virions (67, 68). Despite these simi-
larities, the two proteins display different activities (69). HIV-1
Vpr does not degrade SAMHD1. It will be worth examining the
effect of a large panel of Vpr proteins from HIV-1, HIV-2, and
SIV strains on HLTF, to understand the evolutionary pressures
associated with this novel activity. It will also be of interest to
determine whether this degradation involves a direct interaction
between HLTF and HIV-1 Vpr.

Why Does Vpr Induce HLTF Degradation? How could HLTF degra-
dation impact HIV-1 replication and pathogenicity? As part of
the repair of damaged replication forks, one obvious possibility
was that HLTF was involved in Vpr-mediated G2 arrest. This
hypothesis was attractive because both Vpr and depletion of
some DNA translocases having apparent redundant function
with HLTF interfere with SLX4com. For example, SWI/SNF-
related matrix-associated actin-dependent regulator of chroma-
tin subfamily A-like protein 1 (SMARCAL1) was reported to
interfere with MUS81 structure-specific endonuclease subunit
(Mus81) or the SLX4 endonuclease complex and the repair of
damaged replication forks (30, 70, 71). However, several lines of
evidence suggest that HLTF is not involved in the cytostatic ac-
tivity of Vpr. Silencing of HLTF by siRNA did not perturb the cell
cycle, nor did it affect Vpr-mediated G2 arrest. In addition, some
Vpr mutants that do not measurably degrade HLTF were still
able to arrest the cell cycle. Thus, HLTF degradation represents
a new activity of Vpr apparently distinct from G2 arrest, at least
in HeLa cells. Further work will help determine how the removal
of HLTF by Vpr may impact DNA repair on HIV-1 infection of
macrophages, dendritic cells, and T cells.
HLTF is a DNA translocase involved in postreplication DNA

repair occurring in the S phase of the cycle (49, 72–74). As such,
it has been mostly studied in dividing cells, in which DNA repair
processes are important to avoid aberrant DNA synthesis that
would be a source of mutations or DSBs. It is tempting to
speculate that HLTF could exert additional functions, because
we report here that the protein is expressed in nondividing
macrophages. Cell cycle-related proteins, for instance, the cyclin/
Cdk inhibitor p21, which was first thought to be only dedicated to
the control of cell cycle progression, were later on identified in
macrophages as a repressor of HIV-1 replication (75, 76). Our
experiments did not demonstrate a rescue of Vpr-deleted HIV-1
replication in HLTF-silenced macrophages. It will be interesting
to further explore a potential antiviral role of HLTF in other
nondividing cells such as dendritic cells and in primary lym-
phocytes. One alternative and non-mutually exclusive possibility
is that HLTF degradation is related to the ability of Vpr to in-
terfere with the immune response and the cooperation between
immune cells (77–81). For example, whether HLTF degradation
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Fig. 4. HLTF degradation is induced by HIV-1 Vpr in infected T cells and
HeLa cells. (A) HLTF is degraded in MT4 cells by HIV-1 viruses expressing WT
Vpr (Left), in Jurkat T cells (Center), and in HeLa cells (Right). MT4 cells were
transduced with lentiviruses expressing shRNA against HLTF and cultured in
the presence of doxycycline for 3 d. Cells were then either not infected or
infected with HIV-1 NL4.3 WT or Vpr-deleted viruses (ΔVpr) for 48 h. Jurkat
and HeLa cells were either not infected or infected with NL4.3 WT or Vpr-
deleted viruses (ΔVpr). Cells were lysed 48 h after infection, and cell lysates
were analyzed by Western blot. (B) Vpr from HIV-1 VLP triggers HLTF deg-
radation in macrophages. Monocyte-derived macrophages were differenti-
ated for 4 or 7 d and then exposed to HIV-1 VLP containing or not Vpr for
24 h [empty VLP (R−), VLP containing WT Vpr (R+)]. Cells were then lysed,
and HLTF expression was analyzed by Western blot. In each panel, quanti-
fication was performed: ratios between signals were calculated relative to a
100% reference indicated in red. All Western blots are representative of
three independent experiments. (C) HLTF levels are reduced in macrophages
following infection with the YU2 WT virus, in comparison with the ΔVpr
virus. Monocyte-derived macrophages (MDMs) were treated with siRNA
control or siRNA against HLTF for 24 h. Cells were then infected with either
YU2 WT virus or YU2 ΔVpr virus (ΔVpr). Analysis of HLTF and GADPH ex-
pression was done in extracts collected at day 16 after infection. The kinetic
of replication is shown Fig. S4.
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is related to the ability of Vpr to escape or promote immune
detection in primary cells should be investigated. A role of HLTF
in DNA sensing could be a consequence of its capacity to bind
ssDNA ends (82). It is also possible that HLTF is not a direct
target of Vpr and that its degradation results from the inactivation
of another cellular protein that was not detected in our SILAC
experiments. Looking for interacting partners of HLTF and their
potential antiviral role could help addressing this issue.
HLTF belongs to a small family of DNA translocases, including

SMARCAL1 and zinc finger Ran-binding domain-containing
protein 3 (ZRANB3)/AH2, that catalyze fork regression activ-
ity in vitro (83). SMARCAL1 deficiency causes the SIOD hu-
man disease, which is associated with immune deficiency (84).
This observation, together with our finding that HLTF is antag-
onized by a viral protein, may suggest that these DNA translocases
could play a role in the immune defense against pathogens.

