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Abstract

Diminution in the number of gamma-amino butyric acid positive (GABA-ergic) interneurons and
their axon terminals, and/or alterations in functional inhibition are conspicuous brain alterations
believed to contribute to the persistence of seizures in acquired epilepsies such as temporal lobe
epilepsy. This has steered a perception that replacement of lost GABA-ergic interneurons would
improve inhibitory synaptic neurotransmission in the epileptic brain region and thereby reduce the
occurrence of seizures. Indeed, studies using animal prototypes have reported that grafting of
GABA-ergic progenitors derived from multiple sources into epileptic regions can reduce seizures.
This review deliberates recent advances, limitations and challenges concerning the development of
GABA-ergic cell therapy for epilepsy. The efficacy and limitations of grafts of primary GABA-
ergic progenitors from the embryonic lateral ganglionic eminence and medial ganglionic eminence
(MGE), neural stem/progenitor cells expanded from MGE, and MGE-like progenitors generated
from human pluripotent stem cells for alleviating seizures and co-morbidities of epilepsy are
conferred. Additional studies required for possible clinical application of GABA-ergic cell therapy
for epilepsy are also summarized.
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1. Introduction

Epilepsy affects ~60 million people in the world and 1% Americans (Jobst and Cascino,
2015). Approximately 30% of epileptic patients have temporal lobe epilepsy (TLE) typified
by progressive development of complex partial seizures, hippocampal neurodegeneration
and co-morbidities such as cognitive and mood impairments (Devinsky, 2004; Lewis, 2005).
While antiepileptic drugs (AEDs) have been valuable for seizure control in most patients,
~30-40% of patients typically develop pharmacoresistant or intractable epilepsy, defined as
failure of two AEDs given at apt doses (Kwan et al., 2010). Furthermore, as AEDs merely
suppress seizures without modifying the disease, co-morbidities of epilepsy such as
cognitive and mood dysfunction may persist even in patients with complete seizure control
(Stafstrom, 2014). Alternative therapeutic strategies such as resection of the epileptic brain
tissue and surrounding regions, ketogenic diet, deep brain or vagus nerve stimulation are not
suitable for all patients due to either only moderate efficiency or undesirable side effects
(DeGiorgio et al., 2000; Wiebe et al., 2001; Andrade et al., 2006; Kossoff et al., 2008;
Cukiert et al., 2010). In view of these issues, a significant focus is now directed towards
development of alternative approaches that have the potential to modify the disease process.
Cell transplantation is one of the strategies currently being examined rigorously in
preclinical models of epilepsy. These studies include testing the effects of early grafting
intervention following brain injury or status epilepticus (SE) on curbing the development of
chronic epilepsy and co-morbidities as well as studies examining the effects of grafts placed
into the chronically epileptic foci for enduring suppression of well established spontaneous
recurrent seizures (SRS) and reversing cognitive and mood impairments (Shetty and
Hattiangady, 2007a; Shetty, 2011; Shetty, 2014).

A variety of cells have been tested in preclinical models of epilepsy for their proficiency to
suppress seizures following grafting into distinct regions of the brain. The donor cells
examined with intracerebral grafting include hippocampal precursor cells, neural stem cells
(NSCs), primary gamma-amino butyric acid positive (GABA-ergic) cells or GABA-ergic
precursor cells from both the embryonic lateral ganglionic eminence (LGE) and the medial
ganglionic eminence (MGE), GABA-ergic progenitors derived from the mouse and human
embryonic stem cells (MESCs and hESCs) and human induced pluripotent stem cells
(hiPSCs). The donor cells tested with systemic administration are mainly comprised of bone
marrow derived mononuclear cells and mesenchymal stem cells. Although the principal
objective with all types of donor cells is to alleviate the frequency and severity of SRS and
related co-morbidities, the mechanisms by which diverse types of donor cells mediate these
beneficial effects diverge greatly. While the goal of hippocampal precursor cell grafting in
TLE prototypes is to reconstruct the disrupted circuitry and thereby reduce the extent of
aberrant mossy fiber sprouting as well as activate the existing dormant host GABA-ergic
interneurons (Hattiangady et al., 2006; Rao et al., 2007; Shetty and Turner, 1997a, b; Shetty
et al., 2000, 2005; Shetty and Hattiangady, 2007b), the aim of NSC grafting is to modify the
disease through introduction of both new GABA-ergic interneurons and new astrocytes
secreting a multitude of beneficial neurotrophic factors including anticonvulsant proteins
such as glial cell-line derived neurotrophic factor (GDNF) (Lee et al., 2014; Shetty, 2014;
Waldau et al., 2010). In contrast, the purpose of GABA-ergic cell therapy is to replace lost
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GABA-ergic interneurons and thereby improve the inhibitory synaptic neurotransmission in
the epileptic area of the brain (Hattiangady et al., 2008; Hunt et al., 2013; Cunningham et
al., 2014; Henderson et al., 2014). On the other hand, the primary objective of systemic
administration of bone marrow derived mononuclear cells and/or mesenchymal stem cells is
to modulate the immune system to curtail the extent of chronic inflammation in the epileptic
brain regions (Agadi and Shetty, 2015). Interestingly, all of these approaches have reduced
the frequency and intensity of SRS in pre-clinical models of TLE and some have also
produced positive effects on cognitive function. Thus, several distinct donor cell types can
modulate the plasticity of the hippocampus, modify epileptogenesis, reduce the occurrences
of SRS and alleviate cognitive dysfunction, though the extent of beneficial effects varied
depending upon the animal model employed, the timing of grafting intervention after the
commencement of epilepsy, and the time-point of measurement of SRS after grafting.

The aim of this review is to deliberate recent advances, limitations and challenges pertaining
to the development of GABA-ergic cell therapy for epilepsy. Both efficacy and limitations of
primary LGE and MGE cells, NSCs expanded in vitro from the embryonic MGE, and MGE-
like progenitors generated from mESCs, hESCs and hiPSCs for alleviating seizures and
epilepsy co-morbidities in preclinical models are conferred. Additionally, studies that are
required to pave the way for possible clinical application of GABA-ergic progenitors are
proposed.

