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Abstract

Despite their inherent non-equilibrium nature1, living systems can self-organize in highly ordered 

collective states2,3 that share striking similarities with the thermodynamic equilibrium phases4,5 

of conventional condensed matter and fluid systems. Examples range from the liquid-crystal-like 

arrangements of bacterial colonies6,7, microbial suspensions8,9 and tissues10 to the coherent 

macro-scale dynamics in schools of fish11 and flocks of birds12. Yet, the generic mathematical 

principles that govern the emergence of structure in such artificial13 and biological6–9,14 systems 

are elusive. It is not clear when, or even whether, well-established theoretical concepts describing 

universal thermostatistics of equilibrium systems can capture and classify ordered states of living 

matter. Here, we connect these two previously disparate regimes: Through microfluidic 

experiments and mathematical modelling, we demonstrate that lattices of hydrodynamically 

coupled bacterial vortices can spontaneously organize into distinct phases of ferro- and 

antiferromagnetic order. The preferred phase can be controlled by tuning the vortex coupling 

through changes of the inter-cavity gap widths. The emergence of opposing order regimes is 

tightly linked to the existence of geometry-induced edge currents15,16, reminiscent of those in 

quantum systems17–19. Our experimental observations can be rationalized in terms of a generic 
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lattice field theory, suggesting that bacterial spin networks belong to the same universality class as 

a wide range of equilibrium systems.

Lattice field theories (LFTs) have been instrumental in uncovering a wide range of 

fundamental physical phenomena, from quark confinement in atomic nuclei20 and neutron 

stars21 to topologically protected states of matter22 and transport in novel magnetic23 and 

electronic24,25 materials. LFTs can be constructed either by discretizing the space-time20 

continuum underlying classical and quantum field theories, or by approximating discrete 

physical quantities, such as the electron spins in a crystal lattice, through continuous 

variables. In equilibrium thermodynamics, LFT approaches have proved invaluable both 

computationally and analytically, for a single LFT often represents a broad class of 

microscopically distinct physical systems that exhibit the same universal scaling behaviours 

in the vicinity of a phase transition4,26. However, until now there has been little evidence as 

to whether the emergence of order in living matter can be understood within this universality 

framework. Our combined experimental and theoretical analysis reveals a number of striking 

analogies between the collective cell dynamics in bacterial fluids and known phases of 

condensed matter systems, thereby implying that universality concepts may be more broadly 

applicable than previously thought.

To realize a microbial non-equilibrium LFT, we injected dense suspensions of the rod-like 

swimming bacterium Bacillus subtilis into shallow polydimethyl siloxane (PDMS) chambers 

in which identical circular cavities are connected to form one- and two-dimensional (2D) 

lattice networks (Figs. 1 & 3, Supplementary Fig. 6; Methods). Each cavity is 50 μm in 

diameter and 18 μm deep, a geometry known to induce a stably circulating vortex when a 

dense bacterial suspension is confined within an isolated flattened droplet15. For each cavity 

i, we define the continuous vortex spin variable Vi(t) at time t as the total angular 

momentum of the local bacterial flow within this cavity, determined by particle imaging 

velocimetry (PIV) analysis (Fig. 1b,f; Supplementary Videos 1 & 2; Methods). To account 

for the effect of oxygenation variability on suspension motility9, flow velocities are 

normalized by the overall root mean square (RMS) speed measured in the corresponding 

experiment. Bacterial vortices in neighbouring cavities i ~ j interact through a gap of 

predetermined width w (Fig. 1f). To explore different interaction strengths, we performed 

experiments over a range of gap parameters w (Methods). For square lattices, we varied w 
from 4 to 25 μm and found that for all but the largest gaps, w ≤ w* ≈ 20 μm, the suspensions 

generally self-organize into coherent vortex lattices, exhibiting domains of correlated spin 

whose characteristics depend on coupling strength (Fig. 1a,e). If the gap size exceeds w*, 

bacteria can move freely between cavities and individual vortices cease to exist. A similar 

order–disorder transition is seen in triangular lattices (Fig. 3). Here, we focus exclusively on 

the vortex regime w < w* and quantify preferred magnetic order through the normalized 

mean spin–spin correlation , where 

denotes a sum over pairs {i, j} of adjacent cavities and 〈·〉 denotes time average.

