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ABSTRACT
The Phalaenopsis orchid is an important potted flower of high economic value

around the world. We report the 3.1 Gb draft genome assembly of an important

winter flowering Phalaenopsis ‘KHM190’ cultivar. We generated 89.5 Gb RNA-seq

and 113 million sRNA-seq reads to use these data to identify 41,153 protein-coding

genes and 188 miRNA families. We also generated a draft genome for Phalaenopsis

pulcherrima ‘B8802,’ a summer flowering species, via resequencing. Comparison of

genome data between the two Phalaenopsis cultivars allowed the identification

of 691,532 single-nucleotide polymorphisms. In this study, we reveal that the key

role of PhAGL6b in the regulation of labellum organ development involves

alternative splicing in the big lip mutant. Petal or sepal overexpressing PhAGL6b

leads to the conversion into a lip-like structure. We also discovered that the

gibberellin pathway that regulates the expression of flowering time genes during the

reproductive phase change is induced by cool temperature. Our work thus depicted

a valuable resource for the flowering control, flower architecture development, and

breeding of the Phalaenopsis orchids.
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INTRODUCTION
Phalaenopsis is a genus within the family Orchidaceae and comprises approximately

66 species distributed throughout tropical Asia (Christenson, 2002). The predicted

Phalaenopsis genome size is approximately 1.5 gigabases (Gb), which is distributed across

19 chromosomes (Lin et al., 2001). Phalaenopsis flowers have a zygomorphic floral

structure, including three sepals (in the first floral whorl), two petals and the third petal

develops into a labellum in early stage of development, which is a distinctive feature of a
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highly modified floral part in second floral whorl unique to orchids. The gynostemium

contains the male and female reproductive organs in the center (Rudall & Bateman, 2002).

In the ABCDE model, B-class genes play important role to perianth development in

orchid species (Chang et al., 2010; Mondragón-Palomino & Theissen, 2011; Tsai et al.,

2004). In addition, PhAGL6a and PhAGL6b, expressed specifically in the Phalaenopsis

labellum, were implied to play as a positive regulator of labellum formation (Huang et al.,

2015; Su et al., 2013). However, the relationship between the function of genes involved in

floral-organ development and morphological features remains poorly understood.

Phalaenopsis orchids are produced in large quantity annually and are traded as the most

important potted plants worldwide. During greenhouse production of young plants, the

high temperature > 28 �C was routinely used to promote vegetative growth and inhibit

spike initiation (Blanchard & Runkle, 2006). Conversely, a lower ambient temperature

(24/18 �C day/night) is used to induce spiking (Chen et al., 2008) to produce flowering

plants. Spike induction in Phalaenopsis orchid by this cool temperature is the key to

precisely controlling its flowering date. Several studies have indicated that cool temperature

during the night are necessary for Phalaenopsis orchids to flower (Blanchard & Runkle, 2006;

Chen et al., 1994; Chen et al., 2008; Wang, 1995). Despite a number of expressed sequence

tags (ESTs), RNA-seqs and sRNA-seqs from several tissues of Phalaenopsis have been

reported and deposited in GenBank or OrchidBase (An & Chan, 2012; An, Hsiao & Chan,

2011; Hsiao et al., 2011; Su et al., 2011), only a few flowering related genes or miRNAs have

been identified and characterized. In addition, the clues to the spike initiation during

reproductive phase change in the shorten stem, which may produce signals related to

flowering during cool temperature induction, have not been dealt with. At this juncture, the

molecular mechanisms leading to spiking of Phalaenopsis has yet to be elucidated.

Here we report a high-quality genome and transcriptomes (mRNAs and small RNAs) of

Phalaenopsis Brother Spring Dancer ‘KHM190,’ a winter flowering hybrid with spike

formation in response to cool temperature. We also provide resequencing data for summer

flowering species P. pulcherrima ‘B8802.’ Our comprehensive genomic and transcriptome

analyses provide valuable insights into the molecular mechanisms of important biological

processes such as floral organ development and flowering time regulation.