2. Efficacy of Primary GABA-ergic Cell Grafts for Mediating Anti-Seizure

Effects

A multitude of cellular and molecular changes enhance excitatory neurotransmission in the
epileptic hippocampus. Among these, reduced numbers of GABA-ergic interneurons
(Kobayashi and Buckmaster, 2003; Sloviter et al., 2003; Ben-Ari, 2006; Shetty et al., 2009;
Kuruba et al., 2011), loss of functional inhibition (Lloyd et al., 1986; Cornish and Wheal,
1989; During et al., 1995) and diminished numbers of GABA-ergic terminals (Esclapez and
Trottier, 1989) are conspicuous alterations believed to contribute to the persistence of SRS.
This evidence has guided a straightforward concept that grafting of cells that release the
inhibitory neurotransmitter GABA into the seizure focus would greatly restrain SRS
(Loscher et al., 2008). Indeed, grafting of GABA-soaked beads, immortalized GABA-ergic
cells, cells engineered to produce GABA or fetal GABA-ergic cells into the epileptic foci
produces anticonvulsant effects in a variety of animal models (Kokaia et al., 1994; Loscher
etal., 1998; Gernert et al., 2002; Thompson, 2005; Castillo et al., 2006, 2008; Nolte et al.,
2008; Handreck et al., 2014). However, anti-seizure effects were either modest or transient
in most of these studies, presumably because of poor graft cell survival. Subsequent studies,
by utilizing diverse rodent models of epilepsy have ascertained the effects of progenitor cells
from the embryonic rat LGE and mouse or rat MGE (Table 1). The following sections
deliberate on the capability of these donor cell types for: suppressing SRS, easing behavioral
co-morbidities of epilepsy, GABA-ergic interneuron differentiation, long-term survival in
the epileptic brain region, and preventing adverse synaptic alterations in the host brain.
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2.1. Competence of LGE progenitors

Hattiangady and colleagues examined the long-term effects of grafting embryonic day 15
(E15) rat LGE progenitor cells pre-treated with fibroblast growth factor-2 (FGF-2) and a
caspase inhibitor into the hippocampus 4-days after kainate-induced SE in adult rats
(Hattiangady et al., 2008, Table 1). Measurement of SRS at 9—12 months after grafting
revealed that, animals receiving LGE progenitor cell grafting after SE displayed 67-89%
fewer SRS than animals receiving sham-grafting surgery or no grafts after SE. At 12 months
post-grafting, the average frequency of SRS was <0.60/hour in epileptic animals receiving
LGE progenitor cells, in contrast to >3.0 seizures/hour observed in epileptic animals
receiving sham-grafting surgery and “epilepsy-only” control animals. Graft cell survival at
one-year post-grafting was ~33% of injected cells, and ~69% of surviving cells
differentiated into GABA-ergic neurons comprising subclasses expressing neuropeptide Y
(NPY), parvalbumin (PV), calbindin (CBN) and calretinin (CR). Extrapolation of humbers
of graft-derived cells survived and the percentage of GABA-ergic neurons among graft-
derived cells suggested that ~67,000 new GABA-ergic neurons derived from LGE
progenitor cell grafts persisted in each hippocampus until a year in this study. Furthermore,
the loss of hippocampal calbindin in DG granule cells, a conspicuous alteration typically
seen in the hippocampus of chronically epileptic animals (Magloczky et al., 1997; Nagerl et
al., 2000; Shetty and Hattiangady, 2007b) was considerably attenuated in animals receiving
grafts. However, mossy fiber sprouting into the dentate supragranular layer (DSGL), a likely
epileptogenic change contributing to the occurrence or extent of SRS (Cronin and Dudek,
1988; Wuarin and Dudek, 2001; Shetty et al., 2005; Buckmaster, 2014), remained
comparable between animals receiving grafts and epilepsy-alone controls. This study thus
provided the first evidence that grafting of appropriately treated embryonic LGE cells into
hippocampi after SE is efficacious for a lasting suppression of the frequency of SRS in the
chronic epilepsy period. Survival of large numbers of graft-derived GABA-ergic neurons
belonging to several subclasses of interneurons and no effects of grafting on aberrant mossy
fiber sprouting observed a year after transplantation further suggested that strengthening of
the inhibitory control in the host hippocampus mediated enduring beneficial effect of grafts
on SRS. Additionally, this study pointed out that even heterotopic grafting of GABA-ergic
progenitors into the epileptic area could mediate anti-seizure effects because LGE
progenitors used as donor cells in this study mostly form olfactory bulb interneurons in the
developing brain (Wichterle et al., 1999; Southwell et al., 2014).

