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Molecular Subtyping of Serous 
Ovarian Cancer Based on  
Multi-omics Data
Zhe Zhang1,*, Ke Huang1,*, Chenglei Gu1, Luyang Zhao1, Nan Wang1, Xiaolei Wang3, 
Dongsheng Zhao3, Chenggang Zhang2, Yiming Lu2 & Yuanguang Meng1

Classification of ovarian cancer by morphologic features has a limited effect on serous ovarian cancer 
(SOC) treatment and prognosis. Here, we proposed a new system for SOC subtyping based on the 
molecular categories from the Cancer Genome Atlas project. We analyzed the DNA methylation, 
protein, microRNA, and gene expression of 1203 samples from 599 serous ovarian cancer patients. 
These samples were divided into nine subtypes based on RNA-seq data, and each subtype was found 
to be associated with the activation and/or suppression of the following four biological processes: 
immunoactivity, hormone metabolic, mesenchymal development and the MAPK signaling pathway. 
We also identified four DNA methylation, two protein expression, six microRNA sequencing and four 
pathway subtypes. By integrating the subtyping results across different omics platforms, we found 
that most RNA-seq subtypes overlapped with one or two subtypes from other omics data. Our study 
sheds light on the molecular mechanisms of SOC and provides a new perspective for the more accurate 
stratification of its subtypes.

Ovarian cancer is the eighth-leading cancer type worldwide and the leading cause of gynecological cancer-related 
death among women1. It is considered to have the worst prognosis of all gynecological malignant tumors, causing 
140,200 deaths each year2,3. Serous ovarian cancer (SOC) is the most common subtype of epithelial ovarian can-
cer and accounts for approximately 85% of ovarian neoplasms1. Currently, SOC treatment mainly relies on surgi-
cal resection, which is assisted by chemotherapy, targeted therapy, hormone therapy, and radiotherapy1,4,5. Drug 
therapy for SOC is most often a combination of taxane and platinum, and targeted drugs are also being assessed, 
including bevacizumab and olaparib2–4. Targeted therapy has been highly anticipated, but it did not have a revo-
lutionary effect on the comprehensive treatment for SOC. Although SOC has been classified by many categories, 
including histopathology, FIGO (International Federation of Gynecology and Obstetrics) stage and tumor grade, 
the actual significance of precision therapy or personalized therapy in cancer treatment is still far from ideal. The 
existing traditional and histological classification of ovarian cancer is of limited prognostic significance. High 
mortality rates, low early detection rates, and a lack of reliable biomarkers and effective molecular classification 
for prognosis make SOC more complex than other gynecological cancers6.

Studies on ovarian cancer subtyping are expected to shed light on the understanding of the molecular mech-
anisms of this disease, aid in the development of more specific therapies, and identify novel genetic and environ-
mental risk factors7. Recent studies demonstrated that environmental and genetic risk factors, multiple somatic 
mutations, and clinical response rates to platinum/taxane-based therapy varied substantially between the his-
totypes of ovarian cancer8. However, due to the high cost of large-scale molecular profiling, prior research only 
focused on a small number of genes or single-platform genomic data9, such as gene expression data7 or DNA 
methylation data10–12. Fortunately, the Cancer Genome Atlas (TCGA) project has published many cancer samples 
(including SOC) with publically available multi-omics data8, allowing researchers to investigate cancer subtyping 
across different omics data. Nevertheless, the super-high dimensional omics data has introduced a great challenge 
to statistical modeling of data. A systemic approach for selecting biologically important genetic variables and 
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classifying cancer samples based on multi-omics data is still needed to be improved. In addition, little attempt has 
been made to study the effects of the number of subtypes on the classification algorithm.

The classification of serous ovarian cancer by surgical-pathological staging has helped guide clinical practice; 
however, it has added little prognostic or predictive information for clinical decisions13. Here, we develop a mean-
ingful computational framework for the molecular classification of ovarian cancer based on multi-omics data. We 
evaluate a series of unsupervised classification algorithms with different numbers of subtypes. We then investigate 
the association between molecular subtypes and prognosis as well as a serial of clinical factors, including surgery, 
pathology, chemotherapy, radiotherapy, recurrence, and follow-up outcomes8. We integrate the subtyping results 
by different omics data and assess their relationships. We anticipate our work can contribute to the understanding 
of SOC and provide a new perspective for a more accurate stratification.