METHODS SUMMARY
The genome of the Phalaenopsis Brother Spring Dancer ‘KHM190’ cultivar was sequenced

on the Illumina HiSeq 2000 platform. The obtained data were used to assemble a draft

genome sequence using the Velvet software (Zerbino & Birney, 2008). RNA-Seq and

sRNA-Seq data were generated on the same platform for genome annotation and

transcriptome and small RNA analyses. Repetitive elements were identified by combining

information on sequence similarity at the nucleotide and protein levels and by using

de novo approaches. Gene models were predicted by combining publically available

Phalaenopsis RNA-Seq data and RNA-Seq data generated in this project. RNA-Seq

data were mapped to the repeat masked genome with Tophat (Trapnell, Pachter &

Salzberg, 2009) and CuffLinks (Trapnell et al., 2012). The detailed methodology and

associated references are available in Appendix S1.
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RESULTS AND DISCUSSION
Genome sequencing and assembly
We sequenced the genome of the Phalaenopsis orchid cultivar ‘KHM190’ (Appendix S1,

Fig. S1a) using the Illumina HiSeq 2000 platform and assembled the genome with the

Velvet assembler, using 300.5 Gb (90-fold coverage) of filtered high-quality sequence data

(Appendix S1, Table S1). This cultivar has an estimated genome size of 3.45 Gb on the

basis of a 17 m depth distribution analysis of the sequenced reads (Appendix S1, Figs. S2

and S3; Tables S2 and S3). De novo assembly of the Illumina reads resulted in a sequence

of 3.1 Gb, representing 89.9% of the Phalaenopsis orchid genome. Following gap

closure, the assembly consisted of 149,151 scaffolds (� 1,000 bp), with N50 lengths of

100 and 1.5 kb for the contigs. Approximately 90% of the total sequence was covered by

6,804 scaffolds of > 100 kb, with the largest scaffold spanning 1.4 Mb (Appendix S1,

Tables S3–S5 and Data S17). The sequencing depth of 92.5% of the assembly was more

than 20 reads (Appendix S1, Fig. S3), ensuring high accuracy at the nucleotide level.

The GC content distribution in the Phalaenopsis genome was comparable with that

in the genomes of Arabidopsis (The Arabidopsis Genome Initiative, 2000), Oryza

(International Rice Genome Sequencing Project, 2005 and Vitis (Jaillon et al., 2007)

(Appendix S1, Fig. S4).

Gene prediction and annotation
Approximately 59.74% of the Phalaenopsis genome assembly was identified as repetitive

elements, including long terminal repeat retrotransposons (33.44%), DNA transposons

(2.91%) and unclassified repeats (21.99%) (Appendix S1, Fig. S5 and Table S6). To

facilitate gene annotation, we identified 41,153 high-confidence and medium-confidence

protein-coding regions with complete gene structures in the Phalaenopsis genome using

RNA-Seq (114.1 Gb for a 157.6 Mb transcriptome assembly), based on 15 libraries

representing four tissues (young floral organs, leaves, shortened stems and protocorm-like

bodies (PLBs)) (Appendix S1, Table S7 and Data S18), and we used transcript assemblies

of these regions in combination with publically available expressed sequence tags (Su

et al., 2011; Tsai et al., 2013) for gene model prediction and validation (Data S1–S2). We

predicted 41,153 genes with an average mRNA length of 1,014 bp and a mean number of

3.83 exons per gene (Table 1 and Data S3). In addition to protein coding genes, we

identified a total of 562 ribosomal RNAs, 655 transfer RNAs, 290 small nucleolar RNAs

and 263 small nuclear RNAs in the Phalaenopsis genome (Appendix S1, Table S8). We also

obtained 92,811,417 small RNA (sRNA) reads (18–27 bp), representing 6,976,375 unique

sRNA tags (Appendix S1, Fig. S6 and Data S6–S7). A total of 650 miRNAs distributed

in 188 families were identified (Data S8), and a total of 1,644 miRNA-targeted genes were

predicted through the alignment of conserved miRNAs to our gene models (Appendix S1,

Fig. S7 and Data S9–S10).

The Phalaenopsis gene families were compared with those of Arabidopsis

(The Arabidopsis Genome Initiative, 2000), Oryza (International Rice Genome Sequencing

Project, 2005), and Vitis (Jaillon et al., 2007) using OrthoMCL (Li, Stoeckert & Roos, 2003).
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We identified 41,153 Phalaenopsis genes in 15,855 families, with 8,532 gene families

being shared with Arabidopsis, Oryza and Vitis. Another 5,143 families, containing