2.2. Capability of MGE progenitors

The MGEs of the ventral telencephalon in the developing brain generate diverse
subpopulations of interneuron progenitors. These cells then display long-distance tangential
migration to reach the cerebral cortex and other forebrain regions where they differentiate
finally into distinct subclasses of mature interneurons (Southwell et al., 2014). MGE
progenitors are considered attractive as a source of GABA-ergic progenitors for grafting in
preclinical models of epilepsy due to their competence to spread or migrate extensively to
the surrounding brain regions from the grafted site. Moreover, MGE progenitors can
generate interneuron subpopulations typically formed by them during development even
when grafted into distinct heterotopic regions of the adult brain (Wichterle et al., 1999;
Alvarez-Dolado et al., 2006; Southwell et al., 2010; Southwell et al., 2014).
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2.2.1. Efficiency when utilized as prophylactic treatment—Initial investigations on
the efficacy of MGE progenitor cells for easing seizures were mostly prophylactic studies.
These involved grafting of MGE progenitors into the cerebral cortex, the hippocampus or
amygdala before the emergence or induction of seizures in distinct mouse models and in a
rat model of kindling epilepsy. Baraban and associates examined the prophylactic effect of
grafting MGE progenitors from E13.5 mouse into the cerebral cortex of postnatal day 2
mutant mice lacking a shaker-like potassium channel (Kv1.1./Kcnal) mimicking a neuronal
ion channelopathy associated with epilepsy in humans (Baraban et al., 2009, Table 1).
Electroencephalographic (EEG) recordings in the 2nd month after grafting revealed
significant reductions in both frequency and duration of spontaneous EEG seizures, as
compared to mutant mice receiving vehicle or dead cell grafts. While the percentage of graft
cell survival is unknown, differentiation assays revealed ~65% of GABA-ergic neurons
among graft-derived cells comprising subclasses of interneurons expressing NPY, PV, CBN
and CR. In a subsequent study, E12.5 mouse MGE cells were grafted into the hippocampus
of mice a week after the elimination of subclasses of GABA-ergic interneurons via an
injection of SSP-Sap and seizure susceptibility was measured using pentylenetetrazol (PTZ)
injections ~2-months post-grafting (Zipancic et al., 2010, Table 1). The chemical SSP-Sap is
a conjugate of peptidase-resistant [Sar®, Met(O,)1] analog of substance P and the ribosome-
inactivating protein saporin, which specifically eliminates cells expressing substance P
(neurokinin-1, NK-1) receptor. The results demonstrated decreased sensitivity and
diminished mortality to PTZ induced seizures in animals receiving intrahippocampal MGE
cell grafts, in comparison to non-grafted animals. The survival of grafted MGE cells was
~20% and among surviving grafted cells ~65% expressed GABA, which also comprised
subclasses expressing NPY PV, CR, somatostatin (SOM) and NK-1. Importantly, reduced
frequencies of inhibitory postsynaptic currents in CA1 pyramidal neurons caused by GABA-
ergic interneuron ablation were restored to normal levels in hippocampi receiving MGE cell
grafts. Calcagnotto and associates, using a maximum electroconvulsive shock model, also
demonstrated increased seizure thresholds, reduced seizure severity and lower seizure-
related mortality in adult mice that received mouse MGE progenitor cell grafts into their
cortices in the neonatal period, in comparison to non-grafted animals (Calcagnotto et al.,
2010, Table 1).

A study in a rat model of kindling epilepsy also showed the efficiency of rat MGE cells for
reducing seizures (Gallego et al., 2010, Table 1). Grafting E14.5 rat MGE into the amygdala
following 3 days of full kindling increased thresholds for after discharges and seizures at 3—
24 days post-grafting, in comparison to kindled rats receiving fibroblasts. This positive
effect was associated with the occurrence of GABA+ neurons among surviving grafted cells.
In another study mouse MGE progenitors were grafted into adult mouse sensorimotor cortex
and then 4-aminopyridine (4-AP) was injected into the cortex ~2 mm away from the site of
grafts at 2—8 weeks post-grafting (De la Cruz et al., 2011, Table 1). Measurement of 4-AP
induced acute focal ictal epileptiform discharges revealed a dramatic decrease in local field
potential power at the MGE transplanted site, even when graft-derived interneurons were
present in low densities. Thus, a series of prophylactic studies initially showed the promise
of MGE progenitor cell grafts for treating epilepsy but did not specifically examine whether
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MGE progenitor cell grafting performed after the emergence of epilepsy would be
efficacious for suppressing SRS.

2.2.2. Proficiency when grafted after the emergence of SRS—Several studies have
now examined the capability of MGE cell grafts for alleviating SRS in mouse and rat models
of TLE. Hunt and associates investigated the effects of E13.5 mouse MGE progenitors
grafted bilaterally into the hippocampus or amygdala of adult mice ~20 days after
pilocarpine induced SE (i.e. after the occurrence of first SRS) (Hunt et al., 2013, Table 2).
Continuous EEG recordings for 7-10 days in the 3rd month after grafting demonstrated an
impressive 92% reduction in the frequency of SRS in animals that received grafts into the
hippocampi but not the amygdala, in comparison to epilepsy-only controls. The mean
seizure frequency was 0.17/day in grafted epileptic animals, in comparison to over 2.0
seizures/day in vehicle-injected epileptic animals. Furthermore, grafting improved short-
term memory retention when examined through a probe test conducted an hour after the last
training session in a water maze test. Grafting also promoted alleviation of hyperactivity in
epileptic animals. Precise percentages of surviving grafted cells or fractions of graft-derived
cells that differentiated into diverse subclasses of interneurons were not reported for the
epileptic mice. However, a parallel MGE cell grafting experiment in normal adult mice
revealed 33% survival at 7 days post-grafting, 15% survival at 30 days post-grafting and
differentiation of graft-derived cells into diverse subclasses of interneurons exhibiting fast-
spiking, regular spiking, late-spiking and burst spiking electrophysiological properties (Hunt
et al., 2013). Characterization through dual immunofluorescence methods also revealed the
presence of subclasses of interneurons expressing distinct calcium binding proteins and
neuropeptides among graft-derived cells. Additionally, grafting did not affect the extent of
aberrant mossy fiber sprouting in the DSGL (a substrate believed to contribute to the
occurrence and/or severity of SRS) of epileptic mice, supporting that a dramatic seizure-
suppression seen following MGE cell grafting is likely mediated through an enhanced
inhibitory synaptic transmission in the epileptic hippocampus.