Results
A systemic framework for SOC subtyping on the basis of multi-omics data.  The multi-omic SOC 
dataset from the TCGA project contains a total of 1203 samples that were collected from tumor tissues, adjacent 
normal tissues or blood samples of 599 SOC patients. The TCGA cohorts also contained information on the 
overall survival time and clinical variables (e.g., age, gender, drugs and tumor stage). We obtained four types 
of molecular data that are available for open access: (i) DNA methylation: Illumina DNA Methylation microar-
ray, ~20,000 genes; (ii) protein expression: reverse-phase protein array, ~170 proteins; (iii) microRNA (miRNA) 
expression: Agilent Human miRNA-specific microarray or Illumina miRNA-seq, >​500 microRNAs; and  
(iv) mRNA expression: Agilent 244 K microarray or Illumina mRNA-seq, ~20,000 genes. Table 1 lists the plat-
forms of multiple molecular detection data from TCGA. We focused on a core SOC sample set in which each 
sample has information available for the survival time and at least one out of the four types of molecular data 
(Figure S1). In our dataset, in terms of the follow-up date, survivals accounted for 46.9% (281/599), deaths 
accounted for 50.4% (302/599), and missing data for 2.7% (16/599). With respect to the treatment outcome of the 
first course, patients with complete remission accounted for 55.4% (332/599), partial remission 10.9% (65/599), 
stable disease 5.7% (34/599), progressive disease 7.5% (45/599), and missing data 20.5% (123/599).

Feature selection is necessary to improve the robustness of clustering. We used a Cox regression model 
to select biologically important features from all of the available genomic features in the dataset14,15. For each 
genomic feature, we examined its predictive power for the survival time of patients after their initial diagnoses, 
and features that achieved significant predictive models (P-value <​ 0.05) were selected to constitute the final 
feature set for further classification. In addition, we developed a novel method for reducing the feature dimen-
sions without using the patient survival data. Specifically, we converted the gene expression levels to the activity 
levels of 137 KEGG pathways, which were then used as input features for unsupervised clustering. This pathway 
level-based method classified patients into cancer subtypes without any a priori knowledge of patient survival 
information, which is a good alternative for molecular level-based subtyping methods.

For each molecular data type, we classified the SOC samples into subtypes using the following three unsu-
pervised clustering methods: Partitioning Around Medoids (PAM)16,17, Hierarchical Clustering (HC)18 and 
Non-Negative matrix Factorization (NMF)19. To evaluate the performance of different clustering models, we per-
formed Kaplan-Meier survival analysis of the patients were classified into difference clusters, and the significance 
of the survival analysis was used to evaluate the performance of the subtyping model20. Meanwhile, the increase 
in the model complexity (number of clusters) will enhance the performance of survival analysis, while harming 
the interpretability of the model. As a result, we defined a model complexity penalized score to determine the 
optimal model that achieves the best balance between clinical significance and model complexity (see Methods 
and Materials). To determine the optimal number of subtypes in each dataset, we carefully screened the number 
of clusters from 2 to 9, and the model with the highest penalized score was selected as the optimal model.

SOC subtyping based on RNA-seq.  The SOC RNA-seq dataset consisted of the mRNA expression levels 
of ~22,000 genes. A total of 420 primary solid tumor cohort samples with both genomic and survival data were 
used by excluding unavailable sequencing data and the recurrent solid tumor cohort. We identified 1384 genes 
that were significantly related to patient survival (P-value <​ 0.05, Cox regression analysis). We performed the 
three clustering algorithms (PAM, HC and NMF) using the 1384 significant genes and found NMF with eight 
subtypes achieved the highest score (Fig. 1A). The survival curve and heatmap are shown in Fig. 1B,C. The num-
ber of patients in the nine subtypes were: C1 (n =​ 31, median survival =​ 1720 days), C2 (59, 1699 days), C3 (28, 

Data type Platforms Cases Level

DNA methylation Illumina Infinium Human 
DNA Methylation 27 583 Level 3

Protein MD Anderson reverse 
phase protein array 412 Level 3

MiRNA

Agilent Human miRNA 
Microarray Rel12.0 570 Level 3

Illumina Genome Analyzer 
miRNA Sequencing 475 Level 3

RNA Illumina HiSeq 2000 RNA 
Sequencing 422 Level 3

Table 1.  Characterization platforms used and data generated.
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1736 days), C4 (56, 1169 days), C5 (100, 1470 days), C6 33, 840 days), C7 (32, 730 days), C8 (25, 1767 days) and 
C9 (56, 1046 days).