Square lattices reveal two distinct states of preferred magnetic order (Fig. 1a,e,i), one with χ 
< 0 and the other with χ > 0, transitioning between them at a critical gap width wcrit ≈ 8 μm 

(Fig. 1j). For subcritical values w < wcrit, we observe an antiferromagnetic phase with anti-
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correlated (χ < 0) spin orientations between neighbouring chambers on average (Fig. 1a; 

Supplementary Video 1). By contrast, for w > wcrit, spins are positively correlated (χ > 0) in 

a ferromagnetic phase (Fig. 1e; Supplementary Video 2). Noting that the RMS spin 

〈Vi(t)2〉1/2 decays only slowly with increasing gap width w → w* (Fig. 1k), and that the 

chambers do not impose any preferred handedness on the vortex spins (Supplementary Fig. 

1 & Sec. 1), we conclude that the observed phase behaviour is caused by spin–spin 

interactions. However, although both phases possess a well-defined average vortex–vortex 

correlation, the individual spins fluctuate randomly over time as ordered domains split, 

merge and flip (Fig. 1i, Supplementary Figs. 1 & 3) while the system explores configuration 

space inside a statistical steady state (Supplementary Secs. 1 & 3). Thus, although the 

bacterial vortex spins {Vi(t)} define a real-valued lattice field, the phenomenology of these 

continuous bacterial spin lattices is qualitatively similar to that of the classical 2D Ising 

model4 with discrete binary spin variables si ∈ {±1}, whose configurational probability at 

finite temperature T = (kBβ)–1 is described by a thermal Boltzmann distribution 

, where J > 0 corresponds to ferromagnetic and J < 0 to 

antiferromagnetic order. The detailed theoretical analysis below shows that the observed 

phases in the bacterial spin system can be understood quantitatively in terms of a generic 

quartic LFT comprising two dual interacting lattices. The introduction of a double lattice is 

necessitated by the microscopic structure of the underlying bacterial flows. By analogy with 

a lattice of interlocking cogs, one might have intuitively expected that the antiferromagnetic 

phase would be favoured, since only in this configuration does the bacterial flow along the 

cavity boundaries conform across the inter-cavity gap, avoiding the potentially destabilizing 

head-to-head collisions that would occur with opposing flows (Fig. 1b,c). However, the 

extent of the observed ferromagnetic phase highlights a competing biofluid-mechanical 

effect.

Just as the quantum Hall effect17 and the transport properties of graphene18,19 arise from 

electric edge currents, the opposing order regimes observed here are explained by the 

existence of analogous bacterial edge currents. At the boundary of an isolated flattened 

droplet of a bacterial suspension, a single layer of cells—an edge current—can be observed 

swimming against the bulk circulation15,16. This narrow cell layer is key to the suspension 

dynamics: the hydrodynamics of the edge current circulating in one direction advects nearby 

cells in the opposite direction, which in turn dictate the bulk circulation by flow continuity 

through steric and hydrodynamic interactions16,27. Identical edge currents are present in 

our lattices (Supplementary Video 3) and explain both order regimes as follows. In the 

antiferromagnetic regime, when w < wcrit, the edge current driving a particular vortex will 

pass over the gap without leaving the cavity (Fig. 1c). Interaction with a neighbouring edge 

current through the gap favours parallel flow, inducing counter-circulation of neighbouring 

vortices and therefore driving antiferromagnetic order (Fig. 1d). However, when w > wcrit, 

the edge currents can no longer pass over the gaps and instead wind around the star-shaped 

pillars dividing the cavities (Fig. 1g). A clockwise (resp. counter-clockwise) edge current on 

a pillar induces counter-clockwise (resp. clockwise) circulation about the pillar in a thin 

region near its boundary. Flow continuity then induces clockwise (resp. counter-clockwise) 

