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Pharmacokinetic analysis of dynamic contrast-enhanced (DCE) MRI data allows estimation of quantitative
imaging biomarkers such as Ktrans (rate constant for plasma/interstitium contrast reagent (CR) transfer) and ve

(extravascular and extracellular volume fraction). However, the use of quantitative DCE-MRI in clinical prac-
tice is limited with uncertainty in arterial input function (AIF) determination being one of the primary reasons.
In this multicenter study to assess the effects of AIF variations on pharmacokinetic parameter estimation, DCE-
MRI data acquired at one center from 11 prostate cancer patients were shared among nine centers. Individ-
ual AIF from each data set was determined by each center and submitted to the managing center. These
AIFs, along with a literature population averaged AIF, and their reference-tissue-adjusted variants were used
by the managing center to perform pharmacokinetic data analysis using the Tofts model (TM). All other vari-
ables, including tumor region of interest (ROI) definition and pre-contrast T1, were kept constant to evaluate
parameter variations caused solely by AIF discrepancies. Considerable parameter variations were observed
with the within-subject coefficient of variation (wCV) of Ktrans obtained with unadjusted AIFs being as high as
0.74. AIF-caused variations were larger in Ktrans than ve and both were reduced when reference-tissue-ad-
justed AIFs were used. These variations were largely systematic, resulting in nearly unchanged parametric
map patterns. The intravasation rate constant, kep (� Ktrans/ve), was less sensitive to AIF variation than Ktrans

(wCV for unadjusted AIFs: 0.45 vs. 0.74), suggesting that it might be a more robust imaging biomarker of
prostate microvasculature than Ktrans.

INTRODUCTION
Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is widely used in studies of cancer and other pathologies.
Often included as one component of a prostate multiparametric
MRI protocol (1), DCE-MRI is routinely used in clinical MRI

examination of the prostate. Nevertheless, its use as a quantita-
tive diagnostic imaging modality remains limited. In clinical
practice, only qualitative estimations of contrast reagent (CR)
wash-in and wash-out are generally used in interpreting pros-
tate DCE-MRI data. Although pharmacokinetic modeling ap-
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proaches have been under extensive investigation for more than
a decade (2-10), pharmacokinetic analysis of prostate DCE time-
course data is not currently recommended for routine use under
the Prostate Imaging-Reporting and Data System (PI-RADS)
version 2 guidelines (11, 12). Improved reproducibility and stan-
dardization in pharmacokinetic analysis of prostate DCE-MRI
data is needed for the translation of this quantitative data
analysis method into clinical settings.

Quantitative DCE-MRI data analysis using pharmacokinetic
models allows extraction and mapping of quantitative parame-
ters of tissue biology in vivo. The most commonly estimated
parameters are usually variants of Ktrans, a rate constant for
passive CR molecule plasma/interstitium transfer, and ve, the
volume fraction of interstitial space (extravascular extracellular
space, i.e., the putative CR distribution volume). The CR intra-
vasation rate constant, kep, can be calculated as Ktrans/ve. Unlike
qualitative or semiquantitative analysis, the parameters derived
from pharmacokinetic modeling of DCE-MRI time-course data
are, in principle, independent of the MRI scanner platform (ven-
dor and field strength), data acquisition details (pulse sequence
and parameters), CR dose and/or injection protocol, personnel
skills, etc. This makes them promising imaging biomarkers in
multicenter clinical trials as imaging endpoints for standardiza-
tion and comparison of results. However, the accuracy and
precision of these parameters can be affected by a plethora of
factors contributing to the process of pharmacokinetic model-
ing, including errors in quantification of precontrast T1 (13) and
determination of arterial input function (AIF) (14-20), inade-
quate temporal resolution (21), selection of pharmacokinetic
models to fit the data (22, 23), and differences in DCE-MRI
acquisition time duration (24, 25).

As a requirement in quantitative estimation of DCE-MRI
pharmacokinetic parameters, the time dependence of the plasma
and tissue CR concentrations, Cp(t) and Ct(t), respectively, needs
to be determined from the DCE-MRI images. The former is the
AIF, and its direct quantification from an imaged blood vessel is
not straightforward because of, for example, the partial volume
effect (signal from a selected image voxel, ideally from 100%
blood, is contaminated with signal from nonblood tissues) and
in-flow effect (the measured blood signal is affected by signal
from the “fresh” blood outside the imaging volume that flows
into the imaging volume during data acquisition). Nonetheless,
as the driving force that causes in vivo DCE-MRI signal changes
in the tissue, accurate AIF determination is fundamental for
accurate estimation of pharmacokinetic parameters, particularly
for in vivo systems like the prostate where CR extravasation is
substantial (9). Significant research effort has been devoted to
the development of AIF quantification methods. The most com-
monly used method is to measure AIF directly from a feeding
artery if it is clearly detected within the image field of view
(FOV). Other methods include blinded AIF estimation (14, 15),
reference tissue and double reference tissue approaches (16, 26),
direct blood sampling, empirically derived population-averaged
AIF (28), and automated vessel region identification (27). How-
ever, given these various methods for AIF quantification, there
is a lack of studies investigating the impact of variations in AIF
determination on pharmacokinetic analysis of DCE-MRI data,

which may potentially lead to best-practice guidelines for anal-
ysis of DCE-MRI data acquired from different organs.

