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Metabolites of the kynurenine pathway (KP) of tryptophan (TRP)
degradation have been closely linked to the pathogenesis of
several neurodegenerative disorders. Recent work has highlighted
the therapeutic potential of inhibiting two critical regulatory
enzymes in this pathway—kynurenine-3-monooxygenase (KMO)
and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates
that the efficacy of KMO inhibition arises from normalizing an
imbalance between neurotoxic [3-hydroxykynurenine (3-HK); qui-
nolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)]
KP metabolites. However, it is not clear if TDO inhibition is pro-
tective via a similar mechanism or if this is instead due to increased
levels of TRP—the substrate of TDO. Here, we find that increased
levels of KYNA relative to 3-HK are likely central to the protection
conferred by TDO inhibition in a fruit fly model of Huntington’s
disease and that TRP treatment strongly reduces neurodegenera-
tion by shifting KP flux toward KYNA synthesis. In fly models of
Alzheimer’s and Parkinson’s disease, we provide genetic evidence
that inhibition of TDO or KMO improves locomotor performance
and ameliorates shortened life span, as well as reducing neuro-
degeneration in Alzheimer’s model flies. Critically, we find that
treatment with a chemical TDO inhibitor is robustly protective in
these models. Consequently, our work strongly supports targeting
of the KP as a potential treatment strategy for several major neu-
rodegenerative disorders and suggests that alterations in the levels
of neuroactive KP metabolites could underlie several therapeutic
benefits.
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The kynurenine pathway (KP), the major catabolic route of
tryptophan (TRP) metabolism in mammals (Fig. 1), has been

closely linked to the pathogenesis of several brain disorders (1).
This pathway contains several neuroactive metabolites, including
3-hydroxykynurenine (3-HK), quinolinic acid (QUIN) and kynur-
enic acid (KYNA) (2). QUIN is a well-characterized endogenous
neurotoxin that specifically activatesN-methyl-D-aspartate (NMDA)
receptors, thereby inducing excitotoxicity (3, 4). The metabolites
3-HK and QUIN are also neurotoxic via the generation of free
radicals and oxidative stress (5, 6). Conversely, KYNA—synthesized
by kynurenine aminotransferases (KATs)—is neuroprotective through
its antioxidant properties and antagonism of both the α7 nicotinic
acetylcholine receptor and the glycine coagonist site of the NMDA
receptor (7–13). Levels of these metabolites are regulated at two
critical points in the KP: (i) the initial, rate-limiting conversion of
TRP into N-formylkynurenine by either tryptophan-2,3-dioxygenase
(TDO) or indoleamine-2,3-dioxygenase 1 and 2 (IDO1 and IDO2);
and (ii) synthesis of 3-HK from kynurenine by the flavoprotein
kynurenine-3-monoxygenase (KMO) (1).
Alterations in levels of the KP metabolites have been observed

in a broad range of brain disorders, including both neurode-
generative and psychiatric conditions (14). In neurodegenerative

diseases such as Huntington’s (HD), Parkinson’s (PD), and Alz-
heimer’s (AD), a shift toward increased synthesis of the neurotoxic
metabolites QUIN and 3-HK relative to KYNAmay contribute to
disease (1). Indeed, in patients with HD and HD model mice, 3-
HK and QUIN levels are increased in the neostriatum and cortex
(15, 16). Moreover, KYNA levels are reduced in the striatum of
patients with HD (17). Several studies have also found perturba-
tion in KP metabolites in the blood and cerebrospinal fluid of
patients with AD, with decreased levels of KYNA correlating with
reduced cognitive performance (18, 19). Similarly, in the basal
ganglia of patients with PD, a reduction in KYNA levels combined
with increased 3-HK has been observed (20, 21).
Drosophila melanogaster has provided a useful model for in-

