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Empirical policy research often focuses on causal inference. Since policy choices seem to 

depend on understanding the counterfactual–what happens with and without a policy–this 

tight link of causality and policy seems natural. While this link holds in many cases, we 

argue that there are also many policy applications where causal inference is not central, or 

even necessary.

Consider two toy examples. One policy maker facing a drought must decide whether to 

invest in a rain dance to increase the chance of rain. Another seeing clouds must deciding 

whether to take an umbrella to work to avoid getting wet on the way home? Both decisions 

could benefit from an empirical duty of rain. But each has different requirements of the 

estimator. One requires causality: do rain dances cause rain? The other does not, needing 

only prediction: is the chance of rain high enough to merit an umbrella? We often focus on 

rain dance like policy problems. But there are many important policy problems umbrella-

like. Not only are these prediction problems neglected, machine learning can help us solve 

them more effectively.

In this paper, we (i) provide a simple framework that clarifies the distinction between 

causation and prediction; (ii) explain how machine learning adds value over traditional 

regression approaches in solving prediction problems; (iii) provide an empirical example 

from health policy to illustrate how improved predictions can generate large social impact; 

(iv) illustrate how “umbrella” problems are common and important in many important policy 

domains; and (v) argue that solving these problems produces not just policy impact but also 

theoretical and economic insights.1

*Obermeyer: zobermeyer@partners.org. 
1A longer version of this paper–Kleinberg et al. (2015a)–fleshes out each of these points, providing greater detail on the model, the 
empirical work and a more through summary of machine learning.
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I. Prediction and Causation

Let Y be an outcome variable (such as rain) which depends in an unknown way on a set of 

variables X0 and X. A policy-maker must decide on X0 (e.g. an umbrella or rain-dance) in 

order to maximize a (known) payoff function π(X0, Y). Our decision of X0 depends on the 

derivative

Empirical work can help estimate the two unknowns in this equation:  and . 

Estimating  requires causal inference: answering how much does X0 affect Y?

The other term– –is unknown for a different reason. We know the payoff function but 

since it’s value must be evaluated at Y, knowing the exact value of  requires a prediction 

Y. We know how much utility umbrellas provide only once we know the level of rain.

Choosing X0 therefore requires solving both causation and prediction problems. Assume 

away one of these terms–place an exclusion restriction–and only one problem remains. Rain 

dances are a pure causal inference problem because rain dances have no direct effect on 

payoffs . Umbrellas are a pure prediction problem because umbrellas have no direct 

effect on rain .

This derivative also illustrates two key features of prediction problems. First, the need for 

prediction arises exactly because  depends on Y. Prediction is necessary only because 

the benefit of an umbrella depends on rain. As we illustrate in the final section, this kind of 

dependency is common for many important policy problems. Second, because only Ŷ enters 

the decision, prediction problems only require low error in Ŷ; they do not require the 

coefficients to be unbiased or causal.

II. Machine Learning

As a result, standard empirical techniques are not optimized for prediction problems because 

they focus on unbiasedness. Ordinary least squares (OLS), for example, is only the best 

linear unbiased estimator. To see how it can lead to poor predictions, consider a two variable 

example where OLS estimation produced  and , suggesting a 

predictor of x1 + 4x2. But given the noise in , for prediction purposes one would be 
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tempted to place a smaller (possibly 0) coefficient on x2. Introducing this bias could improve 

prediction by removing noise.

This intuition holds more generally. Suppose we are given a data set D of n points (yi, xi) ~ 

G. We must use this data to pick a function  so as to predict the y value of a new data 

point (y, x) ~ G. The goal is to minimize a loss function, which for simplicity we take to be 

.

OLS minimizes in-sample error, choosing from ℱlin, the set of linear estimators:

but for prediction we are not interested in doing well in sample: we would like to do well out 
of sample. Ensuring zero bias in-sample creates problems out of sample. To see this, 

consider the mean squared error at the new point x, . This can 

be decomposed as:

Because the f varies from sample to sample, it produces variance (the first term). This must 

be traded off against bias (the first term). By ensuring zero bias, OLS allows no tradeoff.

Machine learning techniques were developed specifically to maximize prediction 

performance by providing an empirical way to make this bias-variance trade-off (Hastie et 

al., 2009 provide a useful overview). Instead of minimizing only in-sample error, ML 

techniques minimize:

Here R(f) is a regularizer that penalizes functions that create variance. It is constructed such 

the set of functions ℱc = {f|R(f) ≤ c|} create more variable pre-dictions as c increases. For 

linear models, larger coefficients allow more variable predictions, so a natural regularizer is 

R(fβ) = ‖β‖d, which is the LASSO and RIDGE estimators for d = 1 and 2 respectively. In 

effect, this minimization now explicitly includes a bias (in-sample error) and variance term 

(R(f)), where λ can be thought of as the price at which we trade off variance to bias. OLS is 

a special case where we put an infinite (relative) price on bias ( ).

