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The components involved in cellular trafficking and protein recycling
machinery that have been associated with increased Alzheimer’s dis-
ease (AD) risk belong to the late secretory compartments for the most
part. Here, we hypothesize that these late unavoidable events might
be the consequence of earlier complications occurring while amyloid
precursor protein (APP) is trafficking through the early secretory path-
way. We investigated the relevance to AD of coat protein complex I
(COPI)-dependent trafficking, an early step in Golgi-to-endoplasmic
reticulum (ER) retrograde transport and one of the very first traffick-
ing steps. Using a complex set of imaging technologies, including
inverse fluorescence recovery after photobleaching (iFRAP) and pho-
toactivatable probes, coupled to biochemical experiments, we show
that COPI subunit δ (δ-COP) affects the biology of APP, including its
subcellular localization and cell surface expression, its trafficking, and
its metabolism. These findings demonstrate the crucial role of δ-COP
in APP metabolism and, consequently, the generation of amyloid-β
(Aβ) peptide, providing previously nondescribed mechanistic ex-
planations of the underlying events.
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Alzheimer’s disease (AD) is a complex pathological condition
that involves various subcellular compartments and or-

ganelles, and affects a range of biological processes, such as
protein maturation, mitochondrial function, autophagy, and protein
trafficking (1–5).
One of its hallmarks is the presence of amyloid plaques com-

posed of aggregated amyloid-β (Aβ) peptides that result from the
sequential cleavage of the amyloid precursor protein (APP) (1).
APP is initially cleaved by beta-secretase (BACE1), producing
secreted sAPPbeta and intracellular APP-beta–C-terminal fragment
(APP-beta-CTF) (6). APP-beta-CTF is then cleaved by the tetra-
meric protein complex called γ-secretase to release Aβ peptides
(7). Those proteolytic cleavages occur concomitantly with APP
trafficking, mainly from the plasma membrane to late endosomes
(1, 8). However, little attention has been given to how APP pro-
cessing might be affected by its trajectory through the early secretory
pathway involving the coatomer protein complexes that regulate
retrograde [Golgi-to-endoplasmic reticulum (ER)] and anterograde
(ER-to-Golgi) transport along this pathway (9). In particular, the
mechanisms that accompany APP maturation and direct it to-
ward the cell surface have been overlooked.
Here, we investigated the relevance of an early trafficking step

in APP maturation, involving coat protein complex I (COPI)-
dependent trafficking. COPI is a complex of seven subunits that
coat vesicles mainly for protein trafficking in the early secretory
pathway. This complex is crucial for retrograde transport of
proteins from the Golgi apparatus back to the ER, as well as
among Golgi compartments (10, 11).
Our results demonstrate that COPI subunit δ (δ-COP) regulates

APP intracellular trafficking, controlling its maturation and thus
the production of Aβ peptides. Altogether, our findings dem-
onstrate the physiological relevance of δ-COP in AD patho-
genesis. Furthermore, whereas AD studies focus mostly on the
efficiency and/or accessibility of the proteases involved in APP
cleavages, our study suggests that the origin of the problem

might be, in fact, directly linked to the nature of APP and occurring
far upstream of the processing sites, namely, at the endocytic
pathway level.

Results
δ-COP Regulates Aβ Production and Interacts with APP. The COPI
complex is responsible for the retrograde Golgi-to-ER transport,
and therefore represents an important component of the ma-
chinery affecting protein maturation. To investigate the effect of
the COPI complex on Aβ peptide generation, we silenced each
of the seven subunits of the complex individually using pools of
siRNAs in N2a-695 cells at several time points.
Thirty-six hours posttransfection, a successful reduction of ex-

pression was achieved for each COPI subunit (Fig. 1A and Fig. S1 A
and B). Remarkably only δ-COP silencing significantly decreased
Aβ40 production at that time point (Fig. 1B). At 48 h post-
transfection, three additional COPI subunits (α, β, and β′ subunits)
were found to influence Aβ production, but the toxicity resulting
from silencing each of these three subunits individually was signif-
icant, and led to some degree of cell death (Fig. 1C). Only minor or
no toxicity was observed at 36 h (Fig. 1D). The efficacy of δ-COP
silencing on Aβ40 reduction increased with time up to 48 h (61%;
Fig. 2A); we then used this time point in all subsequent studies. We
also found the inverse relationship to be true, where δ-COP over-
expression caused an increase in Aβ40 production in N2a-695 cells
(Fig. 2B). Similar results were obtained on endogenous APP when
using N2a cells. The results showed that δ-COP expression controls
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Aβ levels and suggested a possible interaction between δ-COP and
APP. We confirmed this possibility by demonstrating coimmuno-
precipitation of APP and δ-COP (Fig. 2C).