Using the expression profiles of 1384 genes across the nine SOC subtypes, we defined two sets of genes that 
were associated with each subtype respectively – subtype-specific up-regulated genes and subtype-specific 
down-regulated genes (see Methods and Materials). The counts of genes in the two gene sets of different SOC 
subtypes are shown in Fig. 1D (Supplementary Table S1). For each set of subtype-specific up-regulated and 
down-regulated genes, we performed Gene Ontology and KEGG pathway enrichment analysis (Supplementary 
Tables S2–S10). Interestingly, we found that these gene sets were mainly enriched in the following four biologi-
cal processes: immunoactivity, hormone metabolic, mesenchymal development and MAPK signaling (Table 2). 
Genes associated with nine subtypes displayed distinct expression profiles among the four biological processes. 
Table 2 summarizes the gene expression profiles of the nine SOC subtypes across the four biological processes 

Figure 1.  RNA sequencing data of (A) compared three different unsupervised clustering methods, (B) heatmap 
of 1384 significant genes among nine subtypes. Rows were ordered by their significance of up-regulation in each 
cluster. Genes not significantly up-regulated in any cluster were moved to the end of the map. (C) Survival curves 
of nine subtypes, (D) counts of subtype-specific up-regulated genes and down-regulated genes. Up-regulated 
and down-regulated genes were determined by the thresholds of 2-fold and 0.5-hold change. (E) Average gene 
expression levels of representative genes of the four biological processes in nine RNA-seq subtypes.
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and a set of reported SOC biomarkers: the MUC gene family21. For each of the four biological processes and the 
MUC gene family, we identified a number of gene markers that were frequently presented in the subtype-specific 
gene sets. The immunoactivity-related markers included IL2, TNFRSF13B, IFNG, IL18RAP, CD40LG, ICOS and 
CTLA4; the hormone metabolic-related markers included FOXA1, SHH and GHSR; the mesenchymal-related 
markers included HOXD13, FGF6 and AMBN; the MAPK signaling pathway-related markers included MYH2 
and CACNA1G; and the MUC family markers included MUC4 and MUC7. Their expression profiles across the 
nine SOC subtypes are shown in Fig. 1E.

We also analyzed the differences of a total of 18 clinical variables among the nine SOC subtypes. These clinical 
variables included the tumor size, lymphovascular invasion, diagnosis days, new tumor event days, tumor grade, 
clinical stage, and so on. The clinical stage was obtained from clinical information on the tumor size, extent of the 
primary tumor and whether the tumor spread to other parts of the body. The tumor grade was used to assess the 
degree of differentiation that was related to the clinical behavior and used to classify cancer cells as G1, G2, G3 or 
G4. The tumor grade is the histology description based on NCI (https://ncit.nci.nih.gov/), while the clinical stage 
was based on the AJCC (American Joint Committee on Cancer) staging criteria. The eight quantitative variables 
were analyzed using one-way ANOVA (analysis of variance) and another 10 qualitative variables were analyzed 
using the chi-square test for one-way tables (Table 3). We found that the clinical stage (P =​ 1.22 ×​ 10−5) and treat-
ment outcome from the first course (P =​ 0.03) exhibited significant difference across nine SOC subtypes, while 
the presence of a vascular (P =​ 0.477) or lymphoma invasion (P =​ 0.528) and the tumor grade (P =​ 0.169) showed 
no significant difference among those subtypes.

SOC subtyping based on DNA methylation, protein and microRNA expression.  DNA methyla-
tion array.  The DNA methylation dataset of SOC in TCGA contains 14,877 CpG sites from 1203 samples. DNA 

Subtypes Immuno-activity
Hormone 
metabolic

Mesenchymal 
development

MAPK 
pathway

MUC 
family

C1 Down Up −​ −​ −​

C2 −​ Down −​ −​ −​

C3 −​ −​ −​ Down −​

C4 Down −​ −​ −​ −​

C5 −​ −​ Down Down −​

C6 −​ −​ Down −​ Up

C7 −​ −​ Up −​ −​

C8 Up −​ −​ −​ −​

C9 −​ −​ −​ Up −​

Table 2.  Nine SOC subtypes across the four biological processes and MUC gene family.