A key insight of machine learning is that this price λ can be chosen using the data itself. 
Imagine we split the data into f subsets (often called “folds”). For a set of λ, we estimate the 
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algorithm on f − 1 of the folds and then see which value of λ produces the best prediction in 

the fth fold. This cross-validation procedure effectively simulates the bias-variance tradeoff 

by creating a way to see which λ does best “out of sample”.

These two insights–regularization and empirical choice of the regularization penalty–

together also change the kinds of predictors we can consider. First, they allow for “wide” 

data, to predict even when we have more variables than data points. For example, 

researchers using language data often have an ten or a hundred times as many variables as 

data. Second, this allows for far more flexible functional forms. One can include many 

higher order interaction terms or use techniques such as decision trees which by construction 

allow for a high degree of interactivity.

Machine learning techniques are in one sense not new: they are a natural offshoot of non-

parametric statistics. But they provide a disciplined way to predict ŷ which (i) uses the data 

itself to decide how to make the bias-variance tradeoff and (ii) allows for search over very 

rich set of variables and functional forms. But everything comes at a cost: one must always 

keep in mind that because they are tuned for ŷ they do not (without many other 

assumptions) give very useful guarantees for .

III. Illustrative Application

Osteoarthritis (joint pain and stiffness) is a common and painful chronic illness among the 

elderly. Replacement of the affected joints, most commonly hips and knees, provide relief 

each year to around 500,000 Medicare beneficiaries in the US. The medical benefits B are 

well understood: surgery improves quality of life over the patient’s remaining life 

expectancy Y. The costs C are both monetary (roughly $15,000 calculated using 2010 

claims data) and non-monetary: surgeries are painful and recovery takes time, with 

significant disability persisting months afterwards. The benefits accrue over time, so surgery 

only make sense if someone lives long enough to enjoy them; joint replacement for someone 

who dies soon afterward is futile–a waste of money and an unnecessary painful imposition 

on the last few months of life.

The payoff to surgery depends on (eventual) mortality, creating a pure prediction problem. 

Put differently, the policy challenge is: can we predict which surgeries will be futile using 

only data available at the time of the surgery? This would allow us save both dollars and 

disutility for patients.

To study this we example a 20% percent sample of 7.4 million Medicare beneficiaries, 

98,090 (1.3%) of which had a claim for hip or knee replacement surgery in 2010.2 Of these,

1.4% die in the month after surgery, potentially from complications of the surgery itself, and 

4.2% die in the 1–12 months after surgery. This low rate–roughly the average annual 

mortality rate for all Medicare recipients–seems to suggest on average surgeries are not 

futile. But the average is misleading because the policy decision is really about whether 

surgeries on the predictably riskiest patients was futile.

2We restricted to fee-for-service beneficiaries with full claims data living in the continental US, and exclude any with joint 
replacement in 2009 (potentially implying revision surgery or other complication of a prior procedure).
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To answer this, we predicted mortality in the 1–12 months after hip or knee replacement 

using LASSO (see Kleinberg et al., 2015a for full details).3 We used 65,395 observations to 

fit the models and measured performance on the remaining 32,695 observations. 3,305 

independent variables were constructed using Medicare claims dated prior to joint 

replacement, including patient demographics (age, sex, geography); co-morbidities, 

symptoms, injuries, acute conditions and their evolution over time; and health-care 

utilization.

These predictions give us a way to isolate predictably futile surgeries. In Table 1, we sort 

beneficiaries by predicted mortality risk, showing risk for the riskiest 1%, 2% and so on, 

which is highly and predictably concentrated: for example, the 1% riskiest have a 56% 

mortality rate, and account for fully 10% of all futile surgeries.4

Imagine the dollars from these futile surgeries could instead have been spent on other 

beneficiaries who would benefit more. To understand the potential savings, we simulated the 

effect of substituting these riskiest recipients with other beneficiaries who might have 

benefited from joint replacement procedures under Medicare eligibility guidelines, but did 

not receive them. To be conservative, rather than comparing to the lowest-risk eligibles, we 

draw from the median predicted risk distribution of these eligibles, and simulate effects of 

this replacement in columns (3) and (4). Replacing the riskiest 10th percentile with lower-

risk eligibles would avert 10,512 futile surgeries and reallocate the 158 million per year (if 