The National Cancer Institute has recently founded the
Quantitative Imaging Network (QIN) for the development and
validation of quantitative imaging methods for evaluation of
cancer therapy response. The main mission of the QIN Image
Analysis and Performance Metrics Working Group is to provide
guidance and reach consensus on quantitative image analysis
methods through comparison and validation of analysis algo-
rithms. For quantitative DCE-MRI data analysis, it is important
to understand the variations of DCE-MRI pharmacokinetic pa-
rameters caused by specific error-prone steps encountered dur-
ing data analysis. A recent QIN multicenter study showed the
effects of variations in pharmacokinetic models and software
tools on assessment of breast cancer response to neoadjuvant
chemotherapy (23). Here, we report the results and experience
from a DCE-MRI AIF challenge project, in which 9 QIN centers
independently performed AIF quantifications from the same
prostate DCE-MRI data sets and submitted the AIFs to one
managing center for central pharmacokinetic analysis of the
shared data. The goal of this study is to assess variations in
estimated prostate Ktrans, ve, and kep parameters that are resulted
from various AIF extraction approaches.

MATERIALS AND METHODS
AIF Challenge Participating QIN Centers
The QIN centers that participated in this DCE-MRI AIF challenge
project were Oregon Health and Science University (OHSU) -
managing center, Brigham and Women’s Hospital (BWH) in
collaboration with General Electric Research and Development,
Medical College of Wisconsin (MCW), Icahn School of Medicine
at Mount Sinai (MS), University of Michigan center #1 (UM1),
University of Michigan center #3 (UM3), University of Pitts-
burgh (UPitt), Vanderbilt University (VU), and University of
Washington (UW). Hereafter, except for where it is explicitly
indicated, these 9 institutions are denoted as, not necessarily in
the order listed above, QIN1 to QIN9.

Although some centers may have used more than one
method for AIF determination from the shared data, only one
AIF method from each participating center was included in this
study. In addition, we also included a population-averaged AIF
published by Geoff Parker (GP) et al (28) for comparison. This
AIF was selected because it is extensively cited. The analytical
expression of the GP AIF was implemented at the managing
center and temporally resampled to match the temporal features
of the shared prostate DCE-MRI data.

Human Prostate DCE-MRI Data Acquisition and Sharing
As part of the institutional review board-approved BWH quan-
titative imaging studies, multiparametric magnetic resonance
images were collected for the purposes of detection and/or
staging of prostate cancer. The images were obtained with a GE
Signa HDx 3.0 T system (GE Healthcare, Waukesha, Wisconsin)
using a combination of 8-channel abdominal array and endo-
rectal coil (Medrad, Pittsburgh, Pennsylvania). The MRI se-
quences included T1- and T2-weighted imaging, diffusion-
weighted imaging, and DCE-MRI as described by Hegde JV et al
(29). The axial DCE-MRI acquisition with full prostate gland

Arterial Input Function Determination Variations’ Impact on Prostate DCE-MRI Pharmacokinetic Modeling

TOMOGRAPHY.ORG | VOLUME 2 NUMBER 1 | MARCH 2016 57



coverage used a 3-dimensional SPoiled Gradient Recalled
(SPGR) sequence with repetition time (TR)/echo time (TE)/Flip
Angle (�) � 3.6 ms/1.3 ms/15°, FOV � (26 cm)2, slice thick-
ness � 6 mm, and reconstructed image voxel size � 1 � 1 � 6
mm. DCE-MRI frames were acquired at approximately 5-second
intervals (the number of slices per frame varied between 12 and
16, resulting in time resolution between 4.4 and 5.3 seconds) to
achieve a clinically appropriate compromise between spatial
and temporal resolutions. Gadopentetate dimeglumine (Magn-
evist; Berlex Laboratories, Wayne, New Jersey) was injected
intravenously (0.15 mmol/kg) using a syringe pump at a rate of
3 mL/s followed by 20 mL of saline flush at the same rate. The
DCE protocol included approximately 5 baseline frames before
contrast injection.

A subset of the imaging data from the BWH prostate DCE-
MRI database was uploaded to The Cancer Imaging Archive
(TCIA) server for data sharing (10). From these, 11 data sets from
11 patients with known prostate cancer diagnosis, tumor region
of interest (ROI) and relatively consistent acquisition time length
(4.5–6 minutes) were downloaded by participating QIN centers
for this AIF challenge project.

AIF Determination by QIN Centers
Although the AIF challenge participants were informed of the
single-image slice in each data set where the tumor ROI was

drawn and for which the ROI time-course data will be subjected
to pharmacokinetic analysis by the managing center, there was
no restriction on which image slice(s) to be used for the AIF
quantification. Participating centers were required to extract an
AIF time course using their own methodology for each DCE data
set. For example, when measuring AIF directly from a femoral
artery within the image FOV, the actual number of voxels used
to derive the final AIF time course varied substantially among
all centers. In general, the following results were saved and
submitted to the managing center: (1) extracted AIF signal
intensity time-course saved as a single column text (“.txt” file);
(2) converted blood plasma CR concentration time-course (see
Equation 1); and (3) screen-captured images showing the ROI/
voxel locations for AIF measurement. Item (2) was optional, and
both items (2) (if submitted) and (3) served as quality control
references for the managing center when performing final phar-
macokinetic data analyses with the AIFs from different centers.
Details of the AIF determination methods (including references)
used by the participating centers are summarized in Table 1.