δ-COP Silencing Induces APP Accumulation in the Golgi Apparatus and
Prevents Its Cell Surface Expression. We next examined the possi-
bility that δ-COP affects Aβ levels by modifying APP trafficking,
using sucrose gradients to separate cellular compartments. Silencing
δ-COP increased the amount of APP associated with the Golgi by
5.74-fold (Golgi-enriched fraction) and by 1.65-fold in the ER (ER-
enriched fraction), whereas total APP increased by 1.4-fold (Fig. 3
A–C). We also investigated the effect of δ-COP silencing on control
actin protein. Depletion of δ-COP had only a mild effect on actin
levels (increased 1.33-fold and 1.17-fold in the Golgi and ER, re-
spectively) (Fig. 3 A and B), indicating that the integrity of the cells
was preserved. We reasoned that accumulation of APP in the Golgi
apparatus might be compensated for by decreased levels in another
subcellular compartment (i.e., the cell surface), which is consistent
with the observation that COPI affects cell surface APP levels (12).
Using APP biotinylation, we showed that δ-COP silencing dra-
matically decreased the amount of APP at the cell surface (Fig. 3D).
Similar results were obtained in N2a cells. The silencing of δ-COP
could either prevent APP from reaching the plasma membrane or
affect APP endocytosis. To determine whether δ-COP also

influences the kinetics of APP endocytosis, cell surface proteins
were biotinylated and their internalization was assessed over
time. Compared with control siRNA, the kinetics of APP en-
docytosis remained unchanged after reducing δ-COP (Fig. 3E).

APP Maturation Is Affected by δ-COP Silencing. We next tested
whether δ-COP silencing affects maturation of APP. Mature and
immature APP isoforms were resolved by immunoblot (Fig. 4A).
Lowering δ-COP with siRNA reduced the relative levels of mature
APP in a time-dependent manner (decrease of 67.8% ± 1.52 at
36 h and 76.3% ± 1.2 at 48 h), whereas Brefeldin A (BFA), a drug
that disrupts the Golgi apparatus, eliminated the mature APP (Fig.
4A). Because δ-COP silencing affects APP maturation, we next
investigated which posttranslational modifications (PTMs) δ-COP
modulated. We designed six APP mutants lacking different known
sites of PTM (13–17) (Fig. 4B). Compared with APP-WT, APP
lacking known sites for N-glycosylation or palmitoylation produced
less Aβ40 (Fig. 4C). Interestingly, APP lacking N-glycosylation sites
partially failed to respond to δ-COP silencing with respect to Aβ40
(Fig. 4D). This observation suggests that COPI could affect Aβ
production through a pathway involving N-glycosylation of APP. The
δ-COP–mediated change in APP localization and/or deficiency in its
maturation might affect APP proteolytic processing. We therefore
investigated the possible effect of δ-COP depletion on the α-, β-, and
γ-secretase cleavages of APP. Cells were transfected with δ-COP
siRNA, and the levels of secreted sAPPbeta and sAPPalpha
(cleavage products of the β- and α-secretase, respectively) were
measured. Reducing δ-COP levels decreased the APP proteolytic
product sAPPbeta at 36 and 48 h, whereas sAPPalpha remained
unchanged (Fig. 4 E–G). In this cellular system, the amount of
cognate APP fragment APP-beta-CTF is undetectable. Reduction
of δ-COP in N2a cells transfected with APP-beta-CTF, the substrate
of γ-secretase, also significantly reduced Aβ40 production (Fig. 4H),
whereas APP-beta-CTF is unchanged in this system (Fig. 4H,
Lower). These findings demonstrate that δ-COP affects multiple
steps of APP proteolytic processing in the amyloidogenic pathway.