Another recent study performed continuous video-EEG recordings for extended periods (50—
60 days) after bilateral grafting of E13.5 mouse MGE cells into the DG of adult mice at ~2
weeks after pilocarpine induced SE (i.e. after the occurrence of first SRS, Henderson et al.,
2014, Table 2). Such long-term analysis revealed an overall 35% decrease in the frequency
of SRS associated with reductions in seizure duration and severity in grafted epileptic
animals, in comparison to epileptic animals receiving media injections into the DG. The
percentage survival of grafted cells was not reported but graft-derived cells differentiated
into interneurons expressing PV, CBN, SOM and NPY in the hippocampus of epileptic mice.
Moreover, morphological and electrophysiological analyses demonstrated that axons from
grafted inhibitory neurons traversed layers of the DG and established functional inhibitory
synaptic contacts on the soma, dendrites and axons of host granule cells. As observed in
previous studies (Hattiangady et al., 2008; Hunt et al., 2013) grafting of GABA-ergic
progenitors did not affect the extent of aberrant mossy fiber sprouting occurring in the
DSGL, reinforcing the concept that seizure-suppression in epileptic mice receiving GABA-
ergic cell grafts is due to an enhanced inhibitory synaptic transmission. In addition to
demonstrating multiple beneficial effects, this study uncovered that seizure-suppressing
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effect of grafts does not persist at an extended time-point after grafting. This was evident
from a significant suppression of the frequency, duration and severity of SRS in the period
corresponding to 47-67 days post-grafting, but not in periods corresponding to 26-46 days
post-grafting (early period) and 81-100 days post-grafting (later period). Inability of grafts
to suppress SRS in the early period likely reflects the time needed for grafted interneuron
progenitors to acquire morphological and physiological maturation in the epileptic brain.
While the precise reason for failure of grafts to suppress SRS in the later period after
grafting (after showing effectiveness in the immediate previous period) is yet to be
identified, it may be that a progressive loss or dysfunction of graft-derived GABA-ergic
interneurons occurs with the evolution of disease into an advanced phase of epilepsy.

An investigation in a rat model of chronic TLE showed that bilateral grafting of E14 rat
MGE progenitors into the hippocampus alleviates seizures and improves cognitive and
memory function (Shetty et al., 2014, Table 2). In this study, two cohorts of animals that
displayed comparable SRS at 3—4 months after kainic acid induced SE were chosen. One of
the cohorts received grafts and the other cohort was maintained as “epilepsy-only” controls.
Measurement of seizures two months afterwards revealed that grafting reduced the
frequency and duration of SRS in epileptic animals by 91-93%, in comparison to their pre-
grafting seizure scores. This was also associated with complete elimination of stage V
seizures. In comparison to age-matched “epilepsy-only” controls, animals receiving grafts
displayed ~87% reduction in the frequency of all EEG-SRS, ~97% reduction in the
frequency of EEG-SRS with behavioral changes (such as unilateral forelimb clonus, bilateral
forelimb clonus with or without rearing and falling) and 59% reduction in the duration of
individual seizures. The frequency of seizures was ~0.1/hour in grafted epileptic animals, in
comparison to >0.6 seizures/hour in “epilepsy-only” controls. Grafted animals also
displayed improved spatial learning and memory function in a water maze test (Shetty et al.,
2014, Table 2). Nearly 30% of grafted cells survived and most of which (~91%)
differentiated into GABA-ergic interneurons expressing markers such as NPY, SOM, PV,
CBN, CR and reelin, when quantified ~3 months after grafting. The overall migration of
graft-derived cells was modest with cells migrating mostly into the immediate surrounding
regions of the graft core. Thus, MGE cell grafting is efficacious for easing seizures and
cognitive and memory dysfunction in a rat model of TLE too. However, the permanence of
these beneficial effects of grafts remains to be investigated through analyses at extended
time-points after grafting. Furthermore, Hammad and colleagues have examined the
usefulness of MGE cell grafting in an animal model of absence epilepsy (AE) (Hammad et
al., 2014, Table 2). By grafting E12.5 mouse MGE cells into the occipital cortex of stargazer
mouse (a prototype exhibiting absence seizures), this study showed that MGE cell grafting
can reduce absence seizures. The overall reductions were 53-89% at ~1-4 months after
grafting, in comparison to stargazer animal groups receiving dead cell grafts, vehicle or no
grafts. The frequency of absence seizures (based on head tilts) was reduced to <40/hour in
grafted animals, in comparison to >90/hour in animals receiving no grafts. The percentage
survival of graft-derived cells was not measured in this study but counts per unit volume
suggested only moderate survival of grafted cells. Notably, surviving grafted cells
differentiated mostly into GABA-ergic neurons (93%). Grafting also normalized c-fos
activity and network activity to an excitability challenge, providing an indirect evidence of
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their integration with the host circuitry. Another interesting aspect of this study is that
grafting improved the lifespan of stargazer mice.

Taken together, multiple studies support that grafting primary GABA-ergic progenitors
obtained from both LGE and MGE are efficacious for: (i) easing SRS in rat and mouse
models of TLE, shaker-like potassium channel mutant mouse and a mouse model of seizure
susceptibility; (ii) increasing seizure thresholds for after discharges and seizures in a rat
prototype of kindling; and (iii) alleviating absence seizures in a mouse model of absence
epilepsy. Some of these studies have also shown adequate evidence for integration of graft-
derived GABA-ergic interneurons with the host circuitry and/or increased inhibitory
synaptic transmission in the epileptic brain regions following grafting of GABA-ergic
interneurons.

3. Effectiveness of Stem/Progenitor Cell Grafts Generating GABA-ergic

Interneurons

Several studies have examined the effects of grafting stem/progenitor cells that generate
GABA-ergic interneurons for suppressing SRS and/or integration in animal models of TLE.
The donor cells include neural stem/progenitor cells expanded from the rat MGE, and MGE-
like cells derived from the mESCs, hESCs and hiPSCs.