Before performing pharmacokinetic analysis of the shared
DCE-MRI data, the managing center first converted the AIF
signal intensity time-course to blood R1 (' 1/T1) time course,
R1,b(t), using the SPGR steady-state signal intensity equation
(30) and a fixed precontrast blood R1 of 0.61 s�1 (31), and then

Table 1. Arterial Input Function (AIF) Quantification Methods by Participating Quantitative Imaging Network (QIN) Centers

Center Method

OHSU A single, fixed-size region of interest (ROI) was manually placed inside the femoral artery within the field of view
(FOV). Averaged blood intensity time-course was extracted from the ROI, which is further converted to Cp(t) using
the parameter values provided in the Materials and Methods section.

BWH GE’s OncoQuant prototype tool was used, which includes the following: (1) AIF Search Region Slice Localization; (2)
AIF Search Mask Localization; (3) AIF Detection Using Shape-Based Statistics; and (4) AIF Signal-to-Concentration
Conversion. See (27) for more details.

MCW Motion-corrected dynamic contrast-enhanced (DCE) series were processed using probabilistic-independent component
analysis implemented in the FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). These were further whitened
and projected into a 20-dimensional subspace using principal component analysis. The AIFs were manually chosen
from the results (4, 36-38).

MS ROIs were manually placed inside the iliac arteries within the field of view (FOV) using Osirix (v5.8; Pixmeo,
Switzerland). For each AIF determination, 1 ROI was drawn on 1 DCE frame, and its position was adjusted when
necessary to account for interframe subject motion. Blood intensity time-courses were extracted from the ROIs.

UM1 ROIs of 5 � 5 voxels were manually placed in 2 to 4 slices showing the highest artery conspicuity on maximum
intensity projection displays of the baseline-subtracted DCE images. Voxel time-courses within the ROI were
individually displayed on a 5 � 5 panel. Voxels with time-courses showing an AIF curve shape were then
individually selected, and their locations and time-courses were automatically saved.

UM3 ROIs were manually drawn on both left and right femoral arteries on the central 4 slices. To minimize the in-flow
effect, the inferior and superior slices were excluded. Further, 20 voxels within the ROIs with the highest signal
increases were determined by thresholding the histogram of intensity changes. The average signal intensity time
curve of the 20 voxels yielded the final AIF signal intensity time-course.

UPitt Images were loaded into PMOD 3.505 (PMOD Technologies Ltd.), a commercial software package. Images were
examined to search for an artery near the lesion. A region including the identified artery was surveyed using the
voxel browser of PMOD to identify an area with high signal intensity change, followed by AIF ROI delineation.

UW An adapted version of a positron emission tomography (PET) AIF extraction scheme (39), which does not require
user-specified AIF ROI, was used. The approach was implemented in R (open-source). The extracted input function
was then scaled so that the apparent extraction of gadolinium contrast reagent (CR) based on the analysis of the
entire tissue volume signal is 2.5%.

VU A seed point was placed manually inside an artery and then a region-growing method was applied to automatically select
the AIF voxels. The intensity range for the region-growing method was set as 80% to 120% of that of the seed point, and the
voxel distance from the seed was �10 voxels. Mean signal intensity time-course of the selected voxels was obtained.
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converted to plasma CR concentration time course, Cp(t), using
the following equation:

R1,b(t) � r1 · h · Cp(t) � 0.61 (1)

where r1 is the CR relaxivity at 3T, set at 3.8 mM�1s�1 ; and h is
the hematocrit, set at 0.45.

Pharmacokinetic Analysis of Human Prostate
DCE-MRI Data
Using a single in-house Matlab-based software package, the
managing center performed pharmacokinetic analysis of the
shared 11 sets of prostate DCE-MRI data using the AIFs deter-
mined by the 9 QIN centers and the literature-based GP AIF. All
AIF arrival times were manually aligned with the uptake phase
of the tissue response curves. The most commonly used phar-
macokinetic model, the Tofts model (TM) (32), was applied to
data analysis, and its basic formulation is shown in Equation (2)
as follows:

Ct(t) � Ktrans�
0

t

Cp(t�)exp(�Ktransve
�1(t � t�))dt�, (2)

where Ct(t) represents the tissue CR concentration at time t; Cp(t’)
is the AIF obtained from Equation (1). The fast exchange limit
condition intrinsic to the TM (23) implies a linear relationship
between R1(t) and Ct(t):

R1�t� � r1Ct�t� � R10 (3)

where R1(t) is tissue R1 measured at time t, and R10 is the
precontrast tissue R1 (assumed to be 0.63 s�1) (10).

For each DCE-MRI data set, the voxel intensity time-courses
within the predefined prostate tumor ROI on a single image slice,
drawn by the center (BWH) that acquired the data, were sub-
jected to the TM pharmacokinetic analysis. The mean values of
the tumor ROI pharmacokinetic parameters (Ktrans, ve, and kep)
were obtained by averaging the corresponding voxel parameter
values.

