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Social Media’s Initial Reaction to
Information and Misinformation on Ebola,
August 2014: Facts and Rumors
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CHUNG-HONG CHAN. MScP Objective. We analyzed misinformation about Ebola circulating on Twitter

BENEDICT SHING BUN CHAN, and Sina Weibo, the leading Chinese microblog platform, at the outset of the
PuD® global response to the 2014-2015 Ebola epidemic to help public health agen-
CHI-NGAI CHEUNG, MPHIL! cies develop their social media communication strategies.
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. Methods. We retrieved Twitter and Sina Weibo data created within 24 hours of
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the World Health Organization announcement of a Public Health Emergency of
International Concern (Batch 1 from August 8, 2014, 06:50:00 Greenwich Mean
Time [GMT] to August 9, 2014, 06:49:59 GMT) and seven days later (Batch 2
from August 15, 2014, 06:50:00 GMT to August 16, 2014, 06:49:59 GMT). We
obtained and analyzed a 1% random sample of tweets containing the keyword
Ebola. We retrieved all Sina Weibo posts with Chinese keywords for Ebola for
analysis. We analyzed changes in frequencies of keywords, hashtags, and Web
links using relative risk (RR) and x? feature selection algorithm. We identi-

fied misinformation by manual coding and categorizing randomly selected
sub-datasets.

Results. We identified two speculative treatments (i.e., bathing in or drinking
saltwater and ingestion of Nano Silver, an experimental drug) in our analysis
of changes in frequencies of keywords and hashtags. Saltwater was speculated
to be protective against Ebola in Batch 1 tweets but their mentions decreased
in Batch 2 (RR=0.11 for “salt” and RR=0.14 for “water”). Nano Silver men-
tions were higher in Batch 2 than in Batch 1 (RR=10.5). In our manually coded
samples, Ebola-related misinformation constituted about 2% of Twitter and Sina
Weibo content. A range of 36%-58% of the posts were news about the Ebola
outbreak and 19%-24% of the posts were health information and responses
to misinformation in both batches. In Batch 2, 43% of Chinese microblogs
focused on the Chinese government sending medical assistance to Guinea.

Conclusion. Misinformation about Ebola was circulated at a very low level
globally in social media in either batch. Qualitative and quantitative analyses of
social media posts can provide relevant information to public health agencies
during emergency responses.
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Communicating scientifically accurate information
about an outbreak is important, because an informed
public will likely be less susceptible to misinformation
that could hinder outbreak control.! Although social
media have been used by public health agencies to com-
municate disease prevention information,>* rumors
and alternate understandings of disease can circulate.
Anecdotal evidence suggests that Twitter might have
played a role in Nigeria’s efforts to control Ebola® at
the outset of the 2014 Ebola outbreak, but the World
Health Organization (WHO) noted rumors circulat-
ing on social media claiming that certain products or
practices could prevent or cure Ebola virus disease.® A
2014 study found that 55% of English-language tweets
from Guinea, Liberia, and Nigeria during September
1-7, 2014, using the terms “Ebola” and “prevention”
or “cure” contained medical misinformation.”

We analyzed information and misinformation about
Ebola on Twitter—the world’s largest microblogging
service—and Sina Weibo—the leading microblogging
platform in China—shortly after the WHO declaration
of the Ebola outbreak as a Public Health Emergency
of International Concern (PHEIC) on August 8, 2014.®
Our study focused on microblogging, an Internet-based
self-publishing application that enables people to share
user-created content or republish others’ messages
online. It has played a critical role in mass communica-
tion during crises, such as natural disasters.”!!

Microblog users’ response was part of the public’s
reaction to the global threat of Ebola. Most people had
insufficient knowledge about the disease and limited
time and resources to access additional information
sources to understand it.'"*!* We used Twitter as a rep-
resentative social media platform. We included Sina
Weibo because Twitter is blocked in China, requiring
microblog users in China to use alternative platforms.