δ-COP Silencing Perturbs Dynamic Trafficking of APP in the Early
Secretory Pathway. To assess the subcellular distribution of APP
and δ-COP further, an optimized confocal imaging protocol (18)
was used to detect and quantify the colocalization of APP and
δ-COP simultaneously with a Golgi marker in living N2a cells. We
found that GFP-APP and CFP-δ-COP highly colocalize and reside
predominantly in the Golgi compartment (Fig. 5 A–C and Fig. S2).
The role of COPI in Golgi-to-ER retrograde trafficking is well
established (19), but a role for δ-COP in APP trafficking has not
been reported. To investigate the effects of δ-COP–induced retro-
grade transport on APP dynamic trafficking, we imaged living cells,
with or without δ-COP silencing, using inverse fluorescence recovery

B

A
β4

0 
le

ve
l 

re
la

tiv
e 

to
 C

on
tro

l

Con
tro

l

0.0

siRNAs:

0.5

1.0

1.5

**

A

%
 e

xp
re

ss
io

n 
(m

R
N

A
)

re
la

tiv
e 

to
 C

on
tro

l

0

siRNAs:

50

100

DC

0.0

siRNAs:

50

100

%
 c

el
l d

ea
th

 
 re

la
tiv

e 
to

 C
on

tro
l 

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

’-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

’-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

0.0

siRNAs:

50

100

%
 c

el
l d

ea
th

 
 re

la
tiv

e 
to

 C
on

tro
l 

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

-C
OP

Fig. 1. Effects of COPI subunits on Aβ40 production. (A) Analysis of the
expression of the seven subunits of the COPI complex by quantitative PCR
36 h posttransfection of N2a-695 cells with siRNA pools for the seven sub-
units. (B) Analysis of Aβ40 level. The results are presented after normaliza-
tion to the total amount of proteins. Cell death was evaluated by measuring
lactate dehydrogenase release 48 h (C) or 36 h (D) posttransfection using
siRNA pools (**P < 0.01, two-tailed Student’s t test; n = 3).
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after photobleaching (iFRAP). N2a cells, with the exception of the
Golgi area, were repeatedly photobleached, and the loss of APP
fluorescence in the Golgi apparatus was tracked as GFP-APP exited
the Golgi. The treatment with δ-COP siRNA dramatically delayed
the loss of fluorescence compared with nonsilenced cells (Fig. 5 D
and F, δ-COP silencing efficiency is shown in Fig. 5E), demon-
strating that δ-COP is a key regulator of APP Golgi localization. To
examine the movement of APP after exiting the Golgi, we coex-
pressed a photoactivatable APP-GFP (APP-paGFP) and a marker
of the Golgi apparatus, mCherry-galactotransferase (GalT-mCherry)
with a single plasmid. We tracked the movement of APP by acti-
vating the most distal region of the trans-Golgi network to enable
recording of the retrograde movement toward the nucleus. Several
vesicles that appeared in the control condition (Fig. 6A, Top, white
arrows) moved toward the nucleus over time. However, after si-
lencing δ-COP (Fig. 6B), the activated APP remained immobile,
demonstrating the necessity of δ-COP for the retrograde transport
of APP.

Discussion
Reduction or prevention of Aβ peptide accumulation remains an
important goal of AD research and treatment. Along these lines,
new clinical trials are aimed at targeting the pathways underlying
Aβ production (20, 21). The present results indicate that δ-COP
interacts with APP and plays an important role in its processing.
Knockdown of δ-COP results in an accumulation of APP in the
Golgi, while decreasing its maturation and expression at the plasma
membrane. Consequently, it reduces the production of Aβ pep-
tides. The effect of δ-COP on Aβ peptide regulation could be
explained by two main hypotheses: (i) the interference with the
retrograde transport leading indirectly to lower amounts of APP
reaching the cell surface and being available for cleavages by the
secretases within endocytic compartments and/or (ii) reduced APP
endocytosis as a consequence of downstream pathway regulation
by the COPI complex (22, 23). Here, we demonstrated that the
kinetics of APP endocytosis remain mostly unchanged after re-
ducing δ-COP, privileging the former hypothesis.
Furthermore, the data presented from live-cell imaging experi-

ments corroborate this hypothesis clearly, showing that by using
state-of-the-art iFRAP technology, less APP is exiting the Golgi
after silencing δ-COP and that use of photoactivable APP allowed
us to follow dynamically the retrograde transport, further demon-
strating the importance of δ-COP for APP Golgi localization.
The correlation between inhibition of APP maturation and APP