Because of different approaches (Table 1) used by partici-
pating centers in direct measurement of the AIF, large variations
in the AIF amplitude were observed as a result of differences in
measurement locations, number of voxels used, inflow effects,
etc. As an alternative approach for pharmacokinetic analysis, an
ROI (Figure 1, inset) in the adjacent obturator muscle area on the
same image slice as that of the tumor ROI was used as a reference
tissue for AIF amplitude adjustment (9, 33). The AIF (including
the literature-based GP AIF) amplitude was adjusted until the
TM fitting of the muscle ROI DCE-MRI data returned a ve value
of 0.1, which is within the range of literature-reported values
(34). Therefore, in total, 20 AIFs representing unadjusted and
reference tissue-adjusted AIFs from the 9 centers and the GP
AIFs were applied for the pharmacokinetic modeling of each
prostate DCE-MRI data set using the TM, resulting in 20 sets of
Ktrans, ve, and kep parameters that were then separated into two
groups of results obtained with adjusted and unadjusted AIFs.

All voxel-fitting results were included in calculating the
mean tumor ROI pharmacokinetic parameter values, as it was
difficult to set optimal criteria for excluding voxel fittings ob-
tained with AIFs determined by a diverse array of methods.
Using the prior knowledge that a physically meaningful ve is
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Figure 1. Individual AIFs extracted from one subject’s dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) data by 9 participating Quantitative Imaging Network centers. The smaller circular region of interest (ROI) in the
zoomed image inset (with the prostate in the center of the view) indicates the general location where blood signals were
most frequently measured for the final AIF time-courses, and the larger elliptical ROI indicates the general location for
the obturator muscle reference tissue ROI. Noticeable variations are evident for both the shape and magnitude of the
AIF curves (A). The reference tissue-adjusted AIFs of the same subject (B). The agreement among the individually mea-
sured AIFs is clearly improved following the adjustment.
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between 0.0 and 1.0, the lower and upper boundaries for ve

fitting were set accordingly for each voxel. When the reference
tissue-adjusted AIFs (from all participating centers) were used,
all fitted voxel ve values for all DCE-MRI data sets were within
the limits (none returned boundary values). When the unad-
justed AIFs were used, on average, there were �3% voxels
(ranging from 0%–6.6% when summarized by participating
centers), where the returned ve values reached the upper bound-
ary of 1.0. In these limited numbers of voxels, the ve value of 1.0
and the returned Ktrans values were taken as the fitted parameter
values.

Statistical Analysis
The original parameter values returned from all fittings were
used for statistical analysis. Descriptive statistical analysis was
conducted to summarize the pharmacokinetic parameter values
returned by different AIFs, with the distribution graphically
assessed by boxplots. Intraclass correlation coefficient (ICC),
within-subject coefficient of variation (wCV), and concordance
correlation coefficient (CCC) were calculated, and these were
reported with the corresponding 95% confidence intervals (CIs).
Although all the three coefficients were computed to assess the
reproducibility of the pharmacokinetic parameter values from
different AIFs, each had a different focus. The ICCs measure the
proportion of total variation contributed by between-subject
differences, with high ICCs indicating good agreement. The wCV
is the ratio of within-subject standard deviation to the mean of
the corresponding parameter. A smaller wCV suggests good
reproducibility. The CCCs are closely related to ICCs. They were
estimated to represent the level of pairwise linear agreement to
a 45° line of which the intercept is forced to be 0. A larger CCC
(close to 1) suggests good reproducibility. Bland–Altman plots
were used to graphically demonstrate pairwise agreements of
different AIF measures. SAS 9.4 (Cary, New York) was used for
all statistical analysis. SAS macro %ICC9 and %mccc were used
for the estimations of ICC, wCV, and CCC.

RESULTS
Pharmacokinetic Parameter Variations Due to AIF
Differences
Figure 1A plots the AIFs extracted from the DCE-MRI data of
one subject by the 9 participating QIN centers. The inset shows

a post-CR DCE image slice zoomed to the prostate area. The
smaller circular ROI indicates a common location—the femoral
artery—where blood signals were measured for AIF determina-
tion, whereas the larger elliptical ROI indicates the general
location of the reference tissue ROI in the obturator muscle.
Noticeable variations are evident in both the shape and the
amplitude among the Cp time-courses, converted from the mea-
sured signal intensity time-courses using Equation (1). Figure 1B
shows the reference tissue-adjusted AIFs of those shown in
Figure 1A. The agreement among the individually measured AIFs
is clearly improved following the adjustment. The standard devia-
tion of the 9 measured AIFs over the DCE time-course is signifi-
cantly smaller for the reference tissue-adjusted AIFs than for the
unadjusted ones (Wilcoxon signed-rank test, P � .0001). Similar
findings are observed for AIFs from the other 10 subjects.

At the center of Figure 2, a zoomed post-CR image slice of
the prostate of another subject is shown. The cyan ROI demarks
the lesion area used for subsequent TM modeling and parameter
comparisons. Ktrans color maps generated by TM analysis of the
DCE-MRI data using unadjusted AIFs from the 9 centers are
shown on the left panels and those with reference tissue-
adjusted AIFs are shown on the right. Under the same color
scale, substantial variations, mostly in the magnitude of Ktrans

value, can be seen among the Ktrans maps obtained with different
unadjusted AIFs (Figure 2, left). These differences are lessened
when the Ktrans parameter was derived with reference tissue-
adjusted AIFs (Figure 2, right). It is interesting to observe that
despite considerable variations in Ktrans value caused by AIF
differences, the pattern of voxel Ktrans distribution largely re-
mains the same.