Clinical variables
F value/X-

squared P-value

Intermediate dimension 0.659† 0.728

Longest dimension 0.756† 0.641

Shortest dimension 0.771† 0.629

New tumor event diagnosis days 1.852† 0.072

Ecog score 1.253† 0.279

Karnofsky score 0.474† 0.867

Tumor grade 1.486† 0.169

Clinical stage 4.786† 1.22 ×​ 10−5***

New tumor event diagnosis evidence 35.141‡ 0.322

New tumor event radiation treatment 4.876‡ 0.771

New neoplasm event type 35.491‡ 0.307

Pharmaceutical treatment adjuvant 7.03‡ 0.533

Treatment outcome first course 38.671‡ 0.03*

Tumor status 17.894‡ 0.022*

Residual disease largest nodule 40.183‡ 0.02*

Vascular invasion indicator 7.569‡ 0.477

Lymphovascular invasion indicator 7.082‡ 0.528

Anatomic neoplasm subdivision 17.604‡ 0.348

Table 3.   Analysis of clinical variables related to gene expression. †These are quantitative variables evaluated 
with ANOVA for statistical analysis. The test statistic is the F value. ‡These are qualitative variables evaluated 
with the chi-square test. The test statistic is X-squared. *P <​ 0.05. **P <​ 0.01. ***P <​ 0.001.

https://ncit.nci.nih.gov/
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methylation data used was the calculated beta values mapped to genome, per sample. After excluding samples 
from the recurrent solid tumor cohort and normal solid tissue cohort as well as unavailable data, we selected 583 
primary solid tumor cohort samples. The survival information for the corresponding patients were also obtained 
from the TCGA clinical dataset. By excluding patients whose survival information was unavailable, we selected 
a total of 568 samples with both genomic and survival data for the further feature selection and clustering proce-
dures. We associated the DNA methylation intensities of 14,877 CpG sites with the survival time of the patients 
and identified 201 sites that were significantly associated with patient survival (P-value <​ 0.05, Cox regression 
analysis). To annotate the 201 CpG sites, we mapped these sites to the human genome, and the genes closest to 
these sites were obtained. We then applied the three unsupervised clustering algorithms to these tumor samples on 
the basis of the methylation levels of the 201 CpG sites. For each algorithm, we sought to find the optimal number 
of clusters by screening a range of clusters from 2 to 9. We found that the NMF model with four clusters achieved 
the highest penalized score among all models (Fig. 2A). The number of patients in the four subtypes were as fol-
lows: C1 (n =​ 160, median survival =​ 1451 days), C2 (71, 820 days), C3 (121, 1736 days) and C4 (216, 1266 days).  
The DNA methylation profiles of the 201 CpG sites among the four subtypes of SOC samples are shown in the 
Fig. 2B, and the survival curves of four subtypes are shown in Fig. 2C. We found that both the DNA methylation 

Figure 2.  DNA methylation of (A) three different unsupervised clustering methods, (B) heatmap of 201 CpG 
sites among four subtypes, and (C) survival curves of four subtypes. Protein expression of (D) three different 
unsupervised clustering methods, (E) heatmap of 16 proteins among two subtypes, and (F) survival curves 
of two subtypes. MiRNA expression (based on the sequencing platform) of (G) three different unsupervised 
clustering methods, (H) heatmap of 38 miRNAs among six subtypes, and (I) survival curves of six subtypes. 
Pathways of (J) three different unsupervised clustering methods, (K) heatmap of 16 pathways among four 
subtypes, and (L) survival curves of four subtypes. Rows in the heatmaps were ordered by their significance of 
up-regulation in each cluster. Features not significantly up-regulated in any cluster were moved to the end of the 
map.
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profiles and survival curves clearly distinguished among the four groups of patients. Interestingly, we found the 
global methylation level of the 201 CpG sites correlated with patient survival. Compared to subtypes C2 and C4, 
subtypes C1 and C3 showed higher global methylation levels at the 201 CpG sites and patients obtained better 
survival outcomes.