Our primary research questions were () What
Ebola-related information and misinformation (and
their proportions) was circulated on two popular
microblogging platforms (Twitter and Sina Weibo) in
the two most commonly spoken languages (English and
Chinese) on the day of the PHEIC announcement? and
(2) What changes could be observed a week later? Our
analysis may aid public health agencies in developing
their social media communication strategies.

METHODS
Study design

We collected microblog data from Twitter and Sina
Weibo in two batches to document changes in Ebola-
related microblog content one week after the WHO
PHEIC announcement. Batch 1 was collected during

the first 24 hours after the WHO PHEIC announce-
ment'? (from August 8, 2014, 06:50:00 Greenwich Mean
Time [GMT] to August 9, 2014, 06:49:59 GMT); Batch
2 was collected during a 24-hour period seven days
later (from August 15, 2014, 06:50:00 GMT to August
16, 2014, 06:49:59 GMT).

Twitter data retrieval

Twitter had 271 million monthly active users worldwide
in 2014." Tweets are seen as digital footprints for
monitoring the public’s health-related responses and
behaviors.!*!® We retrieved Twitter users’ publicly avail-
able tweets. We applied Twitter streaming Application
Programming Interface (API) to sample Twitter data
for monitoring the Ebola outbreak (details available
upon request). We retrieved a random sample of 1%
of all publicly posted tweets: (sample size: n=4,366,946
tweets from Batch 1 and 7n=4,305,841 tweets from
Batch 2). Of these, 4,844 tweets during Batch 1 and
2,001 tweets during Batch 2 (1,109 and 465 per one
million tweets, respectively) contained the keyword
“Ebola” (Figure).

Chinese microblog data retrieval

Sina Weibo had 156.5 million monthly active users as of
June 2014' and is often used for digital epidemiology
studies on Chinese social media.'” Despite the state’s
control of political information, Chinese online users
can use Sina Weibo to speak with some autonomy on
public health affairs.

Because Sina Weibo currently does not provide a
streaming API service similar to that of Twitter, Chi-
nese Ebola-related microblogs were obtained via Sina
Weibo’s Internet search engine. Two Chinese terms
for Ebola, {7 and ¥1#47, were entered into the
search engine. The results were then computationally
captured page by page by a script (developed by one
of the authors) based on R version 3.0.2.'® The script
was programmed to run every 10 minutes during the
Batch 1 and Batch 2 periods and was executed by two
computers located separately in Hong Kong and Ath-
ens, Georgia, for data redundancy management. When
data collection was completed, items with duplicated
identity codes were discarded. Of the 7,645 microblog
posts in Batch 1, 219 posts created outside the speci-
fied time frame and 49 posts containing the Chinese
term for “Ebola” in their username but not in the body
of the posts were excluded, leaving 7,377 posts for
further text processing. Of the 3,416 microblog posts
in Batch 2, 64 posts containing the Chinese term for
“Ebola” in their username but not in the body of the
posts were excluded, leaving 3,352 posts for further
text processing. Finally, we parsed the text of the col-
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Figure. Incidence rate of Twitter tweets with keyword “Ebola” (count per million per day) in a 1% random

sample of the Twitter universe, July 25-August 30, 2014
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does not show these data.

lected microblog messages and the time of posting and
recorded them in a comma-separated value (GSV) file.

Text processing

The retrieved Twitter tweets were classified into Eng-
lish and non-English languages by using R;' only
English-language tweets were analyzed. Using R’s
text mining package,? tweets were then stemmed by
stemmer (e.g., reducing words to their roots, such as
“tables” to “table”) and tokenized for keyword analysis.
Tokenization is the process of segmenting a sentence
into different units of meaning (words). Because of the
linguistic difference between English-language tweets
and Chinese microblogs, the Chinese microblogs were
processed differently. Because there is no space in the
Chinese syntax to separate words in a sentence as in
English, Chinese text in microblogs was segmented
into phrases using Viterbi algorithm?! implemented in
the Jieba toolkit.?** For example, an original Chinese
sentence such as