To illustrate the variations seen in Figure 2 for one param-
eter from a single DCE-MRI data set, Figure 3 shows the boxplots
for Ktrans, ve, and kep parameters obtained from the 11 subject
data sets with adjusted and unadjusted AIFs (including those
from the GP AIF). For most measurements, the mean is greater
than the median, which is commonly seen when distributions
are skewed toward the right (the larger parameter values). The
dispersions of the estimated metrics vary substantially across
institutions (or AIFs). Examining the results from the same
institution (or from one set of unadjusted and adjusted AIFs), it
can be observed that the agreement in parameter dispersion
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Figure 2. Grayscale image at the center shows a zoomed DCE-MRI slice of another subject. The cyan-colored ROI (in-
dicated by the white arrow) demarks the lesion area used for subsequent TM modeling and parameter comparisons.
Ktrans color maps generated by TM analysis of the DCE-MRI data using unadjusted (unadj.) AIFs from the 9 centers are
shown on the left panels and those with reference tissue-adjusted (adj.) AIFs are shown on the right. All 18 panels used
the same color scale.
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between the unadjusted and adjusted AIFs is better for kep than
for Ktrans. In fact, kep dispersion is hardly affected by the differ-
ence in AIF scaling.

Figure 4 shows the column graphs of wCV for Ktrans, ve, and
kep obtained with the unadjusted (shaded light gray) and ad-
justed (dark gray) AIFs. The error bars are the 95% CIs. A smaller
wCV value indicates less variation in measurements on the same
subject by different approaches. In this study, the wCV values
range from 0.15 for ve with adjusted AIFs to 0.74 for Ktrans with
unadjusted AIFs. The wCV of ve is the smallest, whereas that of
Ktrans is the largest among the three pharmacokinetic parameters
with either unadjusted or adjusted AIFs. From unadjusted to
adjusted AIFs, the parameter variations decrease for Ktrans and ve

(wCV values decrease from 0.74 to 0.60 and from 0.33 to 0.15,
respectively). On the other hand, it increases slightly for kep

(wCV value increases from 0.45 to 0.54).
Figure 5 shows the column graphs of ICC values for Ktrans,

ve, and kep obtained with unadjusted (shaded light gray) and
adjusted (dark gray) AIFs. The respective 95% CIs are shown as
error bars. Consistent with the results shown in Figure 4, Ktrans

has the smallest ICC value compared with kep and ve with either
unadjusted or adjusted AIF, indicating its high dependence on
AIF quantification for prostate DCE-MRI. From unadjusted to
adjusted AIFs, the ICC value increases from 0.30 to 0.38 and

Figure 3. Boxplots of the tumor
mean Ktrans, ve, and kep parame-
ters for the 11 subjects obtained
with unadjusted (unadj.) and ad-
justed (adj.) AIFs from the 9 cen-
ters and the population-averaged
GP AIF from the literature (28).
The diamond and bar symbols
represent the mean and median
values, respectively. The body of
the box is bounded by the upper
25% and lower 25% quartiles,
representing the interquartile
range of the middle 50% of the
measurements. The upper and
lower whiskers define the range
of nonoutliers. The outliers are
plotted as dots beyond the
whiskers.
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Figure 4. Column graphs of wCV for the Ktrans,
ve, and kep parameters obtained with the unad-
justed (unadj., shaded light gray) and adjusted
(adj., dark gray) AIFs. The respective 95% confi-
dence intervals (CIs) are shown as error bars.
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from 0.62 to 0.88 for Ktrans and ve, respectively, whereas it
decreases from 0.52 to 0.46 for kep.

Concordance Analysis
Concordance correlation analysis was conducted to assess pa-
rameter agreement between any two AIFs within the same group
(adjusted or unadjusted). The Ktrans CCC values are tabulated in

Table 2A. CCC values for the unadjusted AIFs are listed above
the dashed diagonal line, and those for the adjusted AIFs are
listed below the diagonal line. Tables 2, B and C show the
corresponding equivalents for the ve and kep parameters, respec-
tively. The CCC ranges obtained with unadjusted AIFs are 0.031–
0.944, 0.334–0.986, and 0.145–0.957 for Ktrans, ve, and kep,
respectively; and those obtained with adjusted AIFs are 0.082–
0.965, 0.554–0.993, and 0.129–0.965 for Ktrans, ve, and kep,
respectively. In general, the CCC values increase from unad-
justed to adjusted AIFs for the Ktrans and ve parameters, although
few changes are observed for the kep parameter. In addition, the
CCC value that resulted from pairing of the GP AIF with any
other AIF (unadjusted or adjusted) is usually among the smallest
in the CCC ranges described above.

