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The static and dynamic properties of ring polymers in concentrated
solutions remains one of the last deep unsolved questions in
polymer physics. At the same time, the nature of the glass transi-
tion in polymeric systems is also not well understood. In this work,
we study a novel glass transition in systems made of circular poly-
mers by exploiting the topological constraints that are conjectured
to populate concentrated solutions of rings. We show that such
rings strongly interpenetrate through one another, generating an
extensive network of topological interactions that dramatically
affects their dynamics. We show that a kinetically arrested state
can be induced by randomly pinning a small fraction of the rings.
This occurs well above the classical glass transition temperature
at which microscopic mobility is lost. Our work both demonstrates
the existence of long-lived inter-ring penetrations and realizes a
novel, topologically induced, glass transition.

glass transition | ring polymers | topology | topological glass |
molecular dynamics

he physics of ring polymers remains one of the last big

mysteries in polymer physics (1). Concentrated systems of
ring polymers have been observed, in both simulations and ex-
periments, to display unique features that are not easily recon-
ciled with the standard reptation theory of linear polymers (2-6).
The main reason for this is that ring polymers do not possess free
terminal segments, or ends, essential for end-directed curvilinear
diffusion. In contrast, ring polymers possess a closed contour,
which leads to markedly different relaxation and diffusion mech-
anisms. Recently, there has been much improvement in the pro-
duction of purified systems of rings (6-8), with the consequent result
that more and more experimental puzzling evidence requires a
deeper understanding of their motion in concentrated solutions and
melts from a theoretical point of view.

Recently, it has been conjectured that ring polymers assume
crumpled, segregated conformations in concentrated solution or
the melt (5). On the other hand, numerical and experimental
findings (5, 6) suggest that rings exhibit strong intercoil corre-
lations, which have proved difficult to address in simplified
theoretical models (9-12). Because of this, there have been many
recent attempts to rigorously characterize these interchains’
interactions (13-16), although a precise definition and un-
ambiguous identification of these “threadings” in concentrated
solutions of rings remains elusive. The primary reason for this is
that the rings are assumed to remain strictly topologically un-
linked from one another throughout if synthesized in this state.

In the case of concentrated solutions of rings embedded in a
gel, a method to identify these interpenetrating threadings has
recently been proposed (13). Here it was shown that the number
of threadings scales extensively in the polymer length (or mass)
and can therefore be numerous for long rings, creating a hier-
archical sequence of constraints that can span the entire system.
It has also been conjectured that a kinetically frozen state, or a
“topological glass” (17) can emerge, because such an extensive
network of constraints can eventually suppress the translational
degrees of freedom of the rings. However, the molten, or highly
concentrated, state does differ from that of polymers embedded
in a gel and so whether a similar jamming transition occurs for
long enough polymers or even whether threadings are present in
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the absence of a gel remain open problems and are the main
questions addressed in this study. An example of interthreaded
ring configuration is shown in Fig. 1. A spherical region (Fig. 1B)
is carved from the configuration depicted in Fig. 14, which rep-
resents a typical system studied in this work. The degree of in-
terpenetration between the different coils is readily appreciable
from the figure, and it can be boiled down even further into
a network representation (13). The uncrossability constraint be-
tween chains transforms the threadings into topological hindrance
in the motion of the coils, which we conjecture to form the basis
for a dramatic slowing down in the dynamics of long enough coils.

Glass-forming systems exhibit degrees of freedom that become
constrained as the temperature, or the density, of the system
approaches the glass transition temperature 7, or the critical
jamming density p., thereby (super)exponentially increasing the
viscosity of the system (18). Understanding the origin of these
constraints, being kinetic or thermodynamic in nature, is still an
open topic that animates intense research (19, 20).

Recently, a novel and promising theoretical approach to study
the glass transition in glass-forming liquids has been advanced: It
involves perturbing a system by randomly pinning some fraction
of the constituents and by observing the behavior of the unfrozen
fraction. This method introduces a field of “quenched” disorder
by freezing in space and time a subset of the system (21-27).