Protein array.  The SOC protein array dataset in TCGA contains the expression profiles of 165 proteins that 
were detected by a reverse-phase protein array platform in 1203 samples. After excluding the samples from the 
recurrent solid tumor and normal solid tissue cohorts as well as patients whose survival information was una-
vailable, we selected a total of 406 samples with both genomic and survival data. We conducted Cox regression 
analysis and found that 16 proteins were significantly related to patient survival (P-value <​ 0.05, Cox regression 
analysis), including MAPK, MEK, YB1, EGFR (two fragments), HSP70, c-Met, p90RSK, Akt, N-Cadherin, p38, 
GAB2, AR, Notch1, c-Jun, and GSK3. MAPK/ ERK signaling pathway was reported to be associated with ovarian 
cancer ascites development and carboplatin resistance22. YB1 was correlated with resistance and progression 
to chemotherapy in epithelial ovarian cancer23. MEK, EGFR, HSP, c-met, and GAB2 were directly related to 
ovarian cancer24–29, while p90RSK and Akt were indirectly associated with ovarian cancer30,31. Specifically, the 
experimental results suggested that melatonin enhanced cisplatin-induced apoptosis via inactivation of the ERK/
p90RSK/HSP27 cascade in SK-OV-3 cells (ovarian cancer cell line) as a potent synergist to cisplatin treatment30. 
Additionally, Cav-1 could promote the chemoresistance of ovarian cancer by targeting apoptosis through the 
Notch1/Akt/NF-κ​B pathway31. Using the expression profiles of the 16 proteins as input features, we performed 
unsupervised clustering followed by survival analysis. We found that the penalized scores were very close between 
NMF, with two clusters, and PAM, with three clusters (Fig. 2D). We finally chose the NMF model with two clus-
ters considering that the survival curves and heatmaps of different clusters were better separated (Fig. 2E,F). The 
number of patients in the two subtypes were as follows: C1 (n =​ 240, median survival =​ 1583 days) and C2 (166, 
1106 days). We found that protein expression of EGFR (pY992.R.V), HSP70, c-Met, GAB2, AR and Notch1 was 
higher in subtype C1 and lower in C2, while the expression of MAPK, p38, MEK, YB1, p90RSK, Akt, c-Jun and 
GSK3 was opposite (Fig. 2E). The survival analysis indicated that high expression of EGFR (pY992.R.V), HSP70, 
c-Met, GAB2, AR and Notch1 might be beneficial to SOC patients survival while the other eight genes might have 
the opposite effect (Fig. 2F).

MicroRNA sequencing.  The SOC microRNA (miRNA) sequencing dataset contained the expression profiles of 
705 miRNAs. The unavailable sequencing data and recurrent solid tumor cohort were excluded, resulting in 473 
primary solid tumor cohort samples with both genomic and survival data available. We identified 26 miRNAs 
that were significantly related to patient survival (P <​ 0.05, Cox regression analysis). Using these miRNAs as input 
features, we performed sample clustering with the three methods, and their performances are shown in Fig. 2G. 
We finally chose a NMF model with six clusters. The number of patients in the six subtypes were as follows: C1 
(69, 1364 days), C2 (168, 1470 days), C3 (85, 1583 days), C4 (48, 1024 days), C5 (24, 1103 days), and C6 (79, 914 
days). The expression profiles for the 26 miRNAs among the six subtypes of SOC samples are shown by heatmap 
in Fig. 2H, and the survival curves are shown in Fig. 2I. There were three high expressed miRNAs in subtype C1 
(Fig. 2H), which were miR-514-1, miR-514-2 and miR-514-3. miR-514 was reported in a study on renal cell carci-
noma; its downregulation was related to recurrence and poor prognosis32. Reduction of miR-150 could promote 
the development of epithelial ovarian cancer33. In addition, to systemically investigate the potential regulatory 
function of these microRNAs, we conducted miRNA target genes functional enrichment of their significantly 
enriched biological processes and pathways using DIANA-mirPath software34 (see Methods and Materials). We 
found various biological processes and pathways were associated to different microRNA sets (Supplementary 
Table S11). Specifically, among these highly expressed miRNAs in six groups, 14 miRNAs in cluster C1, C2 and 
C3 was associated with a better prognosis, while the other 12 miRNAs in cluster C4 to C6 might correlate with a 
poor prognosis in SOC patients (Fig. 2I).