terrogation of the KP in both normal physiology and in neuro-
degenerative disease (22, 23). In fruit flies, TDO and KMO are
encoded by vermillion (v) and cinnabar (cn), respectively, and both
are implicated in Drosophila eye color pigmentation and brain
plasticity (24, 25). In flies, TDO is the sole enzyme that catalyzes
the initial step of the KP, as IDO1 and IDO2 are not present (Fig.
1), and so provides a distinctive model for examining the role of
this critical step in the pathway. Moreover, we have previously
found that downregulating cn and v gene expression significantly
reduces neurodegeneration in flies expressing a mutant huntingtin
(HTT) fragment—the central causative insult underlying HD (22).
We also observed that pharmacological manipulations that reduced
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the 3-HK/KYNA ratio were always associated with neuroprotection.
Notably, reintroduction of physiological levels of 3-HK in HD
flies that lacked this metabolite due to KMO inhibition was
sufficient to abolish neuroprotection (22). Furthermore, in a
Caenorhabditis elegans model of PD, genetic down-regulation of
TDO ameliorates α-synuclein (aSyn) toxicity (26). This effect
appeared to be independent of changes in the levels of serotonin or
KP metabolites but was correlated with increased TRP levels. Sup-
plementing worms with TRP also suppressed aSyn-dependent
phenotypes (26). The present study was designed to further de-
fine the mechanism(s) that underlies the neuroprotection con-
ferred by TRP treatment and TDO inhibition and to extend our
analyses of the neuroprotective potential of the KP to fruit fly
models of AD and PD.

Results
TRP Is Neuroprotective in HD Flies via Modulation of Downstream KP
Metabolites. As work in C. elegans suggests that TDO inhibition
and TRP treatment may confer protection against toxicity arising
from misfolded proteins independent of KP metabolites (26),
here we investigated whether alterations in KP metabolites were
central to this protection in HD flies. These flies feature the pan-
neuronal expression of a mutant HTT exon 1 encoding fragment
(HTT93Q) under control of the elavGAL4 panneuronal driver, and
serve as a well-characterized model of HD (27). In particular,
degeneration of photoreceptor neurons (rhabdomeres) in the eye
serves as a robust and reproducible readout for neurodegeneration,
which can easily be scored using the pseudopupil assay. HTT93Q
flies were allowed to develop on media supplemented with various
concentrations of TRP (from 0.4 to 10 mg/mL), and neuro-
degeneration was assessed at day 0 on newly emerged flies. TRP
supplementation resulted in a dose-dependent amelioration of
neurodegeneration compared with untreated controls, with 0.8 mg/mL
being the minimum protective concentration (P < 0.001), and the
protection saturating at 3.5 mg/mL TRP (P < 0.001; Fig. 2A). To
assess whether TRP-induced neuroprotection was dependent
upon changes in downstream neuroactive KP metabolites, we next
determined the levels of the neurotoxic metabolite 3-HK and the
neuroprotective metabolite KYNA. TRP treatment of HTT93Q
flies substantially reduced levels of 3-HK relative to KYNA (P <
0.001; Fig. 2B), predominantly driven by increased levels of KYNA
(SI Appendix, Fig. S1 A and B). Furthermore, we observed that the
low level of emergence of adult HD flies from the pupal case
(eclosion; SI Appendix, Fig. S1C) was significantly enhanced by

feeding of 3.5 mg/mL TRP (P < 0.001; Fig. 2C). These data suggest
that the neuroprotection conferred by TRP treatment is due—at
least in part—to increased levels of KYNA in these flies.
We next explored the mechanism(s) by which TDO inhibition

leads to neuroprotection. First, HTT93Q flies carrying a strong
amorphic allele of v (v36f) were used to assess the role of KYNA.
These v−/− HTT93Q flies exhibit a dramatic approximately
eightfold increase in TRP levels compared with controls (P <
0.001; Fig. 2D), as well as a significant ∼80% reduction in the
3-HK/KYNA ratio (P < 0.001; Fig. 2E and SI Appendix, Fig. S1 D
and E). To reduce levels of KYNA in the HTT93Q v−/− back-
ground, we used the nonspecific KAT inhibitor aminooxyacetic
acid (AOAA), which effectively reduces KYNA synthesis in ro-
dents in vitro and in vivo (28, 29). Animals administered 100 μM
of AOAA in their food exhibited a significant decrease in KYNA
levels (P < 0.05; Fig. 2F), which resulted in an increase in the
3-HK/KYNA ratio (P < 0.05; Fig. 2G). Strikingly, these animals
showed a complete reversal of the neuroprotection conferred
by TDO inhibition (P < 0.001; Fig. 2H). No changes were seen
in levels of TRP or 3-HK (SI Appendix, Fig. S1 F and G), so
these findings strongly suggest that KYNA is central to the
neuroprotection observed.
We next asked whether modulation in 3-HK levels also plays a