3.1. Ability of NSCs derived from rat MGE and human telencephalon

Waldau and colleagues grafted NSCs expanded from E14 rat MGE into rats exhibiting
chronic SRS (Waldau et al., 2010, Table 3). To simulate the microenvironment present in the
hippocampus of people afflicted with pharmacoresistant TLE, grafting was performed 9-12
months after SE. Furthermore, as differences in the frequency of SRS are typical between
animals in chronically epileptic groups, this study chose a group of age-matched rats
displaying comparable frequency and severity of SRS and learning and memory
impairments from a larger pool of rats that were chronically epileptic for prolonged periods.
This selection ensured that animals’ chosen for grafting experienced SRS for prolonged
periods and developed learning and memory impairments before receiving grafting into their
hippocampi. Quantification of behavioral SRS at 1-3 months post-grafting revealed
reductions in the frequency of all SRS by 43%, duration of individual SRS by 51%,
frequency of stage-V SRS (the most severe form of SRS in animal models of TLE) by 90%
and overall time spent in seizure activity by 74%. However, sham-grafting surgery did not
alter the seizure frequency or the seizure duration in chronically epileptic rats. Analyses of
grafted hippocampi revealed dispersion of graft-derived cells into different layers and a graft
yield equivalent to 28% of injected cells. Further analyses revealed addition of ~8,000 new
GABA-ergic neurons, ~46,000 new astrocytes, ~2,000 new oligodendrocyte progenitors, and
~40,000 new GDNF+ astrocytes into each hippocampus of chronically epileptic rats.
Moreover, this study provided new evidence that NSC grafting triggered synthesis of GDNF
(an anticonvulsant protein) in host astrocytes. This is an important plasticity induced by
NSC grafts, as chronic TLE causes the loss of GDNF and other alterations in most
hippocampal astrocytes. Thus, multiple mechanisms such as the addition of GABA-ergic
interneurons and GDNF-releasing astrocytes, and induction of GDNF expression in the host
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hippocampal astrocytes likely underlie the anticonvulsant effects of grafting in this study.
One issue that emerged from this study is that NSC grafting into the hippocampus of
animals exhibiting TLE for prolonged periods does not improve learning and memory
function and neurogenesis despite having significant seizure-suppressing effects.

Grafting of NSCs expanded from the human telencephalon (of aborted fetuses at 13 weeks
of gestation) into the epileptic hippocampus of fully kindled rats or pilocarpine-treated rats
at ~3 weeks post-SE (Lee et al., 2014, Table 3) also reduced seizures, in comparison to
kindled or epileptic animals receiving vehicle injections. Human NSC grafting reduced the
duration of behavioral seizures and after discharges in the kindling model and reduced the
frequency and duration of SRS in the pilocarpine model but had no effects on spatial
learning or memory deficits. The mean seizure frequency was 0.12/day in grafted epileptic
animals at 3 months post-grafting, in comparison to 0.61 seizures/day in vehicle-injected
epileptic animals. Approximately 24% of graft-derived cells differentiated into GABA-ergic
interneurons in this study (Lee et al., 2014). Yet, NSCs from all sources do not appear to
generate GABA-ergic interneurons when grafted into the epileptic hippocampus. For
example, a study by Raedt and colleagues showed that NSCs expanded from the adult
subventricular zone survive poorly and generate predominantly astrocytes following grafting
into the sclerotic hippocampus (Raedt et al., 2009). Considering this, NSCs that show
propensity for differentiating into both GABA-ergic neurons and astrocytes may be the most
ideal types for seizure suppression. It remains to be investigated however whether grafting of
astrocytes alone into the hippocampus is sufficient to promote suppression of SRS in
chronically epileptic animals.

3.2. Competence of MGE-like progenitors from ESCs and iPSCs

A few recent studies have also examined the integration and efficacy of cells derived from
mMESCs or hESCs in animal models of TLE. One of these studies grafted mESC-derived
neural progenitors into the hippocampus of epileptic mice two weeks after the induction of
SE (i.e. after the occurrence of first SRS) (Maisano et al., 2012, Table 3). While the effects
of grafting on SRS was not measured, morphological and electrophysiological analyses
revealed that graft-derived cells differentiated into GABA-ergic interneurons and displayed
electrophysiological properties of typical interneurons in the hilus of DG. This study mainly
showed the promise of ESC-derived GABA-ergic interneurons for integration into the
circuitry of the epileptic hippocampus. A recent study has however taken this promise to a
much higher level (Cunningham et al., 2014, Table 3). In this study, MGE-like progenitors
were expanded from hESCs and grafted into the hippocampus of epileptic mice ~3 weeks
after SE (i.e. after the occurrence of SRS). Examination of the effects at 3 months after
grafting revealed an impressive 93% reduction in the overall frequency of SRS, in
comparison to epileptic mice receiving vehicle injections. The mean seizure frequency was
0.13/day in grafted epileptic animals and 1.92/day in vehicle-injected epileptic animals.
Survival of graft-derived cells was equivalent to 19% of injected cells and most graft-derived
cells expressed GABA. Furthermore, extensive morphological and electrophysiological
analyses demonstrated that GABA-ergic interneurons derived from grafts displayed pre-
synaptic machinery for releasing GABA, properties for inhibiting host hippocampal neurons,
and post-synaptic machinery for receiving excitatory inputs from hippocampal neurons. This
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study also demonstrated that grafting did not have any effect on the aberrant mossy fiber
sprouting in the DSGL, which supported the purported mechanism of improved inhibitory
synaptic transmission by GABA-ergic interneurons derived from MGE progenitor cell grafts
in the chronically epileptic hippocampus. Moreover, behavioral analyses revealed that
epileptic mice receiving grafts displayed alleviation of hyperactivity when measured through
a photobeam activity system and aggressive behavior when evaluated semi-quantitatively via
a handling test. Additionally, these animals exhibited improved short-term working memory
in a Y-maze test and normal object recognition memory in a novel object recognition test.

Interestingly, 56% of animals receiving MGE progenitors did not display any seizures during
continuous EEG recordings performed for 5-10 days in the above study, suggesting a
complete cure of epilepsy in some animals. However, these results require confirmation in
future studies through long-term EEG recordings because mice typically display seizures in
clusters and chronically epileptic mice receiving no treatment can also exhibit seizure free
periods (Henderson et al., 2014). Another preliminary study examining the effects of
grafting MGE-like progenitors derived from hiPSCs into the hippocampus of chronically
epileptic rats showed ~33-38% reductions in the frequency and duration of SRS and
improvements in place recognition memory at 3—6 weeks post-grafting (Hattiangady et al.,
2013).