flow in all cavities adjacent to the pillar, resulting in ferromagnetic order (Fig. 1h). Thus by 

viewing the system as an anti-cooperative Union Jack lattice28,29 of both bulk vortex spins 
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Vi and near-pillar circulations Pj, we accommodate both order regimes: antiferromagnetism 

as indefinite circulations Pj = 0 and alternating spins Vi = ±V (Fig. 1d), and ferromagnetism 

as definite circulations Pj = –P and uniform spins Vi = V (Fig. 1h). To verify these 

considerations, we determined the net near-pillar circulation Pj(t) using PIV (Methods) and 

found that the RMS circulation 〈Pj(t)2〉1/2 shows the expected monotonic increase as the 

inter-cavity gap widens (Fig. 1k).

Competition between the vortex–vortex and vortex–pillar interactions determines the 

resultant order regime. Their relative strengths can be inferred by mapping each experiment 

onto a continuous-spin Union Jack lattice (Fig. 1d,h). In this model, the interaction energy of 

the time-dependent vortex spins V = {Vi} and pillar circulations P = {Pj} is defined by the 

LFT Hamiltonian

(1)

The first two sums are vortex–vortex and vortex–pillar interactions with strengths Jv, Jp < 0, 

where ~ denotes adjacent lattice pairs. The last two sums are individual vortex and pillar 

circulation potentials. Vortices must be subject to a quartic potential function with bv > 0 to 

allow for a potentially double-welled potential if av < 0, encoding the observed symmetry 

breaking into spontaneous circulation absent other interactions15,27. In contrast, our data 

analysis implies that pillar circulations are sufficiently described by a quadratic potential of 

strength ap > 0 (Supplementary Fig. 4 & Sec. 4). To account for the experimentally observed 

spin fluctuations (Fig. 1i, Supplementary Fig. 1), we model the dynamics of the lattice fields 

V and P through the coupled stochastic differential equations (SDEs)

(2a)

(2b)

where Wv and Wp are vectors of uncorrelated Wiener processes representing intrinsic and 

thermal fluctuations. The overdamped dynamics in Eq. (2) neglects dissipative Onsager-type 

cross-couplings as the dominant contribution to friction stems from the nearby no-slip 

PDMS boundaries (Supplementary Sec. 7). The parameters Tv and Tp set the strength of 

random perturbations from energy-minimizing behaviour. In the equilibrium limit when Tv 

= Tp = T, the stationary statistics of the solutions of Eq. (2) obey the Boltzmann distribution 

∝ e–H/T. We inferred all seven parameters of the full SDE model for each experiment by 

linear regression on a discretization of the SDEs (Supplementary Fig. 2 & Sec. 2). The 

differing sublattice temperatures Tv ≠ Tp found show that the system is not in 

thermodynamic equilibrium due to its active microscopic constituents (Supplementary Fig. 

2). Instead, the system is in a pseudo-equilibrium statistical steady state (Supplementary Sec. 
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1), which we will soon show can be reduced to an equilibrium-like description. As a cross-

validation, we fitted appropriate functions of gap width w to these estimates and simulated 

the resulting SDE model over a range of w on a 6 × 6 lattice concordant with the 

observations (Supplementary Sec. 3). The agreement between experimental data and the 

numerically obtained vortex–vortex correlation χ(w) supports the validity of the double-

lattice model and its underlying approximations (Fig. 1j).

To reconnect with the classical 2D Ising model and understand better the experimentally 

observed phase transition, we project the Hamiltonian (1) onto an effective square lattice 

model by making a mean-field assumption for the pillar circulations. In the experiments, Pi 

is linearly correlated with the average spin of its vortex neighbours , 

with a constant of proportionality −α < 0 only weakly dependent on gap width 

(Supplementary Fig. 4 & Sec. 4). Replacing effectively Pi → −α[Pi]V as a mean field 

variable in the model eliminates all pillar circulations, yielding a standard quartic LFT for V 
(see Supplementary Sec. 4 for a detailed derivation). The mean-field dynamics are then 