retention in the Golgi apparatus after δ-COP silencing suggests that
a quality-control mechanism prevents APP from moving further in
the secretory pathway. Indeed, it is known that if a misfolded protein
exits the ER, COPI contributes to its retrieval back to the ER,
providing the environment for protein folding (9, 24). Therefore, it
is possible that δ-COP impairment affects the quality control of APP
and that incorrect APP molecules cannot undergo maturation steps
as suggested by the present work. Proteins are transported beyond
the Golgi apparatus only if they are fully folded and maturated. For
this reason, higher levels of APP in the Golgi apparatus do not
necessarily translate into an increased level of APP in downstream
compartments, such as the plasma membrane. By reducing or
blocking COPI function, we propose that the reduced function
prevents full maturation of APP. Along these lines, inhibition of
the retrograde trafficking route is thought to lead to the collapse
of anterograde trafficking (25). Altogether, these results might
explain why COPI loss of function leads to an accumulation of
APP not only in the Golgi but also in the ER to a lesser extent.
In contrast to the classical paradigm centered on the proteolytic

cleavages of APP to release Aβ, a possible model that takes into
account our results would imply that the formation of Aβ might be
controlled by the posttranslational state of APP, occurring upstream
from the processing sites (endocytic pathway). Changes in APP
PTMs, such as the addition of new biochemical moieties (e.g., gly-
cosylation, palmitoylation) could alter both its targeting to down-
stream cellular compartments and its cleavage by secretases. This
result suggests that APP maturation steps need to occur sequentially
in the Golgi/ER compartments. The preliminary data suggest that
N-glycosylation of APP, known to occur in the ER (15), could be one
necessary PTM for the downstream regulation of Aβ production.
It has been shown that TMP21, a protein associated with COPI, is

a component of the γ-secretase complex and regulates its activity
(26). Interestingly, the γ-secretase complex has been found in COPI-
coated vesicles and linked to APP trafficking (12, 27). In the context
of AD etiology, these studies and the work that we have presented
here highlight a broad regulatory role of retrograde transport. This
fact reinforces the importance of early quality-control steps in
AD pathogenesis and raises the question of a possible de-
railment over time.
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Materials and Methods
Biochemistry.
Cell culture, cell viability, cell death assessments, knockdown, and overexpression.
N2a cells overexpressing APP695 (N2a-695) and N2a cells were grown in 1:1
DMEM/Opti-MEM (Life Technologies) containing 5% (vol/vol) FBS (Sigma). HEK
293T cells were grown in DMEM supplemented with 10% (vol/vol) FBS. For
cellular knockdown experiments, siRNA of the COPI subunits was purchased
from Thermo Fisher Scientific. The siRNAs used were purchased as a pool of four
different siRNAs. For δ-COP, we also used an individual siRNA sequence. N2a-695
and N2a cells were transfected with siRNA using DharmaFect 2 (Thermo Fisher
Scientific). Nontargeting control siRNA (Thermo Fisher Scientific) was transfected
in parallel as a control. For overexpression in cells, mammalian expression vector
pReceiver-M07 coding different proteins with a C-terminal HA tag was
purchased from Genecopoeia. Plasmids were transfected into cells using
Lipofectamine 2000 (Life Technologies). The pcDNA4-beta-CTF expression
vector was a kind gift from Y. M. Li (Memorial Sloan Kettering Cancer
Center, New York). PcDNA3-APP was provided by H. Rebholz, The City College
of New York, New York. BFA (Sigma), a drug known to disrupt the Golgi appa-
ratus physically, was used as a control. APP mutant sites for the PTM studies were
chosen based on the existing literature and were designed following standard
procedures. A cytotoxicity kit was purchased from Promega. Cell death was

determined by measuring the level of lactate dehydrogenase activity released
upon cell lysis.
Aβ quantification. For cell cultures, the medium was replaced 6 h before col-
lecting supernatants for Aβ40 and Aβ42 peptide measurements. Aβ levels
were normalized to total protein levels. The concentrations of Aβ40 peptide
were determined using the sandwich ELISA technique (Life Technologies).
Western blotting analysis and Abs. Equal amounts of protein samples (based on
bicinchoninic acid assay quantification) were subjected to Western blot analysis.
Abs used were as follows: APP-CTF (in-house and Abcam), APP (6E10 from
Covance), δ-COP, (Abcam), β-actin (EMD Millipore), PS1 (in-house), and Myc
(Genscript). HA Ab for immunoprecipitation (Genscript) and HA Ab for Western
blotting (Roche) were also used.
Real-time RT-PCR. RNAs were extracted from cells using a PureLink RNA Ex-
traction Mini Kit (Life Technologies). Equal amounts of RNA were used to set up
RT-PCR to generate cDNAs using a High Capacity cDNA Reverse Transcription Kit
(Life Technologies). cDNAs were used for real-time PCR using Taqman Gene
Expression Assays (Life Technologies).
Coimmunoprecipitation. HEK293Tcells overexpressing δ-COP–HAwere lysed in50mM
Hepes, 150 mM NaCl, 1% CHAPSO (3-([3-Cholamidopropyl]dimethylammonio)-2-
hydroxy-1-propanesulfonate), 5 mM MgCl2, and 5 mM CaCl2, with protease in-
hibitors. Immunoprecipitation experiments were performed using the