HIV-1 and HIV-2/SIV Interfere with Distinct DNA Repair Pathways.
HIV-1 and HIV-2/SIV have likely developed distinct strategies
to interfere with DNA repair pathways. Vpx from HIV-2/SIV
targets SAMHD1, an enzyme that hydrolyses nucleotides poten-
tially required for DNA repair and that prevents viral reverse
transcription (85–87), whereas we show here that HIV-1 Vpr
triggers HLTF degradation and thus manipulates the DDT
pathway. Vpr also likely interferes with the BER pathway through
Ung2 recruitment/degradation and prematurely activates the
SLX4 complex. The use of distinct strategies to impact the DNA
repair pathway may underline the different pathological outcomes
associated with HIV-1 and HIV-2/SIV. Future studies should aim
to analyze the ability of divergent lentiviruses to induce the deg-
radation of human and simian HLTF, to evaluate its importance
in pathology and in cross-species transmission (88). It will also be
worthwhile to search for signatures of positive selection in HLTF
sequences originating from various species. Such analysis will
complement functional studies and will help evaluate the impact
of HLTF at the host–virus interface.

Experimental Procedures
SILAC. Full details for the SILAC procedure are provided in the SI Experimental
Procedures.

Viruses and VLP Production. VLPs and viruses were produced in 293 T cells
cotransfected by the calcium-phosphate method. The Δ-Env HIV-1 viruses
(DHIV NL4.3 viruses) were produced by using pNL4.3 deltaEnv HIV-1 con-
structs lacking the gene encoding Vpr (DHIVΔVpr) or encoding WT Vpr (DHIV
WT) along with a plasmid encoding the vesicular stomatitis virus glycoprotein
G (VSV-G). The proviral plasmids were a kind gift from Vincente Planelles,
University of Utah, Salt Lake City (89). HIV-1 VLPs were produced by using
psPAX2 lentiviral packaging plasmid along with the plasmid encoding VSV-G
and a plasmid encoding either HA-taggedWT or mutant Vpr. Briefly, 48 h after

transfection, the culture supernatants were collected and filtered through
0.45-μm pore filters. The viral particles were then concentrated in 10% (wt/vol)
polyethylene glycol 6000 (Sigma) containing 300 mM NaCl. Viral and VLP
productions were measured by quantification of p24 (HIV) levels by using an
ELISA (Innotest; Fujirebio, or ZeptoMetrix Corporation). Viruses were titrated
by using the reporter cells TZM-bl obtained through the National Institutes of
Health (NIH) AIDS Reagent Program, Division of AIDS, NIH (TZM-bl from John
C. Kappes, Xiaoyun Wu, and Tranzyme Inc., catalog number 8129).

Transduction and Infection. Cells transduced by VLPs were incubated for 2 h in
DMEM or RPMI supplemented with 5 μg/mL Dextran (Sigma) and an equivalent
of 50–100 ng p24 or p27 of HIV-1 or SIV VLP, respectively, for 2 × 105 cells, and
then complete medium was added. The proteasome inhibitor Mg132 (Sigma)
was used at a final concentration of 20 μM for 6 h from the beginning of VLP
incubation or with DMSO as a control. Jurkat cells were infected for 2 h in
complete RPMI medium supplemented with 5 mMHepes and 5 μg/mL Dextran.

Peripheral bloodmononuclear cells (PBMCs) from the blood of anonymous
donors (obtained in accordance with the ethical guidelines of the Institut
Cochin) were isolated by Ficoll (Sigma) density-gradient separation. Mono-
cytes were isolated by positive selection with CD14 magnetic MicroBeads
(Miltenyi Biotec). MDMs were obtained by culturing the monocytes for 7 d in
RPMI containing 10 ng/mL granulocyte-macrophage colony stimulating
factor and 20 ng/mLmacrophage colony-stimulating factor. YU2WT and YU2
ΔVpr viruses were kind gifts from Serge Benichou, Institut Cochin, Paris.

MDM cells were infected (at a multiplicity of infection of 0.1) for 3 h in
complete RPMI medium without serum at 37 °C. Cells were washed twice
with PBS to remove inoculum and cultured in RPMI complete medium. Viral
production was measured by quantification of p24 levels in the cellular
supernatants collected at times 0, 1, 2, 5, 9, 12, and 16 d after infection by
using an ELISA (Innotest; Fujirebio).

Cells, plasmid constructs, siRNA, shRNA, and the procedures for cell cycle
analysis and Western blots are described in the SI Experimental Procedures.
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