In summary, studies support that grafting of NSCs from the embryonic MGE, GABA-ergic
progenitors from the mouse ESCs and MGE-like progenitors from the ESCs and hiPSCs are
efficacious for easing SRS in rat and mouse models of TLE. Studies using ESC derived
GABA-ergic progenitors in addition demonstrated adequate evidence for integration of
graft-derived GABA-ergic interneurons with the host circuitry and/or increased inhibitory
synaptic transmission in the epileptic brain regions. Figure 1 illustrates the proposed
migration and integration of MGE-derived GABA-ergic neurons following grafting into the
epileptic hippocampus. Based on multiple studies in our laboratory, it is apparent that
placement of grafts at the end of hippocampal fissure results in minimal damage to cell
layers of the hippocampus and facilitates migration of graft-derived neurons into the dentate
hilus, dentate granule cell layer and CA1 and CA3 subfields. It is proposed that grafted
neurons receive glutamatergic afferents from all three classes of host principal neurons:
dentate granule cells, CA3 pyramidal neurons and CA1 pyramidal neurons. It is further
hypothesized that axons from grafted GABA-ergic neurons make inhibitory synaptic
contacts on soma and dendrites of dentate granule cells and CA1 and CA3 pyramidal
neurons (Fig. 1). Indeed, Cunningham and colleagues have demonstrated the establishment
of functional synaptic contacts between hESC derived grafted GABA-ergic neurons and
some host hippocampal neurons (Cunningham et al., 2014). Moreover, studies employing
grafting intervention early after SE (i.e. within 3 weeks of SE) have also shown improved
short-term memory function (Hunt et al., 2013; Cunningham et al., 2014) but a study
employing grafting at protracted time-point after SE revealed lack of beneficial effects of
grafting on learning and memory (Waldau et al., 2010).
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4. Required additional studies for clinical application of GABA-ergic cell
grafting

While the results obtained so far with grafting of diverse GABA-ergic donor cells are
encouraging, there are several vital issues that need to be addressed before endeavoring
clinical translation of GABA-ergic cell grafting for epileptic conditions.

4.1. Grafting studies in prototypes that simulate drug-resistant epilepsy

The efficacy of grafts placed at chronic time-points after the commencement of SRS
(chronic epilepsy) needs rigorous investigation, as most GABA-ergic cell grafting studies in
TLE models performed so far employed early grafting after the initial insult (i.e. at 1-3
weeks after the induction of SE). This concern needs resolution because the most likely
candidates among epilepsy patients for intracerebral grafting therapy would be patients
displaying drug-resistant epilepsy, as other epilepsy patients having significant seizure
control with AEDs are unlikely to seek the invasive intracerebral grafting therapy. Patients
exhibiting intractable epilepsy also seem to have co-morbidities such as memory and/or
mood dysfunction. Therefore, detailed studies assessing the survival, integration and efficacy
of grafts placed into the epileptic brain region of animals that have displayed SRS for
prolonged periods of time and shown memory and/mood impairments are necessary. Such
studies may uncover additional concerns such as diminished survival, differentiation and
integration of grafted cells because of robust aberrant synaptic reorganization (Buckmaster,
2014; Houser, 2014), chronic inflammation (Wilcox and Vezzani, 2014; Uludag et al., 2015),
and depletion of neurotrophic factors in the chronically epileptic brain regions (Shetty et al.,
2003). Indeed, a series of previous studies using hippocampal precursor cells have shown
that grafts placed early after hippocampus injury displayed excellent survival whereas grafts
placed at an extended time-point exhibited greatly diminished survival (Shetty and Turner,
1995; Zaman et al., 2001; Zaman and Shetty, 2003). In such scenario, development of
improvised donor cell preparation and grafting strategies that enhance the survival and
integration of graft-derived interneurons in chronically epileptic brain regions is critical (Rao
et al., 2006, 2007). Furthermore, efficacy of GABA-ergic cell grafting needs to be examined
in post-traumatic or post-stroke epilepsy models because post-traumatic epilepsy accounts
for 10-20% of epilepsy cases in the general population (Lucke-Wold et al., 2015) and post-
stroke seizures are a frequent cause of remote symptomatic epilepsy in adults, especially in
older age (Gilad, 2012).

4.2. Analyses of long-term effects of grafting

It will be important to ascertain whether the suppression of SRS observed after GABA-ergic
progenitor cell grafting is transient or enduring. One of the studies in a mouse model of TLE
has reported that seizure-suppressing effect of embryonic MGE progenitor cell grafts does
not persist at an extended time-point (81-100 days) after grafting (Henderson et al., 2014).
Although the reason for failure of grafts to contain SRS at an advanced time-point following
transplantation (after showing effectiveness in the immediate previous period) was not
investigated in this study, it is plausible that a gradual degeneration or dysfunction of graft-
derived GABA-ergic interneurons occurs with the progression of disease into an advanced
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phase of epilepsy. Such phenomenon has been seen earlier for grafted dopaminergic neurons
in animal models of Parkinson’s disease (PD) and PD patients (Brundin and Kordower,
2012). If this presumption turns out to be true in the future studies quantifying the survival
of graft-derived GABA-ergic neurons in the epileptic hippocampus at various extended time
points after grafting, this obstacle needs resolution. Improvements in donor cell preparation
and/or grafting strategies promoting both increased and enduring survival of graft-derived
GABA-ergic neurons in the epileptic hippocampus may resolve this issue. Indeed, a previous
study has shown that 28% of grafted LGE progenitor cells pre-treated with FGF-2 and a
caspase inhibitor differentiate into GABA-ergic interneurons, survive for a year after
grafting in the rat epileptic hippocampus and persistently suppress SRS at an extended
period (9-12 months) after grafting (Hattiangady et al., 2008).