Inspired by this approach, we focus our attention on a con-
centrated solution of rings and apply a similar protocol: We
freeze in space and time a fraction of polymers in the system and
observe the response of the unfrozen constituents. We find that,
although linear polymers are substantially insensitive to this
perturbation, ring polymers become irreversibly trapped in a
network of intercoil constraints (threadings), which, in the limit
of long rings, allows us to drive a kinetically arrested state with
only a small fraction of permanently frozen chains. We conjec-
ture that a spontaneous glassy state might therefore emerge in
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Fig. 1. Networks of threadings. (A) Snapshot from a simulation representing a system with N =50 chains M =512 beads long. (B) Snapshot of a spherical
region and some of the rings from A. One can easily appreciate the interpenetration between the rings in the system (for instance, cyan through dark gray or
orange through blue). The sketched network in the top corner is obtained by visual inspection and depicts the penetrations of the rings. Two circles are
connected by a directed arrow when the former is threading through the latter (13) (see also Movie S1). (C) Lattice animal representation of a single ring
polymer surrounded by nonthreading rings (black dots) and penetrated by threading rings (colored dots). Adapted from ref. 6 with permission from Mac-

millan Publishers Ltd: Nature Materials, copyright 2008.

the long chain limit, even as the fraction of explicitly pinned
chains goes to zero. Because these constraints are topological in
nature, originating from noncrossability of the chains, this glassy
state has the potential to be produced at arbitrary temperature
or monomer density, provided only that these intercoil topo-
logical interactions remain abundant in the system, i.e., the rings
are sufficiently long and not too dilute. This system is therefore a
candidate for a novel kind of glass transition in systems made of
polymers or other elements with nontrivial topology.

Rings in Solution Assume Crumpled but Largely Overlapping
Conformations

The static properties of rings in solution have been studied for
some decades, and it is nowadays thought that rings assume
crumpled conformations characterized by a scaling law for their
gyration radius R, ~ M* with v ~ 1/3 in the limit of rings with
large polymerization M (11, 28-31). On the other hand, they also
have been found to maintain numerous contacts with their
neighbors. This is often quantified by measuring the “contact
surface” of the polymers, which is defined as the number of
segments mgy,¢ in any one chain that are in contact with any
segment belonging to any other chain. This has been found to
scale nearly extensively with the size of rings (SI Appendix, Figs.
S1 and S2) mgyt ~M? with g ~ 0.98. This has been interpreted
as a clear signature of abundant interactions and coil overlap.
This picture is also supported by the fact that a coil’s pair correla-
tion function g(r) is peaked at 7, < 2rmax >~ 2.6R, (see SI Appendix,
Fig. S3), in light of which the coils can be viewed as interpenetrating
ultrasoft colloids of radius rmax >~ 1.3R, (32-34).

The counterintuitive fact that rings have numerous intercoil
interactions while assuming a scaling exponent v ~ 1/3 can be
understood within the fractal globule conjecture (11, 35) in
which the rings assume a fractal, hierarchical and virtually en-
tanglement-free, conformation that can accommodate near-
extensive interactions with other chains with a contact exponent
y near unity (29) (SI Appendix, Fig. S3).

These interchain interactions may include threadings that have
been conjectured to be intimately related to the slow overall
diffusion of the rings’ center of mass (5, 8, 13, 16) (see also S/
Appendix, Fig. S4), an observation that is in apparent contrast
with the very fast stress relaxation (6, 7), characterized by a
power-law decay of the relaxation modulus G(f) and by a re-
markable absence of the entanglement plateau that characterizes
concentrated solutions of linear polymers. In light of these
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findings, we believe that further investigation of the role of these
inter-ring interactions is crucial.

Contiguity Is Persistent for Longer Chains

To probe intercoil interactions, we first adopt a definition of
surface monomers where the ith monomer of chain / is a surface
monomer of that chain if its distance from a monomer j be-
longing to a different chain J is d;; < p~'/3 where p=0.16" is the
monomer concentration. We then define as “contiguous” two
coils that share surface monomers. From this definition, we
propose a method to track the exchange dynamics of contiguous
chains, I and J, by computing a dynamic N X N matrix P(t) whose
elements are defined as

_ [0 ifdy>p3Vi,j
P”(t)_{l otherwise ' 1

From this, it is straightforward to obtain the correlation function

N
Pne(t) = <]l\, Z Py(t)Py(t—At).. ~PIJ(0)> [2]
7=

where (...) indicates the ensemble average over rings I and ini-
tial times. This function quantifies the exchange dynamics of
contiguous chains and tracks the time that the chains first be-
come noncontiguous, because it involves the product of Pj; over
all of the intermediate time steps up to time . The behavior of
@ (?) is reported in Fig. 2. Eq. 2 gives a more strict measurement
of the interchain cooperativity than would be obtained from a
standard contiguity correlation function and, unlike the latter,
should decay to zero over time scales that are comparable with
the time taken for the chains’ centers of mass to diffuse away
from one another. Although, for short chains, this is well de-
scribed by a simple exponential, we observe that its behavior
for longer chains can be fitted for about two decades by stretched