role in the neuroprotection observed in TDO-deficient flies,
which have greatly reduced 3-HK levels (22) (Fig. 2I). In line with
our demonstration that reintroduction of 3-HK in KMO-deficient
flies (cn−/−) is sufficient to restore neurodegeneration (22), we
administered several concentrations of 3-HK (0.2–1 mg/mL) to
the flies in the food (Fig. 2 I and J). Surprisingly, we found that—
unlike cn−/− HTT93Q flies (22)—restoration of physiological
levels of 3-HK in v−/− HTT93Q flies (at the 0.2 mg/mL dose) did
not reverse neuroprotection (Fig. 2J). Increasing 3-HK to hyper-
physiological levels via administration of 1 mg/mL 3-HK enhanced
neurodegeneration in v−/− HTT93Q flies, thereby eliminating the
neuroprotection normally observed (P < 0.001; Fig. 2J). In all
cases, we found that 3-HK treatment led to significant increases in
the 3-HK/KYNA ratio (SI Appendix, Fig. S1 H and I). Thus,
restoration of physiological 3-HK levels is not sufficient to abro-
gate the neuroprotection conferred in TDO-deficient flies.

The Excitotoxin QUIN Promotes Neurodegeneration in Drosophila.
Drosophila do not express the KP enzyme 3-hydroxyanthranilic
acid dioxygenase, and thus fruit flies do not synthesize QUIN
(30). Therefore, we fed elavGAL4-driven HTT93Q flies with
increasing QUIN concentrations during development and
assessed neurodegeneration by scoring the number of rhabdo-
meres at day 0. We first measured QUIN in wild-type (WT) and
HD fly heads. As expected, QUIN was detected in flies fed
0.5 mg/mL QUIN, but not in the untreated group (P < 0.001; Fig.
3A). Interestingly, we found that HTT93Q flies accumulate more
QUIN than WT flies (P < 0.01). Whereas QUIN feeding did not
cause degeneration of rhabdomeres in WT flies (SI Appendix, Fig.
S2A), QUIN treatment (0.2 and 0.5 mg/mL) enhanced neuro-
degeneration in HTT93Q flies in a dose-dependent manner (Fig.
3B). Notably, KMO inhibition did not protect against QUIN-
induced neurotoxicity in HTT93Q flies carrying homozygous
cn3 mutation, a strong amophic cn allele (Fig. 3B).

Endogenous Synthesis of KYNA in Fruit Flies Is Neuroprotective. We
next generated a Drosophila line carrying a transgene encoding
hKAT (UAS-hKAT), the KP enzyme that converts kynurenine to
KYNA (Fig. 1). In wild-type flies, panneuronal hKAT expression
driven by elavGAL4 caused a dramatic increase in KYNA levels
at both day 1 and day 7 compared with controls (P < 0.001; Fig.
3C), and in HD flies, dramatically reduced the 3-HK/KYNA
ratio at day 1 and day 7 posteclosion (P < 0.01; Fig. 3D and SI
Appendix, Fig. S2 B and C). This effect was associated with a
significant amelioration of both rhabdomere neurodegeneration
(P < 0.001; Fig. 3E) and impaired eclosion in HTT93Q flies (P <
0.001; Fig. 3F).