RIRDEEN  (DMERRER R H ) & 22K
BRI R S 280 —Fp ™ B B AR S 5
TET- % 513890% o

[English translation: Ebola virus disease (formerly known as
Ebola hemorrhagic fever) is a severe, often fatal illness, with
a death rate of up to 90% caused by Ebola virus, a member
of the filovirus family.]

was segmented into phrases by the Viterbi algo-
rithm as

WRIEHL/ W5/ R/ (/ LAE/ FRVE /3R TR/ 124/
) R/ /2R TREERY B R /R B
— R/ B B B, /BRI
i£/90/ %

A word-by-word translation in English would be: Ebola
/ virus / disease / formerly / called / Ebola / hemor-
rphagic fever / is / from / filial / virus /’s / Ebola
virus / cause /’s/ one kind / severe / and / eventually
/ fatal /’s / disease / death rate/ as high as / 90 / %.

Candidate keywords for subsequent analysis were
all unique keywords in the tokenized English-language
tweets and segmented Chinese microblogs with more
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than three occurrences in the entire collection of
tweets and microblogs. We extracted hashtags and
Web links from the body of the tweets and the Chinese
microblogs. The extracted Web links were mostly short-
ened URLs and were resolved by the ¢cURL program?*
to obtain the full Web links and domain names. We
removed stop words, punctuation, emoticons, and
special symbols used in microblogging (e.g., RT and
@author_name) in the English-language and Chinese
microblogs. We recorded the contents and time of
posting for each microblog post in a CSV file.

Analysis of changing relative frequencies
We analyzed seven-day changes in the relative frequen-
cies of keywords, hashtags, and domain names of the
shared Web links. The unit of analysis was a keyword,
a hashtag, or a domain name. “Trending” signifies
increasing usage of the item, and “fading” signifies
declining usage. We evaluated the relative frequency
of each item in Batch 1 and Batch 2 using the relative
risk (RR) and y? feature selection algorithm.®

The y? feature selection algorithm (1) evaluated
the strength of evidence for the hypothesis that the
frequency of an item between the two batches of
microblogs was different and (2) ranked terms by the
%% value that measured how much the observed count
was different from the expected count, assuming that
occurrence of the item was independent of the batch
of microblogs. High ? values indicate strong evidence
for the existence of a difference between the observed
value and expected value.?*® Such measurements did
not account for the direction of the difference (i.e., an
item with a high %? value may have a higher frequency
in Batch 2 than in Batch 1, or vice versa). We used RR
to supplement the ? feature selection algorithm to
indicate the direction of the relative frequency. The
RR for an item ¢ was calculated as:

RR; = (P;paccn 2) / (Py, paten 1)

P; s 1 denoted the probability of tweets with item
¢in Batch 1; P; 5,4, o denoted the probability of tweets
with item ¢ in Batch 2. A 0.5 was added to both its
denominator and numerator to correct for zero fre-
quencies. In this analysis, trending items were those
with a high %? value and an RR>1, while fading items
were those with a high %* value and an RR=1.

Manual coding and categorization

of microblog contents

We manually categorized microblog content under
different themes to identify the information and mis-
information contained therein. For manual coding, we
randomly selected 5%-7% of the de-identified social

media posts. In Microsoft® Excel® spreadsheets, for
each Twitter tweet or Sina Weibo post, we assigned
a random number between 0 and 100 inclusive
(=RANDBETWEEN[0,100]). If the random number
was =5, the microblog post was selected for manual
coding. Because the proportion of random numbers
generated that were =b was not the same for each
dataset, the manually coded dataset was 5%-7% of
the original datasets: Twitter: Batch 1: n=299/4,844
(6.2%); Batch 2: n=116/2,001 (5.8%); Sina Weibo:
Batch 1: n=469/7,645 (6.1%); Batch 2: n=207/3,416
(6.1%). After random selection, 17 of the 469 randomly
selected Sina Weibo posts in Batch 1 were excluded
because they were outside the time frame, leaving 452
manually coded posts.