12,520 genes, were unique to Phalaenopsis (Fig. 1). In comparison with the 29,431

protein-coding genes estimated for the Phalaenopsis equestris genome (Cai et al., 2015),

our gene set for Phalaenopsis ‘KHM190’ contained 11,722 more members, suggesting

a more wider representation of genes in this work. This difference in gene number

may be due to different approaches between Phalaenopsis ‘KHM190’ and Phalaenopsis

equestris. Besides, Phalaenopsis ‘KHM190’ is a hybrid while P. equestris species, which

may show gene number difference due to different genetic background. To better

annotate the Phalaenopsis genome for protein-coding genes, we generated RNA-seq

reads obtained from four tissues as well as publically available expressed sequence tags

for cross reference. We defined the function of members of these families using

(The Gene Ontology Consortium, 2008), the Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa et al., 2012) and Pfam protein motifs (Finn et al., 2014) (Fig. 2;

Data S3–S5 and S19).

The genes in the High confidence (HC) and Medium Confidence (MC) gene sets

were functionally annotated based on homology to annotated genes from the NCBI

non-redundant database (Data S3). The functional domains of Phalaenopsis genes

were identified by comparing their sequences against protein databases, including

(The Gene Ontology Consortium, 2008), KEGG (Kanehisa et al., 2012) and Pfam

Table 1 Statistics of the Phalaenopsis draft genome.

Estimate of genome size 3.45 Gb

Chromosome number (2n) 38

Total size of assembled contigs 3.1 Gb

Number of contigs (� 1 kbp) 630,316

Largest contig 50,944

N50 length (contig) 1,489

Number of scaffolds (� 1 kbp) 149,151

Total size of assembled scaffolds 3,104,268,398

N50 length (scaffolds) 100,943

Longest scaffold 1,402,447

GC content 30.7

Number of gene models 41,153

Mean coding sequence length 1,014 bp

Mean exon length/number 264 bp/3.83

Mean intron length/number 3,099 bp/2.83

Exon GC (%) 41.9

Intron GC (%) 16.1

Number of predicted miRNA genes 650

Total size of transposable elements 1,598,926,178
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(Finn et al., 2014; Finn, Clements & Eddy, 2011) databases. GO terms were obtained

using the Blast2GO program (Conesa & Gotz, 2008). In the GO annotations, 16,034,

27,294 and 16,360 genes were assigned to the biological process, cellular component,

and molecular function categories, respectively (Fig. 2A). Based on KEGG pathway

mapping, we were able to assign a significant proportion of the Phalaenopsis gene sets to

KEGG functional or biological pathway categories (11,452 sequences; 140 KEGG

orthologous terms) (Data S4). To investigate protein families, we compared the Pfam

domains of Phalaenopsis genome. A total of 1,842 Pfam domains were detected among

the Phalaenopsis sequences. The most abundant protein domains in Phalaenopsis

genome were pentatricopeptide repeats (PPRs, pfam01535), followed by the WD40

(pfam00400), EF hand (pfam00036) and ERM (Ezrin/radixin/moesin, pfam00769)

domains (Fig. 2B and Data S5). Furthermore, conserved domains could be identified

in 50.17% of the predicted protein sequences based on comparison against Pfam

databases. In addition, we identified 2,610 transcription factors (TFs) (6.34% of

the total genes) and transcriptional regulators in 55 gene families (Appendix S1,

Figs. S8–S10 and Datas S11–S12).

Regulation of Phalaenopsis floral organ development
The relative expression of all Phalaenopsis genes was compared through RNA-Seq

analysis of shoot tip tissues from shortened stems, leaf, floral organs and PLB samples,

in addition to vegetative tissues, reproductive tissues, and germinating seeds from

P. aphrodite (Su et al., 2011; Tsai et al., 2013) (Appendix S1, Fig. S12 and Data S1).

Phalaenopsis orchids exhibit a unique flower morphology involving outer tepals, lateral

inner tepals and a particularly conspicuous labellum (lip) (Rudall & Bateman, 2002).

However, our understanding of the regulation of the floral organ development of

the genus is still in its infancy. To comprehensively characterize the genes involved in

the development of Phalaenopsis floral organs, we obtained RNA-Seq data for the

sepals, petals and labellum of both the wild-type and peloric mutant of Phalaenopsis

‘KHM190’ at the 0.2 cm floral bud stage, at which shows early sign of labellum

differentiation. This mutant presented an early peloric fate in its lateral inner tepals.