SOC subtyping based on integrated pathways.  To classify the SOC samples at the pathway level, we 
first converted the expression profile of ~22,000 genes in each sample to the activity information for 137 KEGG 
pathways (see Methods). We obtained the activity information of 428 SOC samples that had both gene expres-
sion and patient survival data. We associated the activities of the 137 pathways with the survival time of the 
patients and identified 16 pathways that were significantly associated with patient survival (P-value <​ 0.05, Cox 
regression analysis). These pathways are involved in bladder cancer, hepatitis C, renal cell carcinoma, thyroid 
cancer, glioma and chronic myeloid leukemia. Our study indicated that the stress response of the MAPK signa-
ling pathway plays an important role in the survival of patients with SOC, which was consistent with a previous 
observation in a protein array. Immunoregulation of antigen processing also affected the survival time of SOC 
patients. Unsupervised classification and survival analyses were conducted according to the activity information 
of 16 pathways. We found that the PAM model with four clusters achieved the highest penalized score among 
all other models (Fig. 2J). The number of patients in the four subtypes were as follows: C1 (n =​ 107, median 
survival =​ 1158 days), C2 (111, 1492 days), C3 (122, 1579 days), and C4 (80, 1024 days). The activities of the 16 
pathways among four subtypes of SOC samples are shown by heatmap in Fig. 2K, and the survival curves of four 
subtypes are shown in Fig. 2L.

Integrated analysis of SOC subtypes based on individual omics data.  We conducted an integrated 
analysis of different SOC subtyping by RNA-seq, DNA methylation, protein array, miRNA-seq and pathway activ-
ity. We investigated the distributions of the SOC subtypes based on each individual omics data as follows: DNA 
methylation (4 groups), protein array (2 groups), miRNA-seq (6 groups), and pathway activity (4 groups) across 
nine SOC subtypes generated by RNA-seq data. Specifically, we overlapped the nine RNA-seq SOC subtypes with 
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subtypes by DNA methylation, protein, microRNA expression or pathway activity respectively and found that 
most of these subtypes overlapped with one or two specific RNA-seq subtypes (Fig. 3). We conducted in-depth 
analysis to these significantly overlapped subtypes between RNA-seq and the following platforms.

For DNA methylation, cluster C3 in DNA methylation significantly overlapped with cluster C5 and 
C9 in RNA-seq (both P-value <​ 0.05, Chi-squared test), and cluster C4 in DNA methylation overlapped 
with cluster C2, C7 and C9 in RNA-seq datasets (both P-value <​ 0.05) (Fig. 3). We found that mesenchymal 
development-associated gene EFNB1 and MAPK-associated genes FPR1, MAPK7 and FPR1 was hypermethylated 
in DNA methylation subtype C3, while they were hypomethylated in subtype C4. These results were consist-
ent with the overlapping between DNA methylation subtypes C3 with RNA-seq subtype C5 (downregulation of 
mesenchymal development and MAPK pathway) and C9 (upregulation of MAPK pathway). C7 (upregulation of 
mesenchymal development), and C9 (upregulation of MAPK pathway) (Table 2).

For microRNA-seq, five out of six clusters overlapped with subtypes in RNA-seq. For instance, miRNA clus-
ter C3 overlapped with RNA-seq cluster C2 (P-value <​ 0.05), and miRNA cluster C6 overlapped with RNA-seq 
cluster C9 (P-value <​ 0.001) (Fig. 3). MiRNAs in subtype C4 were predicted to be related with downregulation 
of immune activity, while subtype C6 were identified to be associated with immune activity and MAPK path-
way. Notably, miR-187 and miR-149 was identified to be targeted to the androgen-regulated gene in prostate 
cancer35,36. MiR-149 was also linked to the estrogen-receptor and progesterone-receptor signaling pathways in 
miRNA-seq subtype C337. In miRNA subtype C6, lab results revealed that increased expression of miR-199 was 
associated with increased p38 MAPK activity and miR-143 and miR-145 could be blocked by p38 MAPK inhibi-
tor38,39. These biological processes are also consistent with overlapped RNA-seq subtypes (Table 2).