4.3. Usefulness of grafts for reversing learning, memory and mood impairments

It is currently unknown whether grafting of GABA-ergic progenitors into the chronically
epileptic brain region would be effective for reversing/alleviating long-term memory
impairments and depression, the two major co-morbidities of TLE. Studies in mouse models
using primary MGE-progenitors or MGE-like progenitors from hESCs as donor cells have
showed improvements in short-term spatial or working memory with grafting interventions
occurring within 3-weeks after SE (Hunt et al., 2013; Cunningham et al., 2014). However,
studies in rat models of TLE using NSCs from the rat MGE or the human fetal
telencephalon as donor cells have demonstrated failure to improve spatial learning and
memory impairments with grafting interventions occurring at an extended time-point after
SE (Waldau et al., 2010) or early (~3 weeks) after SE (Lee et al., 2014). Lack of
improvements in learning and memory function despite considerable suppression of SRS in
epileptic animals receiving grafts supports the notion that learning and memory impairments
(a co-morbidity) in TLE are not entirely due to incidents of SRS but influenced by multiple
changes in the epileptic hippocampus such as a greatly declined neurogenesis and disruption
of the hippocampal tri-synaptic pathway due to the loss of pyramidal neurons in CA1 and
CA3 subfields. Indeed, neurogenesis is one of the important substrates participating in the
preservation of hippocampus-dependent learning and memory function (Deng et al., 2010).
Therefore, it is plausible that inability of NSC grafts to boost the greatly diminished
neurogenesis in the chronically epileptic hippocampus (Hattiangady et al., 2004) contributed
to their failure to induce a beneficial outcome on learning and memory function. Greatly
altered behavior of endogenous NSCs to generate predominantly astrocytes (Hattiangady
and Shetty, 2010) or loss of NSCs that generate new neurons (Sierra et al., 2015) may
underlie the inability of NSC grafts to boost neurogenesis in the chronically epileptic
hippocampus.

Additionally, the restoration of learning and memory pathways may require grafting of cells
capable of replacing lost hippocampal pyramidal neurons in the CA1 and CA3 subfields and
repairing the disrupted tri-synaptic hippocampal circuitry (Shetty and Turner, 2000; Shetty et
al., 2005). Thus, GABA-ergic cell therapy while efficacious for reducing SRS via enhanced
inhibitory neurotransmission in the epileptic hippocampus may not necessarily improve
long-term memory impairment in chronic TLE. From this perspective, grafting a mixture of
donor cell types into the epileptic hippocampus seems beneficial. The donor cell mixtures
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might include GABA-ergic progenitors and precursors of hippocampal CA1 and CA3
pyramidal neurons, GABA-ergic progenitors and NSCs or GABA-ergic progenitors,
precursors of hippocampal CA1 and CA3 pyramidal neurons and NSCs. With the advent of
techniques that direct differentiation of hESCs and hiPSCs into distinct neuronal subtypes, it
is likely feasible in the future to generate all required cell types from patient-specific iPSC
lines. Furthermore, a combined strategy such as grafting of GABA-ergic progenitors into the
hippocampus with systemic administration of compounds or drugs that alleviate chronic
inflammation and/or enhance neurogenesis appears advantageous. Such approaches may
considerably suppress SRS as well as alleviate long-term memory and mood impairments
via increased neurogenesis.

4.4. Generation of apt human GABA-ergic donor cells for clinical application

The other important issue facing future studies is generation of appropriate and adequate
donor GABA-ergic progenitors for clinical application of grafting. Because LGE or MGE
progenitors are only found in the fetal brain of a specific age, it requires the use of fetuses as
a source of these cells. However, the use of human fetal tissues has ethical issues and is also
impracticable for obtaining the required amounts of cells for clinical application. Therefore,
generating MGE-like progenitors from human embryonic stem cells (hESCs) and the human
induced pluripotent stem cells (hiPSCs) via apt directed differentiation methods is gaining
momentum. Figure 2 illustrates the sequence of steps, cell types and the time-span required
for establishing patient-specific MGE-like GABA-ergic cell therapy for epilepsy. In brief,
the steps comprise obtaining a skin biopsy from the patient, isolation of skin fibroblasts,
reprogramming fibroblasts using transcription factors such as Sox-2, Oct-4, C-Myc and
KIf-4 in culture, generation of iPSC clones, expansion of iPSCs as embryoid bodies, neural
induction and generation of neural rosettes, expansion of rosettes as neurospheres in a sonic
hedgehog containing medium to direct the differentiation of NSCs into MGE-like
progenitors expressing the transcription factor Nkx2.1 (Liu et al., 2013a,b). Once iPSC
clones are established from patients, preparing the required number of cells would take
about 25-30 days. While several groups have been successful in obtaining MGE-like cells
from hESCs and hiPSCs (Chen et al., 2013; Liu et al., 2013a, b; Maroof et al., 2013,;
Nicholas et al., 2013), testing their efficacy in preclinical models of epilepsy have just
commenced but the initial results are encouraging (Hattiangady et al., 2013; Cunningham et
al., 2014). Nonetheless, rigorous long-term studies on both safety and efficacy using these
donor cells are critical because they seem to mature very slowly after grafting into the
postnatal neocortex (Nicholas et al., 2013) or the adult epileptic hippocampus (Cunningham
et al., 2014). Approaches that accelerate their differentiation into mature GABA-ergic
interneurons after grafting are needed to obtain efficacy to desirable levels. Furthermore,
because of the likelihood that cells expanded from hESCs and hiPSCs may carry genetic and
epigenetic abnormalities (Okano et al., 2013), examining every batch of progenitors for
normal neuronal (including interneuron specific) gene signatures may be required for
clinical use.