governed by the reduced SDE  with effective temperature 

 and energy

which has steady-state probability density  with β = 1/T, and where 

 and b = bv. Note that in the limit a → –∞ and b → +∞ with a/b fixed, the 

classical two-state Ising model is recovered by identifying . The 

reduced coupling constant J relates to those of the double-lattice model (Jv, Jp) in the 

thermodynamic limit as  (Supplementary Sec. 4), making manifest how 

competition between Jv and Jp can result in both antiferromagnetic  or 

ferromagnetic  behaviour. We estimated βJ, βa and βb for each experiment by 

directly fitting the effective one-spin potential 

 via the log-likelihood 

 (Fig. 2; Supplementary Fig. 5 & Sec. 5). These estimates 

match those obtained independently using SDE regression methods (Fig. 2a–c; 

Supplementary Sec. 5), and show the transition from antiferromagnetic interaction (βJ < 0) 

to ferromagnetic interaction (βJ > 0) at wcrit (Fig. 2a). As the gap width increases, the energy 

barrier to spin change falls (Fig. 2b) and the magnitude of the lowest energy spin decreases 

(Fig. 2c) due to weakening confinement within each cavity, visible as a flattening of the one-

spin effective potential  (Fig. 2d–f; Supplementary Fig. 5).

Experiments on lattices of different symmetry groups lend further insight into the 

competition between edge currents and bulk flow. Unlike their square counterparts, 

triangular lattices cannot support antiferromagnetic states without frustration. Therefore, 
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ferromagnetic order should be enhanced in a triangular bacterial spin lattice. This is indeed 

observed in our experiments: at moderate gap size , we found exclusively a highly 

robust ferromagnetic phase of either handedness (Fig. 3a,b,d; Supplementary Video 4), 

reminiscent of quantum vortex lattices in Bose–Einstein condensates30. At comparable gap 

size, the spin correlation is approximately 4 to 8 times larger than in the square lattice. 

Increasing the gap size beyond 20 μm eventually destroys the spontaneous circulation within 

the cavities and a disordered state prevails (Fig. 3c,d), with a sharper transition than for the 

square lattices (Fig. 1j). Conversely, a 1D line lattice exclusively exhibits antiferromagnetic 

order as the suspension is unable to maintain the very long uniform edge currents that would 

be necessary to sustain a ferromagnetic state (Supplementary Fig. 6 & Sec. 6). These results 

manifest the importance of lattice geometry and dimensionality for vortex ordering in 

bacterial spin lattices, in close analogy with their electromagnetic counterparts.

Understanding the ordering principles of microbial matter is a key challenge in active 

materials design13, quantitative biology and biomedical research. Improved prevention 

strategies for pathogenic biofilm formation, for example, will require detailed knowledge of 

how bacterial flows interact with complex porous surface structures to create the stagnation 

points at which biofilms can nucleate. Our study shows that collective excitations in 

geometrically confined bacterial suspensions can spontaneously organize in phases of 

magnetic order that can be robustly controlled by edge currents. These results demonstrate 

fundamental similarities with a broad class of widely studied quantum systems17,19,30, 

suggesting that theoretical concepts originally developed to describe magnetism in 

disordered media could potentially capture microbial behaviours in complex environments. 

Future studies may try to explore further the range and limits of this promising analogy.

Methods

Experiments

Wild-type Bacillus subtilis cells (strain 168) were grown in Terrific Broth (Sigma). A 

monoclonal colony was transferred from an agar plate to 25 mL of medium and left to grow 

overnight at 35°C on a shaker. The culture was diluted 200-fold into fresh medium and 

harvested after approximately 5 hours when more than 90% of the bacteria were swimming, 

as visually verified on a microscope. 10 mL of the suspension was then concentrated by 

centrifugation at 1500g for 10 minutes, resulting in a pellet with volume fraction 

approximately 20% which was used without further dilution.

