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ABSTRACT The prediction of the folded structure of a
protein from its sequence has proven to be a very difficult
computational problem. We have developed an exceptionally
simple representation of a polypeptide chain, with which we
can enumerate all possible backbone conformations of small
proteins. A protein is represented by a self-avoiding path of
connected vertices on a tetrahedral lattice, with several amino
acid residues assigned to each lattice vertex. For five small
structurally dissimilar proteins, we find that we can separate
native-like structures from the vast majority of non-native folds
by using only simple structural and energetic criteria. This
method demonstrates significant generality and predictive
power without requfring foreknowledge of any native struc-
tural details.

The three-dimensional structures of protein molecules are
thought to be largely if not completely determined by their
amino acid sequences (1, 2). However, the prediction of
structure from sequence has proved to be extremely difficult.
Protein structure prediction must overcome two related
problems: (i) the size ofa protein's conformational space and
(ii) the presence of local minima in a protein's potential
energy landscape. The number of possible conformations
accessible to even a small protein is so vast that an exhaustive
conformational search for global energy minima will never be
possible. In turn, exploration of any small region of confor-
mational space will identify local energy minima that slow
down directed strategies that attempt to move systematically
toward the most stable structure.
For any prediction strategy, there is a trade-off between

the accuracy of the protein representation and the amount of
conformational space that can be searched. A protein in the
course of folding explores only a tiny fraction of conforma-
tional space, because the folding process must be guided by
the same sorts ofintramolecular interactions that stabilize the
final folded structure (3, 4). Molecular dynamics with detailed
interatomic potential functions can realistically model pro-
teins on the picosecond to nanosecond time scale (5). It is
doubtful that such detailed simulations will ever be able to
model folding, which occurs on a time scale of milliseconds
or seconds (6-8). Similarly, energy-minimization strategies
that employ detailed structural models are capable of iden-
tifying global energy minima only for very small systems (9,
10). Simplified representations of polypeptide chains with
fewer degrees of freedom can be used to improve the sam-
pling of conformational space (11, 12). Some of the most
restrictive models constrain the paths of polypeptides to pass
through points on a lattice (13-16). Despite their simplifica-
tions, these models have not permitted exhaustive confor-
mational searches and so far have not been able to progress
from a realistic protein sequence toward a correct structure
in the absence of any assumed structural information.

The conformation of a properly folded protein is stabilized
by the coordination ofmany specific atomic interactions. The
cost ofusing a simplified model ofprotein structure is the loss
of some fraction of this detailed structural information. It is
not clear how simple a model of a protein can be and still
retain enough of this information to allow some discrimina-
tion of good from bad folds.
We have developed an exceptionally simple lattice model of

protein structure for which we can exhaustively evaluate all
possible folds for small proteins. This model avoids the
conformational complexity problem by capturing only the
large-scale features ofa protein fold and avoids the problem of
local energy minima because it is feasible to estimate the
conformational energies of all possible structures. We find that
for a variety of small proteins we can reliably separate cor-
rectly folded structures from the vast majority of misfold-
ed conformations. Our model has predictive power and at
the same time does not require the knowledge of any
structural information about a protein beyond its amino acid
sequence.

METHODS
A Lattice Model for Protein Structures. We have chosen to

represent a polypeptide chain as a self-avoiding chain of
connected vertices on a bounded diamond-like tetrahedral
lattice. A unique feature of our model is that we do not
enforce a one-to-one correspondence between lattice verti-
ces and residues. One lattice vertex can represent several
residues, and a model structure contains half as many ver-
tices as there are residues in the sequence. This representa-
tion bears little resemblance to real protein structures and
cannot accurately represent a-helices or 8-strands. How-
ever, we have found that a path on this lattice is sufficiently
flexible to capture the range of possible topologies of a
polypeptide backbone. In fact, fitting every other residue to
a vertex seems to be a better match to the overall flexibility
of polypeptides than fitting every residue.
We represent a small protein of 60 amino acid residues by

a self-avoiding path of 30 lattice vertices. For this small
system, there are still on the order of 329 1013 possible
lattice structures. To reduce this to a manageable number, we
require that our structures be reasonably compact and glob-
ular. Each structure is required to fit within a predefined
eliptical bounding volume at least 50% larger than the volume
occupied by the protein, and to have a radius ofgyration close
to that of a sphere with equal volume. We also eliminate
degenerate symmetry-related structures. With the restric-
tions we typically use, only around 107 lattice structures
jointly satisfy these constraints, and it is computationally
possible to exhaustively search all of them.