Fig. 1. Consequences of KP manipulation. KP metabolites and enzymatic
steps are indicated in black, whereas the key KP enzymes TDO, KMO, and
KATs are indicated in purple. The metabolites 3-HK and QUIN are neurotoxic
(as indicated by red arrows), whereas KYNA and TRP are neuroprotective (as
indicated by green arrows). Inhibition of TDO results in increased TRP levels,
and either TDO or KMO inhibition leads to a reduction in the 3-HK/KYNA
ratio (highlighted in blue). The enzyme 3-hydroxyanthranilic acid dioxyge-
nase is not present in flies, and thus QUIN is not synthesized.
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KMO and TDO Inhibition Ameliorates Disease Phenotypes in Fly Models
of PD and AD. As both KMO and TDO inhibition were robustly
protective in HD model fruit flies, we tested the efficacy of these
approaches in Drosophila models of PD and AD. For recapitulating
these disorders, we used transgenic fly lines expressing human aSyn
as a model of PD (31) and the human Aβ42 peptide [either WT or
the Arctic mutant form (E693G), which causes autosomal dominant
AD, Aβ42Arc] as a model of AD (32, 33). We used RNA interference
(RNAi) to down-regulate expression of the genes encoding either
TDO (v) or KMO (cn) and found a dramatic reduction in the 3-HK/
KYNA ratio, mainly due to increased synthesis of KYNA (P <
0.001; Fig. 4H and SI Appendix, Fig. S3 B and C). TRP levels were
not significantly altered by these manipulations (SI Appendix, Fig.
S3A), which reduce cn and v expression by ∼80–95% (22).
For both models, we first assessed larval crawling as an in-

dication of behavioral impairments during early developmental
stages (34). Expression of either aSyn or Aβ42Arc in motor neu-
rons using the c164GAL4 driver led to a reduction in the dis-
tance crawled by third instar larvae (P < 0.001; Fig. 4 A and B,
respectively). The down-regulation of the genes encoding either
TDO (v) or KMO (cn) by RNAi significantly enhanced crawling
behavior in both models (aSyn, P < 0.01; Aβ42Arc, P < 0.001).
As the expression of aSyn shortens life span compared with

control flies (35), we next assessed life span upon panneuronal
expression of either aSyn or Aβ42 constructs. We observed a small
but significant improvement in the shortening of median life span in

aSyn flies in which either TDO (v) or KMO (cn) had been silenced
(P < 0.001, Fig. 4C). Notably, silencing of either of the two enzymes
also significantly ameliorated shortened median life span in
Aβ42 flies from 54 d to 66 d and 68 d, respectively (P < 0.001,
Fig. 4D). Complementing this observation, cn down-regulation also
significantly reversed shortened life span in the Aβ42Arc model
(P < 0.001, SI Appendix, Fig. S4A).
Locomotor behavior in adult flies was assessed by examining

negative geotaxis ability (climbing) as a measurement of motor
impairment. elavGAL4-driven aSyn, Aβ42,and Aβ42Arc flies exhibited
a reduction in climbing at all of the posteclosion ages tested (Fig. 4 E
and F and SI Appendix, Fig. S4B). Silencing of either TDO or KMO
improved climbing ability in all these models (Fig. 4 E and F and SI
Appendix, Fig. S4B). Notably, scoring the number of rhabdomeres
per ommatidium revealed that genetic knockdown of either en-
zyme also consistently reduced neurodegeneration in elavGAL4-
driven Aβ42Arc flies at all ages tested (P < 0.01, Fig. 4G).
Finally, we interrogated the effect of pharmacological TDO in-

hibition in the three fly models of neurodegeneration, using the
commercially available TDO inhibitor 680C91 (36). Feeding of
680C91 (100 μM) to newly emerged HTT93Q flies resulted in
dramatically reduced neurodegeneration 7 d posteclosion com-
pared with flies fed vehicle alone (Fig. 5A, P < 0.001). In PD and
AD flies, pharmacological inhibition of TDO with 100 μM 680C91
led to a significant amelioration in climbing performance compared
with respective controls 10 d posteclosion (Fig. 5B, P < 0.001).