For protein array and KEGG pathway, we found that two protein subtypes C1 ((P-value <​ 0.001), C2 
(P-value <​ 0.01) and KEGG pathway subtype C4 (P-value <​ 0.001) significantly overlapped with RNA-seq sub-
type C9 , which is associated with the activation of the MAPK signaling pathway. In addition, pathway clus-
ter C1 (P-value <​ 0.01) and C2 (P-value <​ 0.05) overlapped with RNA-seq cluster C4, and pathway cluster C3 
(P-value <​ 0.01) and C4 (P-value <​ 0.001) overlapped with RNA-seq cluster C5 (Fig. 3). We compared protein 
expression in their subtypes and KEGG pathway distribution with the RNA-seq subtypes (Fig. 2E,K and 3). We 
concluded that all of the subtypes associated with MAPK pathway activation have a relatively shorter survival 
duration. However, we found that there was one RNA-seq subtype that did not overlap any other omics subtypes, 
and this subtype was associated with immunoactivation. This result indicated that subtyping based on one omics 
dataset could not be fully replaced by other omics data.

Discussion
The TCGA database provides an integrated perspective of ovarian cancer. We have described a comprehensive 
classification analysis of a large multicenter cohort of SOC that is correlated with the clinical outcome. Nine novel 
and robust SOC subtypes were identified using unsupervised clustering. We evaluated three unsupervised clus-
tering algorithms: HC, PAM and NMF and found that, in most cases, the NMF model outperformed the other 
two models, indicating NMF is a more accurate and robust algorithm for cancer subtyping based on omics data.

Of greatest interest were the nine molecular groups that almost exclusively comprised the following four 
specific biological processes: immunoactivity, hormone metabolic, mesenchymal development and the MAPK 
signaling pathway. This result was consistent with previously published research in which the high-grade serous 
ovarian adenocarcinomas gene groups were differentiated, immunoreactive, mesenchymal and proliferative8. 
Richard W. Tothill et al. also reported that serous and endometrioid ovarian cancer are characterized by the 
stromal response, mesenchymal, immune signature, MAPK pathway and β​-catenin/LEF/TCF complex33. C2, 
C4, and C6 were characterized by down regulation of hormone metabolic processes, the immune response and 
mesenchymal development, respectively. However, C7, C8, and C9 were characterized by over expression of 
mesenchymal development, immune response and the MAPK signaling pathway, respectively. C1 and C5 had 

Figure 3.  Overlaps between the omics subtypes (the SOC subtypes of DNA methylation, protein, 
microRNA expression or pathway activity) and nine RNA-seq subtypes. *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001.
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dual characteristics. C1 was characterized by over expression of hormone metabolic and decreased expression 
of immune activity. However, C5 showed down regulation of mesenchymal development and the MAPK path-
way. Interestingly, C3 was negative for all four. Meanwhile, we found that C8 had the best survival and C7 the 
worst survival, indicating that immune activity may have an additional benefit on survival, while mesenchymal 
development may be in contrast with the immune effect. Interestingly, we found most of the subtypes identified 
by RNA-seq were associated with the subtypes identified by other platforms, including promoter methylation, 
protein expression, miRNA expression, and signaling pathway analysis. We examined the association between 
the subtypes of different platforms in two different levels: patients and gene functions and we found the two levels 
were well consistent with each other.

Previously research has often provided a single platform. One example is the mutational spectrum. High-grade 
serous ovarian adenocarcinomas have prevalent TP53 mutations; mucinous ovarian cancer tumors have frequent 
KRAS mutations; and clear cell ovarian cancer and endometrioid ovarian cancer tumors have a lower rate of 
TP53 and frequent ARID1A and PIK3CA mutations8. Our research was has indicated that multi-omics can be 
used to describe the ovarian cancer profile. We also shed new light on some novel markers that mainly reflect the 
situation of gene expression. These gene markers have the potential to become novel hot spots of research and 
a new focus on pharmaceutical targets. Beyond acting as gene markers, the 16 survival-related proteins provide 
opportunities for further research. MiR-514 was reported in renal cell carcinoma to be related to recurrence and 
poor prognosis32, and it may be a potential specific marker for SOC.