In a peloric flower, the lateral inner tepals are converted into a lip-like morphology at

this young bud stage (Appendix S1, Figs. S11B and S12A). We identified 3,743 genes

Figure 1 Venn diagram showing unique and shared gene families between and among Phalaenopsis,
Oryza, Arabidopsis and Vitis.
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that were differentially expressed in the floral organs of the wild-type and peloric

mutant plants. Gene Ontology analysis of the differentially expressed genes in

Phalaenopsis floral organs revealed functions related to biological regulation,

developmental processes and nucleotide binding, which were significantly altered

A  

B  

Figure 2 GO (A) and Pfam (B) annotation of Phalaenopsis protein-coding genes.
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in both genotypes (Huang et al., 2015). TFs seem to play a role in floral organ

development. Of the 3,309 putative TF genes identified in the Phalaenopsis

genome showed differences in expression between the wild-type and peloric mutant

plants (Data S11).

MADS-box genes are of ancient origin and are found in plants, yeasts and animals

(Trobner et al., 1992). This gene family can be divided into two main lineages, referred to

as types I and II. Type I genes only share sequence similarity with type II genes in the

MADS domain (Alvarez-Buylla et al., 2000). Most of the well-studied plant genes are

type II genes and contain three domains that are not present in type I genes: an intervening

(I) domain, a keratin-like coiled-coil (K) domain, and a C-terminal (C) domain (Munster

et al., 1997). These genes are best known for their roles in the specification of floral

organ development, the regulation of flowering time and other aspects of reproductive

development (Dornelas et al., 2011). In addition, MADS-box genes are also widely expressed

in vegetative tissues (Messenguy & Dubois, 2003; Parenicova et al., 2003). The ABCDE

model comprises five major classes of homeotic selector genes: A, B, C, D and E, most of

which are MADS-box genes (Theissen, 2001). However, research on the ABCDE model

was mainly focused on herbaceous plants and has not fully explained how diverse

angiosperms evolved. The function of many other genes expressed during floral

development remains obscure. Phalaenopsis exhibits unique flower morphology

involving three types of perianth organs: outer tepals, lateral inner tepals, and a labellum

(Rudall & Bateman, 2002). Despite its unique floral morphological features, the

molecular mechanism of floral development in Phalaenopsis orchid remains largely unclear,

and further research is needed to identify genes involved in floral differentiation. Recently,

several remarkable research studies on Phalaenopsis MADS-box genes have revealed

important roles of some of these genes in floral development, such as four B-class

DEF-like MADS-box genes that are differentially expressed between wild-type plants and

peloric mutants with lip-like petals (Tsai et al., 2004) and a PI-like gene, PeMADS6,

that is ubiquitously expressed in petaloid sepals, petals, columns and ovaries

(Tsai et al., 2005).

In the Phalaenopsis genome sequence assembly, a total of 122 genes were predicted to

encode MADS-box family proteins (Appendix S1, Fig. S8 and Data S12). To obtain a more

accurate classification, phylogenetic trees were constructed via the neighbour-joining

method, with 1000 bootstraps using MEGA5 (Tamura et al., 2011). The differentially

expressed genes (DEGs) among 122 Phalaenopsis MADS-box genes were obtained from

our Phalaenopsis RNA-Seq data (Data S11). The expression profile indicated that most

MADS-box genes are widely expressed in diverse tissues. These results will be helpful

in elucidating the regulatory roles of these genes in the Phalaenopsis floral organ

development.

Notably, we previously reported one of the MADS-box genes, PhAGL6b, upregulated

in the peloric lateral inner tepals (lip-like petals) and lip organs (Huang et al., 2015). To

understand the expression mode, we therefore cloned the full-length sequence of

PhAGL6b from lip organ cDNA libraries for the wild-type, peloric mutant and big lip

mutant. The big lip mutant developed a petaloid labellum instead of the regular lip
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observed in the wild-type flower (Fig. 3B). Interestingly, we identified four alternatively

spliced forms of PhAGL6b that were specifically expressed only in the petaloid labellum

of the big lip mutant (Figs. 3C and 3D; Appendix S1 and Fig. S11). To determine

whether the alternatively spliced forms of PhAGL6b affect the conversion of the

labellum to a petal-like organ in the big lip mutant, we performed RT-PCR of

total RNA extracted from the labellum organs of plants with different big lip mutant

phenotypes and wild-type plants (Appendix S1, Table S11 and Fig. 4A) to amplify the

PhAGL6b transcripts. Interestingly, among all of the big lip mutant phenotypes,

500–700 bp bands were detected, corresponding to PhAGL6b alternatively spliced forms,

which were not found in any of the other orchid plants (Fig. 4A). We further examined

the expression of PhAGL6b and its alternatively spliced forms in the labellum organs

of Phalaenopsis plants with different big lip phenotypes and wild-type plants via real-

time PCR (Appendix S1, Table S11). In the big lip mutants, the expression of native

PhAGL6b was reduced by 42–70%, whereas all of the alternatively spliced forms were

expressed more strongly compared with the wild-type plants (Fig. 4B). In summary,

the RT-PCR and real-time PCR experiments corroborated the specific expression of

the alternatively spliced forms of PhAGL6b in the petal-like lip of big lip mutants.