Fig. 2. TRP feeding ameliorates HTT93Q toxicity in
fruit flies. (A) Rhabdomere quantification of HD flies
treated with different concentrations of TRP during
development. TRP concentrations higher than 0.4mg/mL
significantly ameliorate rhabdomere neurodegeneration.
n = 6–13 per condition, ***P < 0.001. (B) The 3-HK/KYNA
ratio is reduced in TRP-fed HTT93Q flies. n = 5–6 per
condition, ***P < 0.001. (C) TRP feeding rescues HTT93Q-
dependent eclosion defects. Untreated HD flies: n = 938;
TRP-treated HD flies: n= 728, ***P < 0.001. (D) TRP levels
are significantly increased in v−/− HTT93Q flies compared
with HTT93Q flies. n = 5 per condition, ***P < 0.001.
(E) 3-HK/KYNA levels are reduced in v−/− HTT93Q com-
paredwith HTT93Q flies. n = 5 flies per condition, ***P <
0.001. (F) Treatment with the KAT inhibitor AOAA
(100 μM in the food) reduces the level of KYNA in v−/−

HTT93Q flies. n = 5 per condition. *P < 0.05. (G) AOAA
treatment leads to a reduction in the 3-HK/KYNA ra-
tio. n = 5 per condition, *P < 0.05. (H) KAT inhibition
abrogates the neuroprotection conferred by the
v mutation. n = 12–14 per condition, ***P < 0.001; ns,
not significant. (I) Feeding of 3-HK leads to increased
levels of 3-HK in v−/− HTT93Q flies. n = 5–6 per treat-
ment. ***P < 0.001; ns, not significant. (J) Supple-
mentation of 3-HK in the food of v−/− HTT93Q flies
reduces neuroprotection compared with untreated
HD flies. n = 8–12 per condition, ***P < 0.001; ns, not
significant. Data are themean ± SEM (one-way ANOVA
with Newman–Keuls post hoc test).
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Discussion
Impairments in KP metabolism have been linked to several neu-
rodegenerative disorders, and in particular to the pathogenesis of
HD (37). Notably, increased levels of 3-HK and QUIN have been
measured in the neostriatum and cortex of patients with early
stage HD (15), and these changes are associated with an up-reg-
ulation of IDO1 transcription (38) and a reduction in the activity
of KAT, which is critical for KYNA synthesis (17). These data in
patients with HD are supported by observations in HD mice,
which show increased cerebral KMO activity (39). We previously
found that either genetic or pharmacological inhibition of KMO is
protective in HD flies and leads to a corresponding increase in
KYNA levels relative to 3-HK (22). Furthermore, we reported
that KYNA treatment reduced neurodegeneration in these flies.
Here, we have extended this work by generating transgenic flies
that overexpress hKAT and thereby synthesize ∼20-fold more
KYNA than control flies. This increased formation of KYNA
reduced neurodegeneration and eclosion defects in HD model
flies. Furthermore, KMO inhibition by RNAi revealed beneficial
effects in several behavioral and disease-relevant outcome

measures, including larval crawling, longevity, climbing, and
rhabdomere degeneration, in AD and PD model flies. These results
strongly support the notion that KMO inhibition has relevance as a
treatment strategy in a broad range of neurodegenerative diseases.
In addition, these data also suggest that the design of small mole-
cules capable of increasing KAT activity could have therapeutic
relevance for neurodegenerative disorders.
The present results, demonstrating that both genetic and phar-

macological inhibition of TDO provides robust neuroprotection in
fly models of AD and PD, also confirmed and extended the results
of our previous study, which had identified TDO as a candidate
drug target in HD flies (22). These protective effects are associated
with a decrease in the 3-HK/KYNA ratio, i.e., a shift toward in-
creased KYNA synthesis. Work in C. elegans has revealed that
TDO inhibition is also protective in models of proteotoxicity, al-
though amelioration of the phenotypes occurred independently of
changes in the levels of KP metabolites and was instead associated
with elevated TRP levels (26). Although the underlying mechanism
remained unclear, the favorable effects of high TRP levels in the
nematode were substantiated by the fact that TRP treatment
conferred robust protection from disease-related phenotypes (Fig. 1).
In the present study, too, TRP supplementation of the diet was
effective, ameliorating rhabdomere degeneration and eclosion
defects in HD flies. However, TRP feeding was also associated with
a reduction in the 3-HK/KYNA ratio, suggesting that the pro-
tective effects of the amino acid may be linked to an increase in the
production of the neuroprotective metabolite KYNA (Fig. 1). In-
deed, partial inhibition of KYNA synthesis in TDO-deficient flies
proved sufficient to completely reverse neuroprotection. In addi-
tion, restoration of physiological 3-HK levels in TDO-deficient HD
flies did not reverse neuroprotection, in contrast to KMO-deficient
flies (22). In primary neurons, 3-HK toxicity is dependent upon its
uptake via neutral amino acid transporters, and coapplication of
TRP can block this toxicity by competing for the same transporters
(6). Thus, it is possible that the vast excess of TRP observed in the
heads of HTT93Q v−/− flies (approximately eightfold versus controls)
competes with 3-HK for rhabdomere uptake, thereby requiring
hyperphysiological levels of 3-HK to reverse TDO-dependent
neuroprotection. A similar mechanism may also contribute to the
neuroprotection observed with TRP treatment in general. Herein,
we have also found that RNAi knockdown of either cn or v does
not increase TRP levels, and thus the neuroprotection observed in
the AD and PD flies strongly correlates with a decrease in the
3-HK/KYNA ratio. The mechanism causing TRP treatment to
favor KYNA synthesis over the formation of 3-HK in Drosophila,
as well as the unexpected qualitative differences in the effects of
TDO inhibition and TRP administration on KP metabolism between
fruit flies and nematodes, clearly requires further investigation.
Interestingly, we found that QUIN—which is not normally