applied to the entire Medicare population) to people who benefit form the surgery, at the cost 

of postponing joint replacement for 38,533 of the riskiest beneficiaries who would not have 

died.5

IV. Prediction Problems Are Common and Important

Our empirical application above highlights how improved prediction using machine learning 

techniques can have large policy impacts (much like solving causal inference problems have 

had). There are many other examples as well. In the criminal justice system, for instance, 

judges have to decide whether to detain or release arrestees as they await adjudication of 

their case–a decision that depends on a prediction about the arrestee’s probability of 

committing a crime. Kleinberg et al. (2015b) show that machine learning techniques can 

dramatically improve upon judges’ predictions and substantially reduce the amount of crime.

Other illustrative examples include: (i) in education, predicting which teacher will have the 

greatest value add (Rockoff et al., 2011); (ii) in labor market policy, predicting 

unemployment spell length to help workers decide on savings rates and job search strategies; 

3This interval reflects two choices. 1) We excluded deaths in the first month after surgery to focus on prediction of Y rather than the 
short-term causal effect of X0 on Y (i.e., operative risk, post-surgical complications). 2) We chose a threshold of 12 months based on 
studies showing substantial remaining disability 6 months after surgery, but improved clinical outcomes at the 12-month mark (Hamel 
et al., 2008). Alternatively, a ‘break-even’ threshold could be derived empirically.
4One might wonder whether these riskier patients may also be the ones who also stood to benefit the most from the procedure, 
potentially justifying surgery. However, variables that should correlate with surgery benefit (number of physician visits for hip or knee 
pain, physical therapy and therapeutic joint injections) do not vary significantly by predicted mortality risk.
5The existence of a large pool of low-risk beneficiaries potentially eligible for replacement argues against moral hazard as an 
explanation for these findings, since physicians who predicted well acting consistent with moral hazard would first exhaust the low-
risk pool of patients before operating on higher-risk patients.
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(iii) in regulation, targeting health inspections (Kang et al. 2013); (iv) in social policy, 

predicting highest risk youth for targeting interventions (Chandler et al., 2011); and (v) in 

the finance sector, lenders identifying the underlying creditworthiness of potential 

borrowers.

Even this small set of examples are biased by what we imagine to be predictable. Some 

things that seem unpredictable may actually be more predictable than we think using the 

right empirical tools. As we expand our notion of what is predictable, new applications will 

arise.

Prediction problems can also generate theoretical insights, for example by changing our 

understanding of an area. Our empirical application above shows that low-value care is not 

due just to the standard moral-hazard explanation of health economics but also to mis-

prediction. The pattern of discrepancies between human and algorithmic decisions can serve 

as a behavioral diagnostic about decision making (Kleinberg et al. 2015b). And prediction 

can shed light on other theoretical issues. For example understanding how people change 

their behavior as regulators or police change the algorithms they use to target monitoring 

effort can shed light on the game theory of enforcement.

Prediction policy problems are, in sum, important, common, and interesting, and deserve 

much more attention from economists than they have received. New advances in machine 

learning can be adapted by economists to work on these problems, but will require a 

substantial amount of both theoretical and practical reorientation to yield benefits for those 

currently engaged in policy studies.
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Table 1

Riskiest Joint Replacements

Predicted Mortality Percentile Observed Mortality Rate Futile Procedures Averted Futile Spending ($ mill.)

1 0.435
(.028)

1984 30

2 0.422
(.028)

3844 58

5 0.358
(.027)

8061 121

10 0.242
(.024)

10512 158

20 0.152
(.020)

12317 185

30 0.136
(.019)

16151 242

Note:

1. We predict 1–12 month mortality using an L1 regularized logistic regression trained on 65,395 Medicare beneficiaries undergoing 

joint replacement in 2010, using 3,305 claims-based variables and 51 state indicators. λ was tuned using 10-fold cross-validation in 
the training set. In columns (1) and (2) we sort a hold-out set of 32,695 by predicted risk into percentiles (column 1) and calculate 
actual 1–12 month mortality (column 2).

2. Columns (3) and (4) show results of a simulation exercise: we identify a population of eligibles (using published Medicare 
guidelines: those who had multiple visits to physicians for osteoarthritis and multiple claims for physical therapy or therapeutic joint 
injections) who did not receive replacement and assign them a predicted risk. We then substitute the high risk surgeries in each row 
with patients from this eligible distribution for replacement, starting at median predicted risk. Column (3) counts the futile 
procedures averted (i.e., replaced with non-futile procedures) and (4) quantifies the dollars saved in millions by this substitution.
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