exponentials
£\ P
Pnc =CEXp | — <7) [3]
Tnc

with an exponent f,. that varies from g, =1 for M =256 to
Pne =~ 1/2 for the longest chains in the system (see SI Appendix,
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Fig. 2. The rate at which chains become noncontiguous slows with their
length. Correlation function ¢, (t) as a function of time (in simulation time
units zg,; see Materials and Methods) for different chain lengths. Solid lines
represent stretched exponentials, and the dashed line on the right repre-
sents a power-law decay with exponent of —3/4 suggesting an even slower
inter-ring decorrelation dynamics. (Inset) The exponential increase of the
typical exchange time 7, and T, for the systems displaying a stretched ex-
ponential relaxation (S/ Appendix, Fig. S5).

Fig. S5). Even more striking is the exponential increase of the
typical time to become noncontiguous 7,, indicating a very slow
decorrelation between chains (or very long “exchange time”),
often interpreted as the onset of glassy dynamics (34). As ¢,
shows fat tails at long times, we also compute T as the (numer-
ical) integral of the correlation function. We find that the func-
tional behavior of T}, is in agreement with 7, and shows an even
steeper increase (see Fig. 2, Inset). This is most likely due to the
fact that only the long-time tails show deviations from the
stretched exponential behavior, and these act to further increase
the exchange time of the coils.

These findings are a strong signature that rings display long-
lasting intercoil correlations that are present even after they have
traveled beyond their own size, in agreement with previous nu-
merical and experimental findings (5, 8). In addition, this is clear
evidence that the exchange dynamics of the rings becomes
slower, more glass-like (16, 36), as the polymerization M in-
creases. The increasingly stretched decay of ¢, also implies that
the relaxation dynamics of the chains becomes more heteroge-
neous, i.e., some parts of the chains are much slower to separate
from one another than other parts. One might conjecture that
the increasingly slow and heterogeneous exchange dynamics will
eventually appear in the long-time dynamics of the ring dis-
placement because contiguity will ultimately constrain motion.

It is natural to now ask whether we can understand the nature
of these correlations, and the heterogenity in the relaxation dy-
namics observed in Fig. 2, as being directly related to the
threadings recently proved to exist in concentrated solution of
rings embedded in gels (13, 14). In the case of pure solutions of
rings, such threadings have never been rigorously identified.

Our approach consists in artificially immobilizing (“freezing”),
in space and time, a fraction c¢ of randomly selected rings from
equilibrated configurations and then tracking the dynamics of
the “unfrozen” fraction. This protocol is inspired by recent the-
oretical and experimental studies on the nature of glass transi-
tions and idealizes the case in which a fraction ¢ of polymers in
the system might be arbitrarily frozen, perhaps by mixing two
polymeric species with different T, or by using optical tweezers
(24, 25), although the primary interest in this work is in its role as
a conceptual tool.

If the rings are mutually threaded, perhaps in a way that re-
sembles the threaded lattice animal in Fig. 1C, then one would
expect those unfrozen rings that are threaded by frozen ones to
have their mobility substantially limited. They would appear to
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be immobilized within effective “cages,” being the region of space
that they can explore limited by the threadings that they experi-
ence. In the alternative picture where rings remain unthreaded, as
is often envisaged in simplified models, the mobility would be
substantially unaffected by the presence of frozen chains.

A primary result of the present work, discussed in Randomly
Pinning Rings Induces a Kinetically Arrested State, is that we do
indeed observe immobilization of the unfrozen fraction. We
believe that this represents excellent evidence for the existence
of threadings in concentrated solutions of rings, something that
has not previously been demonstrated.

Randomly Pinning Rings Induces a Kinetically Arrested State

Starting from an equilibrated configuration, we perturb the sys-
tem by randomly freezing, in space and time, a fraction c of coils.
As a comparison, we first consider a system of linear polymers with
one unfrozen linear “probe” chain diffusing through ¢eN=N -1
artificially immobilized (frozen) linear polymers. The same pertur-
bation is then applied to a dense solution of ring polymers, and the
two cases are compared in Fig. 3. This figure shows that the long-
time dynamics of the unfrozen linear chain (green circles) is
substantially insensitive to the presence of frozen neighbors. This
is because the linear polymer can undergo reptation and simply
snake through the frozen surroundings. [There is a weak cor-
relation effect due to the lack of mass relaxation in the frozen
chains, leaving a “hole” (and corresponding “bump”) in the density
as the mobile chain moves. We find that this only weakly affects the
reptative dynamics.] On the other hand, when we repeated this
procedure on a corresponding system of rings, we observed the
probe ring’s diffusion to be arrested, with it becoming irreversibly
trapped within a region of space of size somewhat smaller than its
gyration radius R, (see red squares in Fig. 3).