synthesized in fruit flies (30)—potentiated neurodegeneration in
HD flies, and reversed the protective effects of KMO inhibition.
As the same QUIN treatment did not cause neuron loss in wild-
type flies, mutant HTT may potentiate vulnerability by enhancing
NMDA receptor function (40, 41) and/or by increasing suscepti-
bility to toxic free radicals (42), i.e., by augmenting the two major
mechanisms known to be involved in QUIN-induced neurotoxicity
(43). If verified in mammals, a reduction in brain QUIN levels—
along with a decrease in 3-HK levels—relative to KYNA could
therefore be especially promising in the treatment of HD (44).
Our observation of increased levels of QUIN in HTT93Q versus
WT flies is enigmatic, but may be due to altered feeding behavior,
increased permeability of the blood–brain barrier (45, 46), or
differences in KP metabolism, and would be interesting to explore
in future studies.
In conclusion, the present set of experiments further validates

the hypothesis that KP metabolism is causally linked to neuronal
viability and that modulation of the KP constitutes a promising
therapeutic strategy for a variety of major neurodegenerative
disorders. Notably, we provide the first genetic evidence to our
knowledge that KMO inhibition is protective in animal models of
PD and AD and that pharmacological targeting of TDO is also

Fig. 3. QUIN exacerbates neurodegeneration in HD flies and overexpression
of hKAT is neuroprotective via increased KYNA levels. (A) QUIN levels in WT
and HTT93Q-expressing flies. QUIN is detected in flies fed with 0.5 mg/mL of
QUIN, but was not measurable in untreated flies. n = 3–5 flies per treatment,
***P < 0.001. (B) HTT93Q and cn−/− HTT93Q flies fed QUIN exhibit increased
rhabdomere degeneration compared with untreated flies. Neuroprotection
conferred by the cn mutation is abolished by QUIN feeding. n = 11–12 per
treatment, **P < 0.01, ***P < 0.001. (C) Panneuronal overexpression of
hKAT in a WT background causes an increase in KYNA production compared
with controls at both posteclosion ages tested. n = 3–5 per genotype, ***P <
0.001. (D) HTT93Q flies with panneuronal overexpression of hKAT show a
significant reduction in the 3-HK/KYNA ratio. The transgene control used in
this experiment was a transgenic Drosophila line expressing an empty
pJFRC2 vector. n = 4–5 per condition, **P < 0.01, ***P < 0.001. (E) Over-
expression of hKAT is neuroprotective in HTT93Q flies at both posteclosion
ages tested. n = 9–13 flies per condition, ***P < 0.001. (F) Overexpression
of hKAT ameliorates the eclosion phenotype observed in HTT93Q flies.
Transgene control + Htt93Q flies: n = 1084; hKAT + Htt93Q flies: n = 1,010,
***P < 0.001; ns, not significant. Data are the mean ± SEM (one-way ANOVA
with Newman–Keuls post hoc test).
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neuroprotective. We have clarified the mechanism underlying the
protective effects of TDO inhibition, which will stimulate efforts to
target this step of the KP in neurodegenerative disease. These
results, together with supportive studies in flies (47) and rodents
(48), raise the possibility that inhibition of TDO and KMO—or
combinatorial treatment—may offer therapeutic advantages. The
availability of new TDO inhibitors (49, 50), and access to the crystal
structures of both TDO (51) and KMO (52), should allow further
testing of these hypotheses in the near future.