Thus, PhAGL6b might play crucial role in the development of the labellum in

Phalaenopsis.

The four isoforms of the encoded PhAGL6b products differ only in the length of their

C-terminus region (Fig. 3D). C-domain is important for the activation of transcription of

target genes (Honma & Goto, 2001) and may affect the nature of the interactions with

other MADS-box proteins in multimeric complexes (Geuten et al., 2006; Gramzow &

Theissen, 2010). In Oncidium, L (lip) complex (OAP3-2/OAGL6-2/OAGL6-2/OPI) is

required for lip formation (Hsu et al., 2015). The Phalaenopsis PhAGL6b is an orthologue

of OAGL6-2. In our study, the PhAGL6b and its different spliced forms may each other

compete the Phalaenopsis L-like complex to affect labellum development as reported in

Oncidium (Hsu et al., 2015). This provides a novel clue further supporting the notion that

PhAGL6bmay function as a key floral organ regulator in Phalaenopsis orchids, with broad

impacts on petal, sepal and labellum development (Fig. 3E).

Control of flowering time in Phalaenopsis
The flowering of Phalaenopsis orchids is a response to cues related to seasonal changes

in light (Wang, 1995), temperature (Blanchard & Runkle, 2006) and other external

influences (Chen et al., 1994). A cool night temperature of 18–20 �C for approximately

four weeks will generally induce spiking in most Phalaenopsis hybrids, while high

temperature inhibits it. To compare gene expression between a constant high-temperature

(30/27 �C; day/night) and inducing cool temperature (22/18 �C), we collected shoot

tip tissues from shortened stems of mature P. aphrodite plants after treatment at a

constant high temperature (BH) and a cool temperature (BL) (1–4 weeks) for RNA-Seq

data analysis (Appendix S1, Figs. S12G–S12I). More than 7,500 Phalaenopsis genes

were found to be highly expressed in the floral meristems during the 4 successive cool

temperature periods (showing at least a 2-fold difference in the expression level in the BL
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condition relative to BH) (Data S13). The identified flowering-related genes correspond

to transcription factors and genes involved in signal transduction, development and

metabolism (Fig. 3 and Data S14). The classification of these genes includes the

following categories: photoperiod, gibberellins (GAs), ambient temperature, light-quality

pathways, autonomous pathways and floral pathway integrators (Fornara, de Montaigu &

Coupland, 2010; Mouradov, Cremer & Coupland, 2002). However, the genes involved

in the photoperiod, ambient temperature, light quality and autonomous pathways did

not show significant changes in the floral meristems during the cool temperature

treatments (Appendix S1, Fig. S13 and Data S14). By contrast, the expression patterns of

genes involved in pathways that regulate flowering, comprising a total of 22 GA pathway-

related genes, were related to biosynthesis, signal transduction and responsiveness. The

GA pathway-related genes and the floral pathway integrator genes have been revealed as

representative key players in the link between flowering promotion pathways and the

floral transition regulation network in several plant species (Mutasa-Göttgens & Hedden,

2009). In contrast to the expression patterns observed in BL and BH, the GA biosynthetic

pathway and positively acting regulator genes showed high expression levels in BL.