Our social media samples were first coded (i.e.,
categorized under different themes) by at least one
coder and then recoded by the first author, who made
the final coding decision. To assess reliability, a second
coder coded a randomly selected 10% sample of our
manually coded samples. Comparing the code between
the second coder and the first author, the interrater
agreement was moderate for Twitter data (Cohen’s
k=0.58 for Batch 1 and k=0.56 for Batch 2) and
substantial for Sina Weibo data (Cohen’s Kk=0.66 for
Batch 1 and k=0.78 for Batch 2).%

Within each selected sample, the microblog posts
were first categorized into English/Chinese posts and
posts that were not English or Chinese. For Twitter
data, the non-English, non-Chinese tweets (54 in Batch
1 and 29 in Batch 2) were excluded from further
analysis, leaving 245 tweets in Batch 1 and 87 posts
in Batch 2 for analysis. We found no significant dif-
ference in the proportion of English-language tweets
between Batch 1 and Batch 2 (p=0.15). We manually
categorized English/Chinese posts in our selected
samples according to the following scheme (derived
from a previously published scheme)®: news of the
Ebola outbreak or cases; news of travel bans, border
blockades, flight route suspensions, sports game bans,
and travel advice; health education and information;
alternative health information; responses to alternative
health information; advertisement and entertainment;
social issues; and others.

In our analysis of Sina Weibo samples, we created
two categories for posts related to the Chinese medical
team’s departure for Guinea and for posts that reported
news of a Sina Weibo user who allegedly spread rumors
about a “suspected case in a hospital in Shanghai” and
was detained by Chinese police. These news items were
unique to Sina Weibo content. We performed Fisher’s
exact test and y? tests as appropriate to compare the
number of posts in each category between the two
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batches for Twitter and Sina Weibo, respectively. The
Twitter and Sina Weibo data were anonymized and
de-identified prior to analysis.

RESULTS

Descriptive analysis

Key terms used in the WHO’s PHEIC announcement
were among the top 20 keywords list of the English
and Chinese microblogs in Batch 1: “Ebola,” “virus,”
“outbreak/epidemic,” “public health,” and “emer-
gency” (Table 1).

Analysis of changing relative frequencies

Terms related to the WHO’s PHEIC announcement,
including “emergency event” (x*=458.9, RR=0.01),
“public health” (x?=371.0, RR=0.10), or “announced”
(x*=232.0, RR=0.12), were fading in Batch 2 on Sina
Weibo, while the term “declare” was fading in Batch
2 on Twitter (Table 2).

Two rumors featured in numerous posts, but both
were confined to Twitter and did not appear on Sina
Weibo. Saltwater appeared in Batch 1 tweets but faded
in Batch 2 (salt: ¥*=63.9, RR=0.11; water: x*=39.7,
RR=0.14). An experimental drug known as Nano
Silver, which was backed by the Nigerian Ministry of
Health but had no scientific evidence on efficacy, was
on the top 10 trending Twitter hashtag list (}*=1.7,
RR=10.5) (Table 2).

Tweets reading “Ebola may be vastly underesti-
mated,” reflecting a WHO assessment, made “under-
estimate” the top trending term on Twitter in Batch
2. In Chinese microblogs, the term “assistance to
Africa” ranked at the top of the trending list in Batch
2 (Table 2).

Manual coding and categorization of
microblog contents

Twitter. We found a significant difference (Fisher’s
exact test, p=0.01) in content categories between
Batch 1 and Batch 2. Of 245 tweets in Batch 1 and 87
tweets in Batch 2, alternative health information (i.e.,
information that is not in line with current scientific
understanding of Ebola and its prevention and control)
accounted for six tweets in Batch 1 and two tweets in
Batch 2. We found a similar percentage of tweets on
health education and information (i.e., information
that is in line with current scientific understanding of
Ebola and its prevention and control) (Batch 1: n=26,
10.6%; Batch 2: n=10, 11.5%) and tweets in response to
alternative health information (Batch 1: n=32, 13.1%;
Batch 2: n=10, 11.56%) (Table 3).