Conformational Energy Calculations. Statistical estimates
of the effective interaction energies for all residue pairs are
calculated from the observed frequencies of contacts in x-ray
structures (Fig. 1). Our data base included 56 structures

Abbreviations: drms, root-mean-square distance deviation; BPTI,
bovine pancreatic trypsin inhibitor.
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totaling more than 12,000 residues and specifically excluded
the five proteins under study. The method is similar to, but
simpler than, that used by Miyazawa and Jernigan (17). We
define x-ray contacts wherever a heavy atom of one residue
comes within 4.5 A of a heavy atom belonging to another
residue. Because this lattice model cannot accurately repre-
sent the exposed surface of a structure, we do not explicitly
include the effects of solvent interactions. The energy (e.9) of
a contact between residue types u and v is estimated from the
number ofresidue-residue contacts (NUV), the total number of
residues (Np), and the number of residues of each type (N.,
Nj) in each separate protein:

/ 1 NpNuveuv = -logtE 2 N"Nv, ~~~[1]
e99=-lo

N p N.Nv)
wherep varies over all proteins in the data set. We change the
effective interaction energy for a cysteine-cysteine contact to
that of a cysteine-serine contact, to better reflect only
noncovalent interactions. The energy (CV) of a contact be-
tween two vertices i andj, when they are mapped to sequence
positions mi and mj, is calculated using

2ermirmj + ermjlrmj + erm.+irmj + ermirm-l + ermjr1+l
Cii [216

where rm. is the residue type of residue mi in the sequence.
This gives some weight to interactions with flanking residues
that do not map directly onto vertices, but not as much as to
the central interaction. In energy calculations, interactions
are defined between all pairs of occupied vertices that are
either nearest (4.95 A) or next-nearest (8.08 A) neighbors.
An assignment ofexactly two residues to each vertex is not

necessarily optimal, and we have devised a method to align
an amino acid sequence to a particular chain path. We first
choose a default assignment of every second residue to a
vertex (Fig. 2). We calculate the contribution to the confor-
mational energy of each vertex with its current mapping, and
what its contribution would be if all else stayed the same but
the mapping was shifted to one side or the other. We use a
dynamic programming strategy to find the combination of
mutually compatible moves that together yield the best total
conformational energy. Mappings are restricted so that one
residue cannot occupy multiple vertices, and a maximum of
three residues can be squeezed into the gap between two
vertices. The ends of the chain are also free to shift, but at
most three residues can extend past a terminal vertex. This
corresponds roughly to the range of inter-residue spacings
that can be achieved in real proteins between a fully extended
chain and an a-helix. The shifts are applied to the current
mapping, and the process is repeated until either there are no
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FIG. 2. Illustration of alignment optimization process in two
dimensions. The first 18 residues of bovine pancreatic trypsin
inhibitor (BPTI) (A) are mapped to a simple nine-step walk (B Left),
so that initially every other residue is assigned to a vertex. The
residue-residue interactions contributing to one lattice contact en-
ergy are shown with dashed lines. After four cycles of sliding the
sequence along the walk to optimize the energy, the alignment
stabilizes (B Right). The most obvious change is that many hydro-
phobic residues have shifted onto vertices. If the alignment process
is applied to a different walk with a similar overall shape (C Left), the
sequence converges to a virtually identical mapping (C Right). The
alignment finds the same set of inter-residue contacts despite the fact
that the two mappings are initially completely different.

more good moves or a maximum number of iterations is
reached. The result of the procedure is a list of residue
numbers ml . .mn for a walk with n steps.
We use rms distance deviations (drms values) to compare

lattice walks with known structures. The drms for a path of
length n passing through vertices wI... wn, for a particular
residue mapping ml . . . mn, is calculated using
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FIG. 1. Matrix of estimated pairwise interaction energies in RT units.
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Table 1. Attributes of proteins used for evaluating the
prediction scheme