Furthermore, the expression level of negatively acting regulators, like DELLA genes

Figure 3 Possible evolutionary relationship of PhAGL6b in the regulation of lip formation and floral symmetry in Phalaenopsis orchid.
(A) Wild-type flower. (B) A big lip mutant of Phalaenopsis World Class ‘Big Foot.’ (C) Representative RT-PCR result showing the mRNA spli-

cing pattern of PhAGL6b in wild-type (W) and big lip mutant (M). (D) Alignment of the amino acid sequences of alternatively spliced forms of

PhAGL6b. (E) Model of PhAGL6b spatial expression for controlling Phalaenopsis floral symmetry. Ectopic expression of PhAGL6b in the distal

domain (petal; pink), petal converts into a lip-like structure that leads to radial symmetry. Ectopic expression in proximal domain, (sepal; blue)

sepal converts into a lip-like structure that leads to bilateral symmetry. The alternative processing of PhAGL6b transcripts produced in proximal

domain (labellum; pink), labellum converts into a petal-like structure that leads to radial symmetry. PhAGL6b expression patterns in Phalaenopsis

floral organs are either an expansion or a reduction across labellum. This implies that PhAGL6b may be a key regulator to the bilateral or radially

symmetrical evolvements. Pink color: 2nd whorl of the flower; blue color: 1st whorl of the flower.
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A

B

 

Figure 4 Different labellum types of wild-type and big lip mutant Phalaenopsis flowers. RT-PCR
analysis of the mRNA splicing pattern of PhAGL6b in wild-type plants (98201-WT1 and 98201-WT2)

and different big lip mutant types (A). Splicing variants of PhAGL6b, as detected via qRT-PCR in the

labellum organ of different big lip mutant types (B).
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Figure 5 Expression profiles of genes of flowering time regulation pathway with high temperature and cool temperature treatment. Only the

genes with twofold change in expression during cool temperature treatments are revealed.
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identified, was suppressed by the cool temperature which allowing the activation of

flowering related genes. The genes included in the flowering promotion pathways and

floral pathway integrators were generally upregulated in BL (Figs. 5 and 6; Data S11).

These findings suggest that the GA pathway may play a crucial role in the regulation of

flowering time in Phalaenopsis orchid during cool temperature.

Genetic polymorphisms for Phalaenopsis orchids
The Phalaenopsis genome assembly also provides the basis for the development of

molecular marker-assisted breeding. Analysis of the Phalaenopsis genome revealed a total

of 532,285 simple sequence repeats (SSRs) (Appendix S1, Fig. S14, Table S9 and Data S15).

To enable the identification of single nucleotide polymorphisms (SNPs), we re-sequenced

the genome of a summer flowering species, P. pulcherrima ‘B8802,’ with about tenfolds

coverage. Comparison of the genome data from the two Phalaenopsis accessions

(KHM190 and B8802) allowed the discovery of 691,532 SNPs, which should be

valuable for future development of SNP markers for Phalaenopsis marker-assisted

selection (Appendix S1, Fig. S15, Table S10 and Data S16). P. pulcherrima is an important

parent for small flower and summer-flowering cultivars in breeding program. These SNP

markers may contribute valuable tools for varietal identification, genetic linkage map

development, genetic diversity analysis, and marker-assisted selection breeding in

Phalaenopsis orchid.

Figure 6 Predicted pathway in the regulation of spike induction in Phalaenopsis. Red indicates that

the involved genes are more highly expressed in the GA biosynthesis pathway; pink gene names indicate

their differential expression in the GA response pathway. Blue gene names represent the activation of

flower architecture genes. Red arrows show the steps of the GA signaling stage; Pink arrows direct the

steps of inflorescence evocation stage; Blue arrows reveal the steps of flower stalk initiation stage.

Inverted T indicates the genes downregulated 2X over. GA20ox, GA3ox, GAMYB, FT, SOC1, LFYand AP1

are upregulated 2X over.
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CONCLUSION
In this study, we sequenced, de novo assembled, and extensively annotated the genome

of one of the most important Phalaenopsis hybrids. We also annotated the genome

with a wealth of RNA-seq and sRNA-seq from different tissues, and many genes and

miRNAs related to floral organ development, flowering time and protocorm (embryo)

development were identified. Importantly, this RNA-Seq and sRNA-seq data allowed us to

further improve the genome annotation quality. In addition, mining of SSR and SNP

molecular markers from the genome and transcriptomes is currently being adopted in

advanced breeding programs and comparative genetic studies, which should contribute to

efficient Phalaenopsis cultivar development. Despite that the P. equestris genome has been

reported recently (Cai et al., 2015), focus on floral organ development and flowering time

regulation has not been dealt with. In our study, we obtained transcriptomes from

shortened stems (which initiate spikes in response to low ambient temperature) and floral

organs, and generated valuable data on potentially regulating flowering time key genes

and floral organ development. The genome and transcriptome information of our work

should provide a constructive reference resource to upgrade the efficiency of cultivation

and the genetic improvement of Phalaenopsis orchids.
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