Because nothing other than the topology of the polymers was
changed, this dramatically different dynamical response should
be attributed to the presence of topological interactions between
ring polymers, which we identify as the threadings. This imme-
diately implies that the equilibrated state of the rings in our
systems is one in which threadings constrain the free diffusion of
the rings (see sketch in Fig. 1C), therefore limiting their motion
and, in the extreme case, leading to caged diffusion when
neighboring rings that thread them are permanently frozen. The

Rings, cN=N-1
Linear, cN=N-1

Fig. 3. A single unfrozen ring in a system of frozen chains becomes per-
manently caged whereas a linear polymer is substantially unaffected. Mean
square displacement of the center of mass g3(t) of a probe ring (red squares)
and of a probe linear polymer (green circles) diffusing through, N — 1 frozen
ring and linear polymers, respectively. The curves are averaged over 10 different
probes (samples). The two systems have the same monomer density p=0.16"3
and comprise N =50 polymers each containing M = 256 beads that differ only in
their topology. Solid lines represent the behavior of the free solution, i.e., the
¢ =0 case and dashed lines represent the diameter (squared) for rings and linear
polymers (see Movie S2).
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constraints provided by threading between rings in the un-
perturbed (c =0) solution will be transient to a greater or lesser
extent, but they must nonetheless exist. Our results therefore
represent, to our knowledge, the first unambiguous evidence for
inter-ring threading in dense solutions of rings.

It is also worth stressing that the measurement that we per-
form should be interpreted as carrying a statistical meaning:
With enough attempts, one will always be able to find a ring that
is not caged, however unlikely that might be. When we in-
terrogate the rings regarding their state, caged or free, we are
implicitly drawing from a binomial distribution, and, therefore,
we can calculate the probability p of observing a noncaged ring in
any one test for a given fraction of frozen rings. Having per-
formed 10 tries freezing N —1 rings and having observed 10
caged rings, we can set a 95% confidence bound on the fact that
p ~0.26, although the precise values are not particularly im-
portant and any statistical confidence criterion will give quali-
tatively similar results in what follows.

Given that, for all systems studied here, we observe a regime in
which all of the unfrozen rings are caged in regions smaller than
their sizes (2R,) for the whole simulation run time, it is natural to
ask how the behavior crosses over from the unperturbed system
(c=0), in which all of the rings are free to diffuse and none are
explicitly frozen, to the case in which enough rings are explicitly
frozen to implicitly pin, or cage, the others (at some level of
statistical confidence).

We study this transition by tracking the behavior of each
chain’s center of mass diffusion g3(¢), averaged over the unfrozen
rings. The observed behavior of g3(¢) is reported in Fig. 4: For
all systems, there exists a critical frozen fraction (c") for which
every single unfrozen polymer is permanently trapped by the
network of threadings. In other words, at ¢ =c', the systems
exhibit a transition from (at least partially) liquid, or diffusive,
behavior to a glassy state in which the unfrozen chains, al-
though free to rearrange their conformations to some extent,
are all irreversibly caged.

More practically, one can define ¢’ by introducing the effective
diffusion coefficient (37)

.

€=0.00 — =0.64 €=0.00 — €=0.48
10t

€=0.18 —— ¢=0.70 3 €=0.22 —— (€=0.56

=038 — c=0.78 [ =038 — =062

[4]

whose average is taken over the unfrozen rings and vanishes
when all of the unfrozen rings are “caged” by the topological
interactions. It is therefore natural to identify ¢’ as the value of ¢
at which Deg =0. In practice, we run the simulations for a time
much longer than the relaxation time of the rings measured at
¢ =0 (see also SI Appendix, Fig. S4) and define as caged all of the
systems that display a Deg 50 times smaller than the diffusion
coefficient of the unperturbed (c=0) case, Dy (see Fig. 4F).
From this figure, one can notice that the decay of the Dgg
becomes increasingly steeper as the rings become longer, sug-
gesting that the systems with long chains are more susceptible to
small contaminations of frozen chains, whereas, from Fig. 4F,
Inset, one can also appreciate the nearly exponential decay of
Degs with ¢ (27).