Materials and Methods
Fruit flies were maintained on standard maize food at 25 °C in a light/dark
cycle of 12:12 h. The elavGAL4 [c155], w; +; UASaSyn (8146), w; +; UASAβ42
(32037), w; +; UASAβ42Arc (33774), cn

3, and v36f null fly stocks were obtained
from the Bloomington Drosophila Stock Center. The c164GAL4 driver line
was a gift from Juan Botas, Baylor College of Medicine, Houston. HTT93Q
exon 1 flies (27) were a gift from Larry Marsh and Leslie Thompson,

Fig. 5. Pharmacological inhibition of TDO is neuroprotective in HD, PD, and
AD flies. (A) Reduced neurodegeneration in HTT93Q flies treated with the
TDO inhibitor 680C91 (100 μM) 7 d posteclosion. n = 8–17 per condition.
(B) aSyn and Aβ42Arc flies treated with 680C91 (100 μM) display improved
climbing compared with controls. n = 50–60 per genotype. DMSO, dimethyl
sulfoxide. ***P < 0.001; ns, not significant. Data are the mean ± SEM (one-
way ANOVA with Newman–Keuls post hoc test).

Fig. 4. v and cn down-regulation ameliorates PD- and AD-related impairments in Drosophila. Expression of aSyn (A) or Aβ42ARC (B) in motorneurons using the
c164GAL4 driver reduces the distance crawled by third instar larvae. The silencing of v or cn significantly ameliorates these locomotor defects. n = 20 larvae
per genotype. **P < 0.01 and ***P < 0.001. Panneuronal expression of aSyn (C) or Aβ42 (D) reduces average life span, which is reversed by v and cn silencing.
n = 100 per genotype. Median survival in days for aSyn experiments: UAS control = 86; RNAi control + aSyn = 76; vRNAi + aSyn = 82; cnRNAi + aSyn = 81.
Median survival in days for Aβ42 experiments: UAS control = 84; RNAi control + Aβ42 = 54; vRNAi + Aβ42 = 68; cnRNAi + Aβ42 = 66. (E and F) Mean climbing pass
rate at different posteclosion ages for flies expressing aSyn or Aβ42 panneuronally. Both aSyn (E) and Aβ42 (F) reduce climbing performance, and the effects are
reversed by down-regulation of v and cn. n = 50–60 per genotype and condition. *P < 0.05, **P < 0.01, and ***P < 0.001. Panneuronal expression of Aβ42Arc reduces
mean rhabdomeres per ommatidium (G); v and cn silencing protects rhabdomere degeneration at all posteclosion ages tested. n = 7–11 per condition. **P <
0.01 and ***P < 0.001. (H) The 3-HK/KYNA ratio is decreased in flies with RNAi down-regulation of v and cn. n = 5 per genotype. **P < 0.01 and ***P < 0.001.
Data are the mean ± SEM (one-way ANOVA with Newman–Keuls post hoc test).
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University of California, Irvine. cn and v RNAi lines are part of the phiC31
RNAi Library (KK) and were obtained from the Vienna Drosophila RNAi
Center (53).

The gene encoding kynurenine aminotransferase (hKAT) was amplified
from a human fetal cDNA library (54) and cloned into the pJFRC2 vector (55)—
a gift from Gerald Rubin (Addgene plasmid no. 26214)—by standard meth-
ods. The resulting construct was injected by BestGene into attP40 Drosophila
strains (56).

Pseudopupil analysis, eclosion analysis, feeding experiments,measurement of
KP metabolites, behavioral assays, longevity analysis, and statistical analyses are

described in detail in SI Appendix, Materials and Methods. Measurement of KP
metabolites in treated flies was performed at either 0 or 7 d posteclosion.
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