The Bland–Altman plots depicted in Figure 6 show exam-
ples of the agreement in Ktrans for AIF pairs with the largest
(Figure 6, A and B) and smallest (Figure 6, C and D) CCC values
within the unadjusted (Figure 6, A and C) and adjusted (Figure 6,
B and D) AIF groups. Although the differences between mea-
surements are mostly within the 95% CIs for all plots, it is rather
visually clear (with all 4 plots having the same vertical-axis
scale) that the width of confidence bands substantially differs
between AIF pairs with greater CCC values (Figure 6, A and B)
and those with smaller CCC values (Figure 6, C and D): narrower
for the former, wider for the latter. For the AIF pairs with the
largest CCCs (Figure 6, A and B), or the best agreements in the
estimated Ktrans values, the means of Ktrans differences between
the two AIFs represented by the dotted lines are close to 0 at
0.076 and 0.009 min�1, respectively, for unadjusted and ad-
justed AIFs. For the AIF pairs with the smallest CCCs (Figure 6,
C and D), or the worst agreements in the estimated Ktrans values,
the means of Ktrans differences are 0.529 and –1.085 min�1,

0

0.2

0.4

0.6

0.8

1
Unadj

Adj

Ktrans ve kep

IC
C

Figure 5. Column graphs of ICC for the Ktrans,
ve, and kep parameters obtained with the unad-
justed (unadj., shaded light gray) and adjusted
(adj., dark gray) AIFs. The respective 95% CIs are
shown as error bars.

Figure 6. Bland–Altman plots
are shown to demonstrate agree-
ment in Ktrans for AIF pairs with
the largest (A and B) and smallest
(C and D) CCC values within the
unadjusted (A and C) and ad-
justed (B and D) AIF groups. The
two solid horizontal lines repre-
sent the upper and lower limits of
the 95% CI, whereas the dotted
horizontal line represents the
mean value of Ktrans differences
between the two measurements.
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Table 2A. CCC Values of the Ktrans Parameter Obtained With Unadjusted and Adjusted AIFs

QIN1 QIN2 QIN 3 QIN4 QIN5 QIN6 QIN7 QIN8 QIN9 GP

QIN1 0.185 0.759 0.825 0.501 0.755 0.747 0.412 0.941 0.049

QIN2 0.228 0.395 0.186 0.082 0.241 0.297 0.159 0.189 0.047

QIN3 0.726 0.507 0.645 0.336 0.836 0.889 0.301 0.732 0.083

QIN4 0.835 0.267 0.637 0.591 0.769 0.645 0.515 0.750 0.084

QIN5 0.776 0.179 0.531 0.880 0.472 0.367 0.307 0.445 0.223

QIN6 0.780 0.370 0.896 0.744 0.612 0.944 0.209 0.639 0.115

QIN7 0.755 0.376 0.887 0.662 0.965 0.548 0.262 0.612 0.105

QIN8 0.825 0.250 0.621 0.882 0.689 0.739 0.666 0.353 0.107

QIN9 0.897 0.130 0.610 0.720 0.605 0.747 0.507 0.655 0.031

GP 0.210 0.082 0.212 0.287 0.297 0.393 0.300 0.253 0.104

CCC: concordance correlation coefficient; values from unadjusted AIFs are presented in the top right triangle and those from reference-tissue-adjusted AIFs
are presented in bottom left triangle; Ktrans: rate constant for plasma/interstitium contrast reagent (CR) transfer.

Table 2B. CCC Values of the ve Parameter Obtained With Unadjusted and Adjusted AIFs

QIN1 QIN2 QIN3 QIN4 QIN5 QIN6 QIN7 QIN8 QIN9 GP

QIN1 0.458 0.873 0.696 0.822 0.911 0.890 0.713 0.913 0.732

QIN2 0.942 0.473 0.369 0.347 0.421 0.453 0.538 0.535 0.334

QIN3 0.981 0.969 0.666 0.587 0.868 0.886 0.676 0.745 0.510

QIN4 0.973 0.965 0.971 0.545 0.737 0.782 0.767 0.538 0.530

QIN5 0.726 0.668 0.693 0.803 0.787 0.719 0.591 0.733 0.936

QIN6 0.982 0.955 0.980 0.951 0.622 0.986 0.797 0.713 0.737

QIN7 0.993 0.965 0.992 0.982 0.984 0.732 0.838 0.696 0.688

QIN8 0.979 0.951 0.965 0.954 0.973 0.690 0.985 0.534 0.619

QIN9 0.952 0.820 0.913 0.887 0.924 0.703 0.929 0.900 0.621

GP 0.929 0.879 0.949 0.873 0.933 0.554 0.931 0.924 0.880

CCC: concordance correlation coefficient; values from unadjusted AIFs are presented in the top right triangle and those from reference-tissue-adjusted AIFs
are presented in bottom left triangle; ve: extravascular and extracellular volume fraction.