3RXN 4PTI 1R69 1SN3 1CTF
Residues 52 58 63 65 68
Structural class All-P a+8 All-a a+. a//3
Constraints 4* 3t None 4t None
Walk length 26 29 31 33 34
Fixed mapping
Average drms, A 5.65 6.99 5.43 6.64 6.48
Lowest drms, A 3.24 3.93 3.17 4.01 3.90

With optimization
Average drms, A 5.64 6.49 5.28 6.34 6.02
Lowest drms, A 3.07 3.56 2.87 3.67 3.28
The reference structures are identified by their Protein Data Bank

designations. The proteins are rubredoxin (3RXN), BPTI (4PTI), the
N-terminal domain of 434 repressor (QR69), scorpion neurotoxin
variant 3 (1SN3), and the C-terminal domain of ribosomal protein
L7/L12 (1CTF). Structural classes were assigned as in ref. 19. The
lower part of the table illustrates how our alignment optimization
process improves the rms deviations between the populations of
bounded walks and native structures, compared to using a fixed
mapping of every second residue to a lattice vertex.
*Cys-Fe bonds in iron binding site.
tCys-Cys disulfide bonds.

/ (Dw - Dmimj)2Jij i W

drms = V [31
n(n - 1)

where DW.w. is the distance between the vertices wi and wj, and
Dm.m. is the Co distance between residues mi and mj in the
reference structure. Only the subset of residues mapped to
vertices contribute to this deviation. While rms coordinate
deviations are generally preferred (18), distance deviations
are better at measuring the progress of our method. Our
prediction method cannot distinguish between a structure
and its mirror image, and the drms shares this symmetry.

RESULTS
We chose five small proteins ofknown structure, spanning all
major structural classes (19), to evaluate our model (Table 1).
All coordinates were taken from the Protein Data Bank (20).
These proteins range from 52 to 68 residues, corresponding
to lattice structures offrom 26 to 34 steps. We used a bounded
lattice containing 50 vertices to model all these proteins (Fig.
3). A lattice edge length of 4.95 A gave the best scaling
between lattice coordinates and native CI positions. This is
only 0.875 times the value expected from amino acid volume
data (21, 22), which would be the best scaling if the CG
positions of real proteins were evenly distributed throughout

their interiors. As larger proteins are studied, the best scaling
would be expected to move closer to the ideal value.

Evaluation of the Lattice Representation. The choice of a
particular bounding shape may arbitrarily restrict the range of
shapes that lattice paths can assume. We have tried to verify
that our 50 vertex bounded lattice is free of bias by using
BPTI as a test case. We searched the walk populations of
several other bounded tetrahedral lattices with from 43 to 54
vertices and with different elliptical shapes. Although differ-
ent native-like walks were found for each lattice, the fraction
of native-like structures was nearly independent of the
bounding shape in this range. The 50-vertex lattice was able
to represent all the proteins in our test set with similar levels
of fidelity (Table 1). In each case, the best structures have
drms values at least 5 standard deviations better than the
averages over all bounded lattice structures.
Our strategy of dynamically optimizing the mapping of

sequences to lattice structures significantly improves the rms
fit of the most native-like structures (Table 1). While our
strategy generally identifies only locally optimal mappings,
we have found that stronger optimization methods do not
significantly improve the results over those of our simple
approach. This optimization does not require any native
structural information-it depends only on a protein's amino
acid sequence and the contact energy parameters. Because
this procedure effects this improvement by varying the
spacing of residues along the chain path, it must be extracting
a kind of secondary structural information from the sequence
despite the fact that interactions between residues close
together along the sequence are explicitly neglected.

Prediction of Native Folds. We tested the feasibility of using
our model for structure prediction by seeing how far we could
go toward predicting the native structure ofBPTI by stepwise
application of structural and energetic filters (Table 2). We
empirically chose the stringencies of each type of restriction
to yield the greatest net enrichment of native-like structures,
judged by their drms values relative to the native structure.
We found that we could reduce the population of 107 bounded
walks to <500, with a 7000-fold increase in the proportion of
walks meeting our criterion for native-likeness. The best
lattice structures included in the predicted walk group are
quite successful in capturing the overall chain fold of BPTI
(Fig. 4), though some details are lost.
As an unbiased way of assessing the generality of our

prediction scheme, we applied the same selection parameters
we had determined for BPTI to the other proteins in our test
set. We increased the stringency of the radius-of-gyration
cutoff for proteins larger than BPTI, because larger proteins
typically show less irregularity of shape than the smallest
ones. We also increased the stringency of the energy-per-