24h 36h 48hsiRNAs:
Control:
-COP:

+
-

-
+

+
-

-
+

+
-

-
+

APP 

A

E

0.0

0.5

1.0

***

Control -COPsiRNAs:

A
40

 le
ve

l 
re

la
tiv

e 
to

 C
on

tro
lH

Ctrl BFA

24h 36h 48hsiRNAs:
Control:
-COP:

+
-

-
+

+
-

-
+

+
-

-
+

sAPP

sAPP

 mature APP 
relative to Control

0

50

100

* *

24
h

36
h

48
hsiRNA -COP :

mature APP
APP-m

ut1
APP-m

ut2
APP-m

ut3
APP-m

ut5
APP-m

ut6

APP-m
ut4

A
40

 le
ve

l 
re

la
tiv

e 
to

 C
on

tro
l

0.0

0.5

1.0

1.5

C

siRNA Control: + -
siRNA -COP: -

APP-W
T

**
***

A
40

 le
ve

l 
re

la
tiv

e 
to

 C
on

tro
l

0.0

0.5

1.0

1.5D
****

*** n.s.

+ - + -
+ - + - +

OE APP-WT: + +
OE APP-mut1: -

- - - -
- + - -

OE APP-mut4: + +
+

- - - -

-CTF

-COP

F

0

50

100

* *

24
h

36
h

48
hsiRNA -COP:

re
la

tiv
e 

to
 C

on
tro

l
sA

P
P

 le
ve

l

G

0

50

100

24
h

36
h

48
hsiRNA -COP:

re
la

tiv
e 

to
 C

on
tro

l
sA

P
P

 le
ve

l

n.s. n.s.

150

200 n.s.

n.s.

 mutant 1 palmitoylations
PTM 

 mutant 2 sulfations
 mutant 3 O-glycosylations
 mutant 4 N-glycosylations
 mutant 5 phosphorylation
 mutant 6 phosphorylations

C186A, C187A
mutations 

Y217A, Y262A
T291A, T292A, T576A
N467A, N496A
T668A (most studied site)
S198A, S206A, Y653A, S655A, 
S675A, Y682A, T686A, Y687A

B

Fig. 4. Effect of δ-COP on APP metabolism. (A) Maturation of APP after transfection with δ-COP siRNA or BFA treatment (Upper) and quantification of mature APP
(Lower). Ctrl, control. (B) Position and nature of the APP mutations engineered. (C) Aβ40 level measurements 48 h posttransfection of N2a cells overexpressing APP-
WT or the six different APP mutants. (D) Overexpression of APP-WT, APP-mut1, or APP-mut4 in N2a cells pretreated with siRNAs (control or δ-COP) and measurement
of Aβ40 level. (E) Visualization of sAPPbeta and sAPPalpha in N2a-695 cells transfected with δ-COP siRNA. Quantification of sAPPbeta (F) and sAPPalpha (G).
(H) γ-Secretase cleavage quantification in N2a cells overexpressing the APP-beta-CTF. δ-COP and APP-beta-CTF expression (Lower) and Aβ40 production (Upper) are
shown (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, two-tailed Student’s t test and Bonferroni’s multiple comparison test; n = 3). n.s., not significant.