Table 2C. CCC Values of the kep Parameter Obtained With Unadjusted and Adjusted AIFs

QIN1 QIN2 QIN3 QIN4 QIN5 QIN6 QIN7 QIN8 QIN9 GP

QIN1 0.400 0.649 0.881 0.894 0.792 0.745 0.872 0.891 0.319

QIN2 0.303 0.620 0.339 0.327 0.553 0.645 0.407 0.335 0.145

QIN3 0.752 0.605 0.591 0.591 0.934 0.942 0.690 0.465 0.356

QIN4 0.872 0.282 0.586 0.932 0.684 0.595 0.866 0.788 0.352

QIN5 0.883 0.247 0.569 0.965 0.680 0.615 0.856 0.811 0.442

QIN6 0.775 0.427 0.856 0.677 0.656 0.957 0.705 0.579 0.385

QIN7 0.748 0.525 0.910 0.614 0.938 0.616 0.696 0.519 0.344

QIN8 0.867 0.308 0.656 0.873 0.683 0.856 0.697 0.722 0.346

QIN9 0.925 0.231 0.642 0.783 0.542 0.812 0.547 0.738 0.182

GP 0.318 0.129 0.248 0.390 0.391 0.438 0.348 0.350 0.171

CCC: concordance correlation coefficient; values from unadjusted AIFs are presented in the top right triangle and those from reference-tissue-adjusted AIFs
are presented in bottom left triangle; kep (� Ktrans/ve): CR intravasation rate constant.
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respectively, for unadjusted and adjusted AIFs, considerably
different from 0. In addition, in cases of poor Ktrans agreement
(Figure 6, C and D), there seems to be a pattern of correlation
between the difference in Ktrans and the mean of Ktrans, with
larger differences corresponding to larger mean values.

DISCUSSION
The main goal of this multicenter AIF data analysis challenge
was to evaluate variations of estimated pharmacokinetic param-
eters in prostate cancer due to differences in AIF determination.
Individually measured AIFs were obtained for each DCE-MRI
data set with different QIN center-specific methods, which in-
clude manual AIF–voxel selection, semiautomatic AIF–voxel
identification, automated AIF region identification, and AIF
determination using commercial software packages. Quality
control measures such as fixed tumor ROI definition, fixed
tumor T10, and central data analysis with a commonly used
pharmacokinetic model were adopted to ensure that DCE-MRI
parameter variations are mainly due to AIF differences only.
Although the software package used by the managing center for
central pharmacokinetic data analysis was an in-house-devel-
oped version of the TM (32), its mathematical formulation was
validated using digital reference object phantom data in a pre-
vious DCE-MRI data analysis challenge (23).

The results from this multicenter study clearly show that
variations in AIF quantification result in variations in the esti-
mated pharmacokinetic parameter values for prostate DCE-MRI
data. Among the Ktrans, kep, and ve parameters, Ktrans has the
largest whereas ve has the smallest AIF uncertainty-caused vari-
ations. The wCV values ranged from as low as 0.33 for ve to as
high as 0.74 for Ktrans with unadjusted AIFs, whereas the ICC
ranged from 0.30 for Ktrans to 0.62 for ve. Similar results of ve

being the most “robust” parameter to AIF variation have been
reported in a simulation study (35) previously, and its “robust-
ness” may be the direct consequence that ve is the most influ-
ential parameter within the Ktrans range (33) seen in prostate
cancer. That is, when comparing the effects of the same percent-
age change in a single parameter on the DCE-MRI time-course,
ve change causes the most noticeable DCE-MRI time-course
deviation than the other parameters (33), suggesting that the ve

parameter is shaped more by the tissue DCE time-course during
model fitting. Another probable reason that Ktrans is more sus-
ceptible to AIF variation than ve is that quantification of Ktrans

strongly depends on the initial AIF spike, whereas ve quantifi-
cation relies more on the entire AIF time-course. This work
complements a recent study comparing AIF determinations with
fully automated and semiautomated approaches for prostate
DCE-MRI data analysis (10). Both efforts show that Ktrans vari-
ation due to AIF uncertainty is the most prominent when com-
pared with variations of other parameters in pharmacokinetic
analysis of prostate cancer DCE-MRI data.

It is important to point out that the AIF influence on Ktrans

estimation is dependent on CR extravasation (Ktrans magnitude)
(33), underscoring the importance of accurate AIF measurement
in Ktrans modeling when CR extravasation is extensive. This CR
extravasation-dependent characteristic is more clearly illus-
trated in extreme cases such as normal brain tissue where gad-
olinium-based CR acts as an intravascular agent during the

short period after CR injection. Under this condition of no CR
extravasation, the AIF has no effect on Ktrans (which is unde-
tectable). For organs with extensive CR extravasation, like the
prostate (10), the initial AIF curve shape strongly influences the
estimation of Ktrans. This is possibly the reason that the Ktrans

values obtained with a fixed, population-based GP AIF show the
least agreement (lowest CCC values) with those obtained with
individually measured AIFs. The individually measured AIFs
(mostly from the femoral artery voxels) from the actual DCE-
MRI data generally captured similar initial AIF curve shapes
despite the use of different quantification methods and potential
errors from partial volume and inflow effects. The data acquisi-
tion-specific details may not be well characterized by the GP
AIF, which is modeled on the basis of data from either the aorta
or iliac arteries, acquired with different pulse sequence param-
eters and generated at different field strength. Thus, in cases of
substantial CR extravasation, pharmacokinetic parameters
should be estimated with individually determined AIFs when-
ever possible instead of a generic population-averaged AIF un-
related to a specific acquisition protocol.