Although the diffusion coefficient of the center of mass of the
rings informs us about the overall diffusion of the chains, it is
also interesting to study the relaxation of the chains at different
length scales in response to this external perturbation. This can
be done by computing the dynamic scattering function

g ) -
¢ T

jel

Sc(qa t) =

where Y’ stands for the summation over the (1 —c¢)N =fN non-
frozen chains and the average is performed over time and ori-
entations of ¢. In Fig. 5 (and SI Appendix, Figs. S6—S8), we
report the behavior of this quantity computed for two choices
of wave vector g probing length scales (/ =2r/q) comparable to
the rings’ diameter 2R,. We observe that S.(2/R,,t) decays
much more slowly than the scattering function measured at
q=4/R,. To compare their behavior, we choose an arbitrarily
long time (7= 107 7p,) at which we evaluate the scattering func-
tion and report their difference AS, for a range of values of ¢
and rings’ length (see Fig. 5, and see SI Appendix for different
choices of 7).

4 [ c=0.00 — =022 —
10 r
E <=0.04 — c=0.38
L =014 —

104 10

5
D time [Tg,]
4
10" ' c=0.00 — c=0.10
€=0.02 — ¢=0.28

€=0.00 —  ¢=0.1
€=0.04 — €=0.18

5 6 7
time [Tg,] 10 10

.00

0.10

0.02

0.01

00 01 02 03 04 05 06 07

107 10° 10

6
time [Tg,]

6
time [Tg,]

107 . . . 0.3 0.4 05 . 0.7

Fig. 4. The critical fraction of frozen chains c' at which all of the nonexplicitly frozen chains are usually caged by threadings decreases with ring length. The
mean squared displacement of the center of mass [g3(t)] averaged over only the nonfrozen fraction (1 — ) of rings plotted against time for different values of
the frozen fraction c ranging from ¢ =0 (free solution) to ¢>c' at which all rings in the unfrozen fraction have become permanently caged. (A) M =256, (B)
M=512, (C) M=1,024, (D) M=1,512, and (E) M =2,048. The thick horizontal dashed lines indicate the diameter of the chains. (F) The value of D¢ (Eq. 4)
normalized by Do = Dest(c=0) is shown in linear—linear and (/nset) linear—log scale to appreciate the nearly exponential dependence. The critical value ¢’ is
defined as the one for which Dgs;(ct) /Dy is below a critical threshold that we here set to 0.02 (dashed line).
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Fig. 5. The freezing procedure affects long length scales more strongly
than short ones. (A) Behavior of the dynamic scattering function Sc(q, t) for
the system with M=2,048 and for g=2/R, (I=7Ry) (symbols) and g=4/Ry
(/=7Rg/2) (solid lines) (more examples can be found in S/ Appendix, Figs. S7
and $8). The difference ASc=5.(2/Rg, t) —Sc(4/Rq, t) is computed at an ar-
bitrary long time t= 107 73, and reported in B for the different cases. From
this plot, it is clear that the relaxation of length scales longer than 2Ry is
slowed down more severely than the relaxation of shorter ones by the
pinning procedure. In turn, this suggests that threadings act mainly by
constraining low wavenumber modes.

The increasing trend of AS, suggests that length scales longer
than the diameter of the rings are more susceptible to the
freezing procedure. This is consistent with the fact that thread-
ings between ring polymers constrain their translational degrees
of freedom on length scales comparable to the size of the rings
whereas there can exist internal modes that are left unhindered
and free to relax. In addition, we observe that the systems with
longer chains require a smaller value of ¢ to significantly slow
down the relaxation of the scattering function with respect to
systems with shorter chains. This observation is, in turn, in
agreement with the fact that threadings are more numerous for
systems with longer chains (13), and therefore a smaller fraction
of frozen rings is sufficient to achieve a similar slowing down.