Sina Weibo. We observed a significant difference in the
manually coded categories between randomly selected
Sina Weibo posts from Batch 1 and Batch 2 (Fisher’s
exact test, p<<0.001). Of 452 posts analyzed in Batch 1
and 207 posts analyzed in Batch 2, alternative health
information accounted for 11 posts in Batch 1 and
three posts in Batch 2. Percentage of posts about health
education and information were similar between the
two batches (Batch 1: n=>55, 12.2%; Batch 2: n=27,
13.0%). Responses to alternative health information
accounted for 43 (9.5%) posts in Batch 1 and 13 (6.3%)
posts in Batch 2 (Table 3).

Alternative health information as observed
through manual coding

Twitter. In the manually coded subset, alternative
health information about Ebola in Batch 1 included
two posts on “bathing in salt water and then drinking
it”; one post that the Ebola virus came from space; one
post that “crystal meth can cure Ebola”; one post that
Ebola arose from human cannibalism; and one post to
“tie a palm leaf and a red cloth round your head and
your waist, and then dance around any banana tree”
to stop Ebola. Alternative health information in Batch
2 included two posts on news about the use of Nano
Silver as an Ebola treatment in Nigeria.

Sina Weibo. In the manually coded subset, alternative
health information about Ebola on Sina Weibo in Batch
1 included three posts with scientific comments that
contained mistakes (e.g., “from its discovery to today,
Ebola had only caused havoc in West Africa”), two
posts that advocated homeopathy, and six posts that
said traditional Chinese medicine could be used to
treat or prevent Ebola. Two posts advocating traditional
Chinese medicine criticized the Western medical idea
of Ebola virus causing the Ebola virus disease. That
particular comment drew 25 posts containing criticism
and sarcastic comments from Sina Weibo users. In
Batch 2, examples included two posts on traditional
Chinese medicine and one post that smoking tobacco
can prevent Ebola infection.

DISCUSSION

Our finding that about 2% of microblogs contained
alternative health information in August 2014 contrasts
with a September 2014 study that focused on English-
language tweets from Guinea, Liberia, and Nigeria
and found that 55% of Ebola-related tweets contained
medical misinformation.” Whereas that study focused
on three African countries affected by the outbreak, we
sampled our microblog contents without geographical
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restrictions. Moreover, such rumors might have been
circulated before or after our sample collections and
via other routes or platforms (e.g., word of mouth).

Our findings that 47%-58% of the posts were Ebola-
relevant news stories and 19%-24% were health infor-
mation and responses to alternative health information
in both batches are compatible with another analysis
of Ebola-related Twitter data from July 24 to August
1, 2014. The four main topics identified in that study
were Ebola risk factors, prevention education, disease
trends, and prayer for countries in Africa. The authors
interpreted their findings as evidence of knowledge
gaps about Ebola as relevant information was being
provided and sought.?

A study that analyzed 85 of the top 100 YouTube
videos on Ebola on December 9, 2014, found that
54 (63.5%) videos had misleading information and
31 (36.5%) videos were useful. However, the study
found that the number of views of misleading videos
was significantly higher than those of useful videos
(p=0.005).%>3! In contrast, an analysis of 118 videos
screened on November 1, 2014, found that 31 (26.3%)
YouTube videos were misleading and 87 (73.7%) were
useful.®® An analysis of the 100 most widely viewed
Ebola-related YouTube videos as of December 9, 2014,
found that 36 (36%) reported CDC-described transmis-
sion routes of Ebola.” Such differences might reflect
differences in criteria for content categorization but
also the timing of data collection, because social media
content evolves continuously.