As shown in this study, there are, however, steps one can take
to lessen the effects of AIF variations on estimation of pharmaco-
kinetic parameters. The agreement in the Ktrans and ve parameters
obtained with reference tissue-adjusted AIFs is improved when
compared with that obtained with unadjusted AIFs. This is a direct
result of better agreement in AIF amplitude among the individually
measured AIFs following the muscle reference tissue adjustment.
However, the reference tissue approach is far from a perfect solu-
tion to AIF uncertainty-caused parameter variations. High wCV,
low ICC, and low CCC values are still prevalent after the reference
tissue method was used, particularly for Ktrans, of which the esti-
mated value is strongly influenced by both the magnitude and the
initial curve shape of the AIF.

The results from this multicenter challenge project are sup-
ported by findings from a recent simulation study (unpublished
results), which aims to identify pharmacokinetic parameters that
are relatively insensitive to AIF variations. In fact, the simula-
tions show complete kep insensitivity to AIF magnitude errors
(unpublished results). The current study shows that for TM
analysis, kep is less sensitive to AIF uncertainty when compared
with Ktrans. Defined as the CR intravasation rate constant, kep is
predominantly characterized by the washout phase of the DCE
time-course. Because kep is often calculated as Ktrans/ve and not
as an independent variable in model fitting of the DCE time-
course data, it is sometimes underused in clinical DCE-MRI
studies. Results from this work, however, suggest that, consid-
ering the uncertainties in AIF determination, kep may be a more
reproducible DCE-MRI parameter than the Ktrans parameter and
thus a more robust imaging biomarker of perfusion and perme-
ability. For prostate DCE-MRI, kep can offer a different perspec-
tive of prostate microvasculature, particularly when the Ktrans

ranges of benign and cancerous tissue overlap (5).
It is important to note that DCE-MRI parameter variations

caused by AIF variations are mostly systematic. As an example
shown in Figure 2, the differences among the prostate tumor
Ktrans maps obtained with different AIFs are mostly in voxel
Ktrans values. The pattern of voxel Ktrans distribution largely
remains similar for all the maps. This suggests that assessment of
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tumor heterogeneity through texture analysis of DCE-MRI para-
metric maps may not be affected greatly by variations in AIF
determination. In addition, for longitudinal DCE-MRI studies to
assess cancer therapy response, the systematic errors caused by
AIF quantification variations may be largely cancelled in the
calculation of percent changes of DCE-MRI parameters before
and after therapy. In a multicenter breast DCE-MRI data analysis
challenge study (23), we showed that the DCE-MRI parameter
percent changes before and after the first cycle of neoadjuvant
chemotherapy were substantially less sensitive to variations in the
pharmacokinetic model and the software package used for data
analysis when compared with the absolute parameter values.

Because of its unique temporal signatures and often superior
image contrast, DCE-MRI is widely used in prostate imaging as part
of a multiparametric prostate MRI protocol. DCE-MRI data analysis
with qualitative and/or semiquantitative assessment is favored in
current clinical practice largely because of their relative simplicity.
However, the rich information embedded in the DCE-MRI data is
likely underutilized. Pharmacokinetic data analysis for estimation
of tissue biology-specific parameters has the potential to provide
more consistent results for broad cross-vendor and cross-scanner
platform applications. Robust and reliable AIF determination re-
mains a real challenge for adoption of pharmacokinetic modeling
of prostate DCE-MRI data in clinical settings. The results from this
study provide useful information on how to minimize errors in the
estimation of prostate DCE-MRI parameters caused by uncertain-
ties in AIF determination and the parameters that are less sensitive
to AIF variations.

There are limitations in this multicenter effort. The study
cohort size was small (11 patients), and the AIF determination
methods were mostly constrained to the approach of direct
measurement from an artery. In addition, no longitudinal data
were available, and, therefore, the effects of AIF variation on the
DCE-MRI assessment of prostate cancer progression and/or re-

sponse to treatment were not investigated. The current study
only summarizes the results of AIF variations for a single phar-
macokinetic model (TM); thus, parameter reproducibility from
different models and relevant model comparisons with AIF vari-
ations are beyond the scope of this work. Finally, voxel DCE-
MRI parameter distribution patterns were assessed visually
without the use of a quantitative texture analysis method.

CONCLUSION
In conclusion, this multicenter data analysis study highlights
one (not all) significant challenge in the quantitative pharma-
cokinetic analysis of DCE-MRI data, i.e., considerable variations
in DCE-MRI parameter values were observed because of varia-
tions in AIF determination. The AIF-caused parameter varia-
tions are higher in Ktrans than in ve. As a solution to reduce
parameter variation, AIF amplitude can be adjusted after its
measurement by using the reference tissue method. Compared
with Ktrans, kep is less sensitive to AIF uncertainty, suggesting
that kep may be a more robust pharmacokinetic parameter for
characterization of prostate microvasculature. The variations in
parameter estimates caused by differences in AIF are systematic,
and thus, the patterns of voxel-based DCE-MRI parametric maps
were largely unaffected. In multicenter clinical trials involving
quantitative DCE-MRI, central data analysis with a fixed AIF
determination method should be adopted for a single time-point
study to minimize the undesirable effects due to uncertainty in
AIF determination. This approach may introduce systematic
errors in estimated pharmacokinetic parameters, but it avoids
random errors resulted from data analysis by individual centers
with different AIF determination methods, which could be det-
rimental in addressing biological questions. In a longitudinal
multicenter study, percent changes of pharmacokinetic param-
eters, instead of their absolute values, should be used as imaging
endpoints to more accurately evaluate biological changes.
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