Bettayeb et al. PNAS | May 10, 2016 | vol. 113 | no. 19 | 5415

N
EU

RO
SC

IE
N
CE



appropriate Abs mixed with Protein G Plus/Protein A Agarose beads (EMD Milli-
pore) and incubated for 2 h at 4 °C. The samples were washed with lysis buffer,
and proteins were eluted with SDS loading buffer. Immunoprecipitated proteins
were resolved by SDS/PAGE and analyzed by Western blot using appropriate Abs.
Subcellular fractionation. Cells were homogenized in a sucrose buffer [0.25 M
sucrose, 10 mM Tris (pH 7.4), 2 mM MgAc, 0.5 mM EDTA supplemented with
protease inhibitors] using a ball-bearing cell cracker. Homogenates were loaded
on top of a step sucrose gradient [10 mM Tris (pH 7.4), 1 mMMgAc, 0.25–2 M
sucrose]. The gradients were centrifuged for 2.5 h at 250,000 × g using a
Beckman SW41Ti rotor. Twelve 1-mL fractions were collected and analyzed
by SDS/PAGE and Western blotting using APP-CTF Ab (discussed above).
Fractions corresponding to the Golgi and ER specifically were also analyzed
by SDS/PAGE and Western blotting using corresponding antibodies for APP-
CTF and actin (discussed above).
Cell surface biotinylation. Cells were washed with ice-cold PBS and incubated
with Sulfo-NHS-SS-Biotin (Thermo Fisher Scientific) in PBS for 30 min at 4 °C.
Biotin solution was then removed, and cells were washed once with 50 mM
Tris and twice with ice-cold PBS.

Biotin assay for endocytosis. Cells were washed with ice-cold PBS/CM (PBS con-
taining 1mMMgCl2 and 1.3 mMCacl2) and incubatedwith Sulfo-NHS-SS-Biotin
in PBS/CM. Biotin solution was then removed, and cells were washed twice
with DMEM/0.2% BSA (Life Technologies and Jackson ImmunoResearch Lab-
oratories). Cells were transferred to 37 °C for various times to allow the bio-
tinylated proteins to be internalized. The reactions were stopped by
transferring the cells and washing twice in PBS/CM containing 10% serum at
4 °C (Life Technologies). The cells were incubated in reducing solution and
then quenching solution.
Precipitation of biotinylated proteins. Cells were collected and lysed in radio-
immunoprecipitation assay buffer, followed by centrifugation. Lysates were
added to streptavidin-Dynabeads (Life Technologies) and incubated for 1 h at
4 °C. The beads were then washed five times with ice-cold PBS/0.01% Tween
and eluted by addition of SDS loading buffer. Biotinylated proteins were
resolved by SDS/PAGE and analyzed by Western blot with APP Ab.

Live-Cell Imaging and Analysis.
Cell culture. N2a cells were cultured on poly-D-lysine–coated, glass-bottomed
culture dishes (MatTek Corp). Cells were initially maintained in 1:1 DMEM/Opti-
MEM (Life Technologies) containing 5% FBS for 24 h. Neurite differentiation was
induced by reducing serum in the medium (1% FBS) for another 48 h. Golgi
localization was achieved by infection with a baculovirus to express CellLight
RFP-Golgi marker (Life Technologies). CFP-δ-COP and GFP-APP were transfected
into N2a cells using Lipofectamine 2000. For iFRAP experiments, an additional
siRNA treatment procedure was performed 6 h before the transfection step.
Live-cell confocal microscopy. All images were acquired 24–30 h after trans-
fection. Live-cell confocal images were obtained on a Leica TCS SP8 confocal
imaging system equipped with 63×/1.4 and 100×/1.4 N.A. oil-immersion ob-
jective lenses. During imaging, cells were maintained in 1:1 DMEM/Opti-MEM
without Phenol Red on a stage preheated to 37 °C. Microscopy setup and
imaging acquisition were performed as described previously (28). A white-
light laser source (Leica WLL) providing a continuous spectral output be-
tween 470 and 670 nm and a 405-nm UV laser was used for excitation. The
microscope was maintained at 32–35 °C using a temperature-controlled
housing throughout the entire imaging procedures.
Statistical analyses for colocalization. Twelve sets of micrographs from three in-
dependent experiments were used for colocalization analysis. The Pearson’s corre-
lation coefficient (PCC) was determined using Image-Pro Premier (version 9.1; Media
Cybernetics) as described previously (18). Tomeasure the fraction of total CFP-δ-COP
fluorescence (denoted as C) that colocalized with the RFP-Golgi fluorescence
(denoted as R), we further calculated Manders’ colocalization coefficients (m1) using
Image-Pro Premier based on the equation below (Ch, channel; i, intensity):

m1 =

P
iChðCÞi,coloc   ðC&RÞP

iChðCÞi
.