Two other studies reported an increase in the vol-
ume of Ebola-related Twitter traffic during October
2014, when domestic cases were reported in the United
States.*?* One exploratory study counted the frequency
of keywords associated with different emotional states
among Ebola-related tweets.*

We found that key terms used in the WHO’s PHEIC
announcement were among the top 20 keywords
list of the English and Chinese microblogs in Batch
1. This observation might suggest that social media
platforms helped disseminate the key WHO messages
immediately after the announcement. Our observa-
tion that the word “China” occurred more frequently
than “Ebola” in Batch 2 of Chinese microblogs was not
surprising. Because Chinese governmentrun media
channels emphasized China’s anti-Ebola efforts, the
term “China” was the most frequently used term in
Batch 2 of Chinese microblogs.

Our observation of the increased ratio of Sina
Weibo bloggers using hashtags from Batch 1 to Batch
2 might be attributable to hashtags created by some
news outlets or the service provider Sina Weibo (e.g.,

a hashtag of a promotional campaign reading “Sina
News to share with prizes”).

Although many studies attempted to use digital big
data (including social media data) to detect outbreaks®
or to estimate or forecast disease incidence,*  their
successful application in public health practice faces
technical challenges.****? Communication surveillance
is becoming an important application of social media
data in public health surveillance.* Communication
surveillance includes both surveillance of general
awareness of certain diseases®*! and monitoring of
reactions to public health messages or campaigns.?*’

Implications for practitioners and policy makers

The low proportion of microblogs with alternative
health information at the onset of the global response
to the 2014-2015 Ebola outbreak mirrors results from
studies during the 2009 influenza pandemic, when only
about 2% of tweets were seen as misinformation.* We
found that most information on social media came
from mainstream news agencies, which generally
report information from public health agencies. Our
findings also indicate a contextual difference between
a free and open online platform and a state-regulated
online platform in the contents of Ebola-related
microblogs. China’s Internet market is controlled by
the government,47 which explains why posts related to
misinformation or rumors were not widely observed
among Chinese microblogs, whereas misinformation
(e.g., saltwater, Nano Silver) was freely distributed
on Twitter. For the same reason, topics of discussion
on Twitter were more diverse. These findings suggest
that a free and open online platform may enable the
dissemination of unofficial and unconfirmed infor-
mation but also pluralistic views. Although censoring
allows governments to control rumors and alternative
information, it can put the society at risk of a potential
government cover-up, as in the initial denial of the 2003
severe acute respiratory syndrome outbreak in China.*

Strengths and limitations

The strength of manual coding is the understanding
and interpretation of the context and meaning of the
content. We compensated for our weakness of having
a single manual coder by having a second coder code
10% of the sample, with moderate to substantial reli-
ability. Our random sample (about 4.5 million tweets
per day) constituted about 1% of the Twitter universe.
Although we did not retrieve all Ebola-related tweets,
our sample was representative. Our Twitter data retrieval
method allowed us to calculate the incidence rate of
tweets that were Ebola-related across a period of time.
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Unlike the United States and China, where social
media are important channels of disseminating
outbreak information,**** the areas most affected
by the outbreak are likely to use traditional means
of communication to disseminate misinformation.
Therefore, the low proportion of misinformation on
social media might not reflect the rumors circulating
among the public in West Africa, where the epidemic
occurred. Additionally, we did not code microblogs
written in languages other than English and Chinese.
Future studies analyzing tweets in other languages
might help confirm the external validity of our find-
ings. Furthermore, Twitter and Sina Weibo may not be
representative of the global population, because users
are generally young and educated.**

CONCLUSION

A small percentage of Ebola-related microblogs
contained misinformation; most contained outbreak-
related news and scientific health information, echoing
the Nigerian success in Ebola health communications
via Twitter.? Further studies of health information dis-
semination on government-censored social media*” can
serve as a comparison to studies performed on uncen-
sored platforms. A future retrospective longitudinal
study of Ebola-related information on microblogs will
allow us to investigate how the volume and contents of
misinformation changed during this outbreak. Analyz-
ing the sources of misinformation and understanding
the process by which rumors are created and circulated
through re-tweeting will inform effective public health
communication strategies on social media.
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