FIG. 3. A step in assembling a lattice structure.
The solid dots represent vertices of a bounded
tetrahedral lattice. The lattice was constructed by

*w. \ ) enumerating all vertices contained in an ellipsoid
with major axes equal to 8, 8, and 10.8 lattice edge

*\. lengths. This set of50 vertices was used to generate
all the lattice structures described in this paper. As

. . a path is traced through the lattice, there are at most
" 3 lattice positions available for extending the path at
'sII .0 each step that are not excluded by the self-

avoidance requirement. The dashed lines represent
* the possible next steps for this path.
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Table 2. "Purification table" for BPTI
Enrichment of

No. of walks native folds

Selection step* Total Nativet This step Total
Unique boundedt 11,429,748 30
Optimization§ 11,429,748 970 32x 32x
Radius of gyrations 2,018,558 588 3.4x illx
Disulfide bonds'I 63,918 236 13x 1407x
Energy per contact** 420 8 5.2x 7257x
*The selections were applied sequentially in the order shown.
tWalks with drms < 4.2 A from the native structure.
tSymmetry-unrelated walks that fit within the bounded 50-vertex
lattice.
§Sequence alignment adjusted by dynamic programming to minimize
conformational energy.
$Radius ofgyration less than 1.12 times that ofa sphere with the same
volume.
"Walks for which the average distance between cysteine pairs that
are crosslinked in the native structure was less than 2.0 lattice
spacings.
**Walks whose energies were at least 2 standard deviations below

the average for walks meeting the radius-of-gyration criterion.

contact selection for the proteins that had no disulfide
constraints. We did not adjust any structural or energetic
parameters of the model. The results for all the test proteins
were similar to those for BPTI (Fig. 5 and Table 3). The two
energy-driven steps-the alignment optimization and the
energy-per-contact selection-account for most of the pre-
dictive power of the method. The success of the method also
shows no consistent dependence on problem size.

Perhaps our most surprising finding is that our primitive
conformational energy function has significant discriminating
power, despite the low resolution of the lattice model. Because
our model does not explicitly account for solvent and because
the numbers of walk contacts are so variable, the average
energy per contact is the most robust parameter for classifying
structures. For each of the test proteins, this parameter is
strongly correlated with a walk's similarity to the native struc-
ture. This is especially remarkable, given that of the contacts
contributing to a walk's conformational energy, rarely more
than a third represent genuine native interactions.

DISCUSSION
One advantage of predicting structure via an exhaustive
search is the simplicity of measuring the progress of the
prediction scheme. We can characterize a protein's entire
conformational space and measure the effectiveness of each

FIG. 4. Native and lattice structures of BPTI. The native (red)
and lattice (green) structures are represented by ribbons passing
through their Ca positions. The best lattice structures of BPTI are
quite successful in capturing the protein's overall fold. This partic-
ular lattice structure has a rms coordinate deviation of 5.65 A,
and a drms of 3.89 A. Of the interactions contributing to the lattice
structure's conformational energy, 22% are genuine native contacts.
This structure was contained in the set of 420 conformations that
satisfied all the structure-prediction criteria.

predictive step as a sort of "purification" of correct, native
folds. It is doubtful that our structure prediction strategy
could reliably identify a single best structure for a particular
sequence. It seems clear, however, that it is sufficiently
powerful to eliminate the vast majority of candidate folds.
The enrichment is efficient enough that a second stage of
analysis could afford to spend several thousand times as
much computational effort per structure in further narrowing
the search. Our best structures compare very favorably to
those found by other groups using more faithful models of
protein structure. The best of our 420 BPTI structures has a
drms deviation of 3.9 A, whereas previous studies have
reported values of 5.3 A (11), 4.7 A (23), and 4.5 A (24).
An important feature of our model is that conformations

can be generated and evaluated extremely quickly. Using a
Silicon Graphics Iris 4D-240 workstation, we can analyze 10
million BPTI structures in 80 min. Though the choice of a
particular bounding volume directly limits the numbers of
structures to be searched, the computational demands of our
method will ultimately show an exponential dependence on
problem size, because larger bounding shapes will be neces-
sary to model larger proteins. The simplicity of our model is
crucial here, because the exponential term scales with lattice
path length rather than the larger sequence length. We expect