We are dedicated to performing basic work to develop individualized treatment and precision medicine. One 
important further research topic is building prognostic models that incorporate clinical variables and multiple 
types of molecular data. In that regard, more effective treatment strategies should be developed for patients based 
on these models. Meanwhile, more specific drugs that target the novel genes and pathways should be developed. 
In addition, further efforts, particularly clinical trials and subsequent validations, are essential to evaluating our 
findings from the TCGA data.

Methods
Data source and variable selection.  We downloaded clinical and molecular data (including DNA meth-
ylation, miRNA, RNA, and protein expression) from the TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/). 
There were 3 levels of molecular data. Level 1 included raw data, while levels 2 and 3 were processed data and 
normalized data, respectively. Specifically, these omics data from the following platforms were used and selected 
in our study (Table 1). For DNA methylation, level 3 was selected, which included whole genome methylation 
calling for each CpG site per sample. For miRNA, we chose both miRNA sequencing and array-based expression. 
For gene expression, we used RNA sequencing8,9. For protein expression, we downloaded the normalized protein 
expression for each gene in each sample. The Python programming language was used to extract data. Missing 
data (not available) and recurrent and normal solid tissue cohorts were deleted based on exclusion criteria. Only 
primary solid tumor sample was considered for analysis. Survival data from the patients are listed separately as a 
two-dimensional matrix. Each patient ID corresponded to the vital status (represented by 0 and 1 where 0 means 
survival and 1 means death) and survival days (if the patient was dead, the survival time was the number of days 
to survival, and if the patient survived, the survival time was the follow-up time, which was the correctly censored 
data)40. Moreover, a two-dimensional data matrix was built for all molecular and clinical data.

Pathway activity calculation based on gene expression.  We first converted the officinal gene sym-
bol of all human genes to Entrez ID using the Gene ID Conversion Tool (DAVID bioinformatic resources 6.7). 
We then calculated the log-transformed fold change (logFC) of gene expression in each sample by dividing the 
expression level of each gene in this sample with the average expression level in all samples. We next used SPIA 
(Signaling Pathway Impact Analysis) in the R package, which implemented the SPIA algorithm to analyze KEGG 
signaling pathways41. The chosen pathways were dedicated to drawing tA values (the observed total accumula-
tion value). The patient survival information binding with the tA values was assessed via cox regression analysis. 
We chose pathways with a statistically significant difference in survival. According to these selected pathways, 
patients were evaluated with unsupervised clustering and survival analysis.

Gene functional enrichment analysis.  We performed Gene Ontology19,20, KEGG pathway enrichment 
and Interpro (protein domain) analysis using the DAVID bioinformatic resources 6.7 toolkit (https://david.ncif-
crf.gov/) for RNA-seq data and DNA methylation data. We performed miRNA target genes functional enrich-
ment using the DIANA-mirPath v.3.0 web server with TarBase v.7.0 microRNA-target database34. Functional 
terms with P-value <​ 0.05 were treated as significantly enriched functions for each testing gene set.

Implement of clustering algorithms.  For DNA methylation, miRNA, gene and protein expression, we 
conducted a Cox regression analysis (the survival package in R) to identify molecular features that had a signif-
icant relationship with the patient survival. Using this method, we reduced the data dimensions from a variety 
of molecular data. DNA methylation and RNA were expressed by gene name and further analyzed by GO and 
KEGG. The miRNA and protein levels were analyzed by a literature review. For the selected dataset, unsupervised 
clustering was summarized using three methods, PAM, HC and NMF (NMF package R). We then conducted a 
survival analysis (survival package R) that combined a selected two-dimensional matrix with the patient survival. 
We tried to divide the data into 2 to 9 categories, which were used to compare the quality of clustering through the 
clustering score. The clustering score was defined as:

https://tcga-data.nci.nih.gov/tcga/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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= − −X Nclustering score log( )

where X represents the P value of 2 to 9 clusters in each method and N corresponds to number of the cluster, from 
C2 to C9. The more categories in the penalty value, the greater its value. In the gene expression dataset, which was 
aimed at identifying the up-regulated and down-regulated genes in nine groups, we performed division operation 
to each set and the rest sets. We used the thresholds of 2-fold and 0.5-fold change to determine the up-regulated 
and down-regulated genes.
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