Fig. 5 also suggests that although coils are strongly constrained
by the presence of frozen rings, the configurations can still par-
tially relax by internal rearrangements, and this allows rings to
relax their internal stress. The picture that emerges is rather
different from that for linear polymers, where the center of mass
diffusion is intimately related to its ability to undergo any and all
conformational rearrangements. In the latter case, motion is only
arrested by the onset of a microscopically glassy state for 7' < 7.
In the case of ring polymers, given their closed topology,
threadings instead decouple the dynamics involved in displacing
the center of mass and those involved in the internal rear-
rangement. Any glassy jamming that emerges in this work is
unusual in that it is not associated with arrest of microscopic
degrees of freedom but rather with the topological arrest of low
wavenumber modes, including that associated with the motion of
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the center of mass. This is the reason why an entanglement plateau
is absent. It also means that the slowing down of the dynamics in
systems of rings might not be clearly captured by the stress re-
laxation function G (¢) frequently studied in the literature (6-8, 30),
which is mostly dominated by the unconstrained internal modes,
but rather by the mean square displacement of the unfrozen rings
(as in Fig. 4) or the dynamic scattering function S, (g, ).

Phase Diagram of the System

The behavior of both the effective diffusion coefficient Doy and
AS, show an increasingly steeper dependence on the freezing pa-
rameter c as the length of the rings increases (see Figs. 4F and 5B).
This implies that systems made of long chains become extremely
sensitive to very small perturbations. Indeed, one can think of these
observables as quantifying a form of susceptibility that captures
how the dynamic mobility of the system responds to the freezing of
(very few) threading constraints by chain immobilization.

Finally, in Fig. 6, we show the transition line ¢ =c' in the space
of parameters (1/M,c). The colored data points represent the
position of the simulated systems in the phase space and whether
their behavior was liquid-like (finite D.g—red) or solid-like
(vanishing D.g—blue). The diagram in Fig. 6 is reminiscent of
that observed in more traditional glass-forming systems subject
to random pinning fields (22) where the temperature 7 is here
replaced by the inverse length 1/M; a substitution not unfamiliar
to field-theoretic treatments of polymer systems (2). Along the
transition line, we also report the value of the probability p of finding
an uncaged ring in any one sample as obtained from the binomial
distribution at 95% confidence interval (1—p)'=N =0.05. It is
also worth noticing that the curve is well fitted by an exponential
function of the form M7 (c) =Mge3¢ with M, ~ 3,500. Computa-
tional limitations forbid a thorough exploration of the small ¢ region.
Nonetheless, and somewhat remarkably, our results show that the
number of caged chains per explicitly frozen ring is exponential in
the ring length (see SI Appendix, Fig. S9B). This would seem to mean
that an arbitrarily large fraction of caged chains can be achieved
from an arbitrarily small fraction of frozen rings provided that the
rings are long enough. This raises the possibility that a glassy state
could emerge spontaneously in the critical regime near ¢ =0 in the
(universal) limit of large M.

From these results, it is clear that concentrated solutions of
long rings are extremely sensitive to a small external pinning field
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Fig. 6. The phase diagram of the system suggests a spontaneous vitrification
at large M. The figure shows the phase space (1/M, c) for systems of rings with
length M and in which a fraction ¢ of rings are permanently frozen in space
and time. The transition line (1/MT, c') is shown together with an exponential
fit (dotted line). The colored data points in the diagram indicate whether the
system displays a finite diffusion coefficient at large times (red) or whether it is
irreversibly caged with vanishing De¢s (blue). Along the transition line, we also
report the value of the probability p of finding an uncaged ring in any one test
performed at fixed c (see Phase Diagram of the System for details).

PNAS | May 10,2016 | vol. 113 | no.19 | 5199

PHYSICS


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1520665113/-/DCSupplemental/pnas.1520665113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1520665113/-/DCSupplemental/pnas.1520665113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1520665113/-/DCSupplemental/pnas.1520665113.sapp.pdf

that can drive the center of mass motion of the rings to become
glassy (jammed). We have here traced this phenomenon to the
unusual, topological constraints provided by the threadings be-
tween ring polymers. Although branched polymers also display
exponentially long relaxation times, the origin of this is not co-
operative in nature and would therefore be rather insensitive to
the freezing of some components. On the other hand, coopera-
tivity, such as the inter-ring threadings we study, is thought to be
an essential ingredient of a genuine glass transition (18).

Our work therefore elucidates the conformation of rings in
concentrated solutions and unambiguously characterizes, for the
first time to our knowledge, the presence of threadings between
rings. Furthermore, we show the dynamics of ring polymers to be
sensitive to these interactions, and, finally, we provide strong
evidence for the emergence of a kinetically arrested state solely
driven by topological constraints. This system is therefore a
novel instance of a glassy state induced through the topology of
the constituents.
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