FIG. 5. Comparison of native and lattice structures for each test protein. Ca ribbons from the native x-ray structures of rubredoxin (A), A
repressor (B), scorpion neurotoxin (C), and the C-terminal fragment of ribosomal protein L7/L12 (D) are shown in red, and selected native-like
lattice structures are in green. The four lattice structures have drms values of 3.67, 3.19, 3.93, and 3.97 A relative to their corresponding native
Ca positions. Each ofthese structures has a low conformational energy and is contained in the set of structures that satisfy all the selection criteria
of the structure-prediction method. As in the case of BPTI, the lattice structures are capable of capturing the overall fold of each protein, with
some distortion and loss of detail.

Biophysics: Hinds and Levitt
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Table 3. Results of applying BPTI selection criteria to other proteins
3RXN 4PTI 1R69 1SN3 1CTF

drms cutoff, A 3.4 4.2 3.3 4.2 4.0
Before selection

Total walks 7.1 x 106 1.1 x 107 1.3 x 107 1.2 x 107 1.1 X 107
Native-like 6 30 32 14 16

Selection step
Optimization 19x 32x 21x 64x 133x
Radius of gyration 2.2x 3.4x 4.4x 2.5x 2.5x
Disulfide bonds 4.4x 13x n/a 6.Ox n/a
Energy per contact 20x 5.2x 20x 14x 5.7x
Total enrichment 3649x 7267x 1849x 13,082x 1911 x

After selection
Total walks 3228 420 872 676 1410
Native-like 10 8 4 10 4

The drms cutoffs used to track the purification of native-like structures were chosen to make the
numbers of native-like structures in each unprocessed walk population similar. The radius-of-gyration
limit was lowered to 1.10 times that of a sphere with equal volume for 1SN3, 1R69, and 1CTF. Because
1R69 and 1CTF lack disulfide constraints, we increased the strength of their energy per contact
selection and retained walks at least 3 standard deviations better than average. In every case, the
original population of roughly 107 walks was reduced to on the order of 104 structures, of which a much
larger fraction were native-like.

to be able to evaluate structures as large as 80-100 residues,
comparable to single domains of larger proteins.
While our model can capture the general fold and arrange-

ment of intramolecular contacts of a structure, it contains no
information about specific atomic interactions. The early
stages of folding may be guided by relatively nonspecific and
time-averaged interactions ofthe sort that can be represented
by this model. The range of conformations that can be built
on our lattice could be compared to the range of distinguish-
able structures of a molten globule (25-27), in which a
compact, weakly ordered structure has formed but specific
tertiary contacts have not yet stabilized.
A general prediction strategy must not depend on the

foreknowledge of any specific structural information about
the proteins whose structures are to be predicted. We have
been very careful to avoid including any such requirements
in our method. We allow the use of disulfide constraints
because these linkages can often be determined experimen-
tally without actually solving a protein's three-dimensional
structure (28, 29). When using more accurate structural
models, other groups have generally been forced to make
simplifying assumptions by using extra information derived
from the same structures they then try to predict. This
information has included assumptions of secondary structure
(15), or assumptions of precise native molecular shapes (13),
or selection of structural and energetic parameters for a
specific target structure (11). It is interesting how little
specific structural information is necessary to recreate a
native fold, but this may have little bearing on a general
solution to the folding problem.
We are investigating the possibility of integrating other sec-

ondary-structure prediction strategies with the alignment opti-
mization procedure. A simple example of this idea would be to
add cooperativity to the choice of how many residues to fit
between two lattice vertices. The next step toward a more
detailed structure prediction may be to subdivide our lattice,
such that the vertices are sufficiently dense that they can
represent side chains as well as the polypeptide backbone.
While such a lattice would be impossible to traverse exhaus-
tively, it should be possible to use lower-resolution lattice
structures as templates to generate small families of similar, but
more detailed, forms. A more sophisticated potential function
could then distinguish between side chain-side chain, side

chain-backbone, and backbone-backbone interactions. A lat-
tice capable ofrepresenting the orientations ofside chains might
also be sufficiently realistic to justify including solvent interac-
tions. Given the success of this method at low resolution, the
possibility of similar results at higher resolution with more
faithful lattice models is very encouraging.
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