iFRAP imaging and analysis. A Zeiss LSM 780 laser-scanning confocal microscope
equipped with a 100×/1.4 N.A. oil-immersion objective lens and a 25-mW
multiline argon laser was used for all iFRAP imaging. Selective photobleaching
was performed repeatedly at 30% laser power before each time-lapse image
was taken. Each photobleaching iteration took 5–8 s depending on the size of
bleached areas. Total time-lapse scanning was set at 80–120 scans (15 min)
with 5 s between scans. Three prescans were performed to establish the
baseline. Fluorescent quantitation was performed using ZEN microscope
software (Carl Zeiss Microscopy), where the mean intensities of the GFP-APP in
the Golgi region were measured. Apparent fluorescent decrease was fitted
using a single exponential function: I(t) = I∞ + I0 × e−(t/T), where I∞ is the final
remaining fluorescence at the end of the time series, I0 is the initial fluores-
cence, and T is the apparent decay time constant. A collection of six to 10
independent experimental datasets was used for calculation and plotted using
SigmaPlot (version 11.0; Systat Software). Fluorescence decrease was plotted as
a function of time and fitted to a single exponential (Fig. 5D).
Photoactivation experiments. Confocal microscope setup for live-cell imaging of
paGFP was performed as described previously (29). The pa-GFP plasmid was a
generous gift from George Patterson, National Institute of Biomedical Imag-
ing, Bethesda. In brief, N2a cells were transfected with a custom-designed
plasmid (pBudCE4.1 backbone expression vector; Life Technologies) that si-
multaneously expresses APP-paGFP and GalT-mCherry. GalT-mCherry–
expressing cells were selected for photoactivation. Cultured cells were kept on
a heated stage connected to temperature and CO2 control units (PeCon
GmbH). The Zeiss photobleaching mode was used to photoactivate paGFP.
Localized photoactivation of APP-paGFP on a region of the trans-Golgi net-
work furthest from the nucleus, which was marked by GalT-mCherry fluores-
cence (a marker of the Golgi apparatus), was triggered with acousto-optic
tunable filters switched 405-nm solid-state laser. Time-lapse live-cell imaging
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Fig. 5. Influence of δ-COP on APP trafficking in living cells. (A) Subcellular
localization of APP, Golgi, and δ-COP in living N2a cells infected with a bacu-
lovirus expressing an RFP-Golgi marker, and then transfected with CFP-δ-COP
and GFP-APP (n = 3). (Scale bar: 10 μm.) (B) Box plot of Pearson’s correlation
coefficient (PCC). Values for each of the three conditions are greater than 0.5,
indicating positive colocalization for each duo considered. (C) Colocalization
coefficients m1 plot for CFP-δ-COP and RFP-Golgi (n = 12). (D) Time-course
quantification of iFRAP kinetics (n = 6–10 cells from independent culture dishes).
(E) δ-COP expression in N2a cells used for the iFRAP live-cell imaging (n = 3).
(F) Images from iFRAP time series of GFP-APP (Right) under repeated photo-
bleaching of single cells excluding the Golgi region (Left). The bleached area is
highlighted in yellow, and the region of interest for measuring fluorescence loss
is circled in white. (Lower) Two cells are visible on the field under δ-COP siRNA
treatment, but iFRAP was performed on only one of them. (Scale bar: 10 μm.)
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was resumed immediately following photoactivation, and 100 imaging frames
were taken in 1 h. The confocal scanning rate was set at 3.15 μs per pixel with
line average up to 2, which translates to acquisition speeds ranging from 1 to 2 s
per image. Both static and dynamic movies were annotated and edited for
presentation using Zeiss Zen 2012 software.
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Fig. 6. Effect of δ-COP on retrograde movement in living cells. Single N2a cells expressing APP-paGFP treated with control siRNA (A) or δ-COP siRNA (B) and
subjected to photoactivation (column 2). Time-lapse images of APP-paGFP (columns 3–6). Fluorescent signals are merged with bright-field images, and the region of
interest highlighted with a white box is shown under each field. (Magnification: 2×.) The morphology of the plasma membrane and nucleus of the cells were
visualized by differential interference contrast (DIC) microscopy. Regions of the Golgi are outlined in red using the expression of GalT-mCherry. Yellow circles in the
second column indicate the photoactivated region (trans-Golgi). Light blue circles in the third to sixth columns mark the photoactivated regions, and white arrows
show the movement of APP over time (n = 3). (Scale bars: 10 μm.)
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