Besides, it will be necessary to purify interneuron progenitors generated from hESCs and
hiPSCs to one hundred percent as presence of even a solitary pluripotent stem cell in cell
suspension prepared for grafting may possibly form teratoma, a mixed tumor comprising
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tissue types generated from ectoderm, endoderm and mesoderm lineage cells. Advanced
approaches that eliminate teratoma formation from cells derived from hESCs and hiPSCs
following grafting may resolve this obstacle. Pertaining to interneuron progenitors generated
from hESCs and hiPSCs, adaptation of the method developed to select interneuron
progenitors expressing Lhx6 (a promoter active in postmitotic interneurons derived from
MGE) appears useful. This technique involves isolation of cells expressing GFP under the
control of Lhx6 via fluorescence activated cell sorting (Maroof et al., 2010). Additionally,
development of techniques to obtain pure populations of subclasses of interneurons (e.g.
those expressing PV, SST or NPY alone) would further aid in choosing the donor cell type
specifically lost in diverse epileptic conditions. There has been some progress already
towards generating subtypes of interneurons from ESCs (Au et al., 2013; Tyson et al., 2015).
With the advent of direct reprogramming techniques for generating specific types of neural
cells, it may also be possible to generate interneuron progenitors destined to become specific
interneurons expressing PV, SST, or NPY directly from patient fibroblasts in the near future.
Such approach would eliminate the presence PSCs in the cell suspension chosen for
grafting. Because development of these new exciting approaches would need time, clinical
translation of GABA-ergic progenitor cell therapy for epilepsy is likely to progress slowly
but steadily in the coming years.

5. Conclusions

GABA-ergic progenitors derived from multiple sources can reduce SRS with grafting
performed to epileptic brain regions at variable time-points after an episode of acute seizure
activity, the commencement of SRS activity, or insult. This has been demonstrated in animal
prototypes of SE, chronic TLE, kindling and absence seizures, and in mutant mice
displaying SRS. Some studies have also reported improvements in short-term spatial and
working memory and calming effects on aggression in epileptic animals. These results are
exciting but addressing issues detailed in section 4 above through additional studies is
critical for paving the way for clinical translation of GABA-ergic cell grafting for epileptic
conditions.
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Highlights
« Drug-resistant epilepsy is seen in a significant fraction of epilepsy patients

»  Cell therapy is one of the emerging strategies investigated rigorously in
preclinical models of epilepsy

e GABA-ergic progenitor cell grafts derived from multiple sources have ability to
reduce seizures

»  Several issues need resolution for clinical translation of GABA-ergic cell
therapy for epilepsy
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GCL

CA3 Pyramidal
Neuron Axon

Figure 1.
A schematic outlining the proposed migration, differentiation and integration of medial

ganglionic eminence-like (MGE-like) gamma-amino butyric acid-ergic (GABA-ergic)
progenitors following grafting into the epileptic hippocampus. Based on previous studies, it
is proposed that placement of grafts at the end of hippocampal fissure is ideal as it causes
negligible damage to principal cell layers of the hippocampus and facilitates migration of
graft-derived neurons into the hilus, granule cell layer and molecular layer of the dentate
gyrus (DG) and different layers of CA1 and CA3 subfields. The placement of graft is shown
through an elliptical area containing GABA-ergic neurons (red color) bounded by black
interrupted lines and migrated GABA-ergic neurons from the graft core are shown in
different hippocampal subfields. It is hypothesized that graft-derived GABA-ergic neurons
receive glutamatergic afferent connections from all major classes of host principal neurons.
The figure shows: (i) an example of a dentate granule cell (blue colored neuron in the DG)
with its mossy fiber axon extending into the CA3 region and its axon collaterals establishing
excitatory glutamatergic synapses (indicated by “+” sign) on graft-derived GABA-ergic
neurons (red colored neurons); (ii) an example of a CA3 pyramidal neuron (green colored
neuron) with its axon collateral (Schaffer collateral) extending into the CA1 subfield and its
axonal branches establishing excitatory glutamatergic synapses (+) on graft-derived GABA-
ergic neurons; and (iii) an example of a CA1 pyramidal neuron (black colored neuron) with
its axon collaterals establishing excitatory glutamatergic synapses (+) on graft-derived
GABA-ergic neurons. It is also envisioned that axons from different subclasses of GABA-
ergic neurons derived from grafts (red colored neurons) would establish inhibitory synaptic
contacts (indicated by “~" sign) on soma and/or dendrites of dentate granule cells and CA1
and CA3 pyramidal neurons. Thus, because of the possible integration of graft-host neurons
as described above, it is likely that transplanted GABA-ergic neurons get activated through
glutamatergic input from the host principal neurons, which sequentially results in

Neurosci Biobehav Rev. Author manuscript; available in PMC 2017 March 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Shetty and Upadhya

Page 22

propagation of strong inhibitory input from graft-derived GABA-ergic neurons onto host
principal neurons, dampening of hyperactivity in principal neurons and reduced occurrence
of seizures. DH, dentate hilus; GCL, granule cell layer; and HF, hippocampal fissure.
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Figure 2.
A schematic portraying a series of steps required for establishing patient-specific medial

ganglionic eminence-like (MGE-like) gamma-amino butyric acid-ergic (GABA-ergic) cell
therapy for epilepsy. The steps encompass procuring a skin biopsy from the patient (a),
separation of skin fibroblasts (b), reprogramming fibroblasts through insertion of
transcription factors such as Sox-2, Oct-4, C-Myc and KIf-4 in culture (c), generation of
induced pluripotent stem cell (iPSC) clones (d), expansion of iPSCs as embryoid bodies (e),
directing iPSCs towards a neural lineage through treatment with neural induction factors and

(f) Neural Rosettes‘

Days 8-10
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generation of neural rosettes (f), expansion and patterning of rosette cells (neuroepithelial
cells) as neurospheres in a sonic hedgehog (Shh) containing medium to direct the
transformation of NSCs into Nkx2.1 expressing MGE-like progenitors (g and h). Virtually
all Nkx2.1+ cells give rise to GABA-ergic neurons, which can be visualized in culture
through incubation in an appropriate neuronal differentiation medium (i). Following the
establishment of iPSC clones from patients, the period for preparing the required number of
MGE-like GABA-ergic progenitors for grafting is estimated to be 25-30 days.
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