The microchambers were made of polydimethyl siloxane (PDMS) bound to a glass coverslip 

by oxygen plasma etching. These comprised a square, triangular or linear lattice of ~ 18 μm-

deep circular cavities with 60 μm between centres, each of diameter ~ 50 μm, connected by 

4–25 μm-wide gaps for linear and square lattices (Fig. 1a,e; Supplementary Fig. 6) and 10–

25 μm-wide gaps for triangular lattices (Fig. 3a–c). The smallest possible gap size was 

limited by the fidelity of the etching.

Approximately 5 μL of the concentrated suspension was manually injected into the chamber 

using a syringe. Both inlets were then sealed to prevent external flow. We imaged the 

suspension on an inverted microscope (Zeiss, Axio Observer Z1) under bright field 
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illumination, through a 40× oil-immersion objective. Movies 10 s long were recorded at 60 

f.p.s. on a high-speed camera (Photron Fastcam SA3) at 4 and 8 minutes after injection. 

Though the PDMS lattices were typically ~ 15 cavities across, to avoid boundary effects and 

to attain the pixel density necessary for PIV we imaged a central subregion spanning 6 × 6 

cavities for square lattices, 7 × 6 cavities for triangular lattices, and 7 cavities for linear 

lattices (multiple of which were captured on a single slide).

Fluorescence in Supplementary Video 3 was achieved by labelling the membranes of a cell 

subpopulation with fluorophore FM4-64 following the protocol of Lushi et al.16 The 

suspension was injected into an identical triangular lattice as in the primary experiments and 

imaged at 5.6 f.p.s. on a spinning-disc confocal microscope through a 63× oil-immersion 

objective.

Analysis

For each frame of each movie, the bacterial suspension flow field u(x, y, t) was measured by 

standard particle image velocimetry (PIV) without time averaging, using a customized 

version of mPIV (http://www.oceanwave.jp/softwares/mpiv/). PIV subwindows were 16 × 

16 pixels with 50% overlap, yielding ~ 150 vectors per cavity per frame. Cavity regions 

were identified in each movie by manually placing the centre and radius of the bottom left 

cavity, measuring vectors to its immediate neighbours, and repeatedly translating to generate 

the full grid. Pillar edges were then calculated from the cavity grid and the gap width 

(measured as the minimum distance between adjacent pillars).

The spin Vi(t) of each cavity i at time t is defined as the normalized planar angular 

momentum

where ri(x, y) is the vector from the cavity centre to (x, y), and sums run over all PIV grid 

points (x, y)i inside cavity i. For each movie, we normalize velocities by the root-mean-

square (RMS) suspension velocity , where the average is over all grid 

points (x, y) and all times t, to account for the effects of variable oxygenation on motility9; 

we found an ensemble average  with s.d. 3.6 μm s−1 over all experiments. 

This definition has Vi(t) > 0 for counter-clockwise spin and Vi(t) < 0 for clockwise spin. A 

vortex of radially-independent speed, i.e.  where  is the azimuthal unit vector, 

has Vi(t) = ±1; conversely, randomly oriented flow has Vi(t) = 0. The average spin–spin 

correlation χ of a movie is then defined as
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where Σi~j denotes a sum over pairs {i, j} of adjacent cavities and 〈 · 〉 denotes an average 

over all frames. If all vortices share the same sign, then χ = 1 (ferromagnetism); if each 

vortex is of opposite sign to its neighbours, then χ = –1 (antiferromagnetism); if the vortices 

are uniformly random, then χ = 0. Similarly, the circulation Pj (t) about pillar j at time t is 

defined as the normalized average tangential velocity

where  is the unit vector tangential to the pillar, and sums run over PIV grid points (x, 
y)j closer than 5 μm to the pillar j.

Results presented are typically averaged in bins of fixed gap width. All plots with error bars 

use 3 μm large bins, calculated every 1.5 μm (50% overlap), and bins with fewer than 5 

movies were excluded. Error bars denote standard error. Bin counts for square lattices (Fig. 

1j,k; Fig. 2a–c; Supplementary Figs. 4 & 7) are 8, 8, 13, 14, 21, 27, 27, 22, 18, 22, 20, 11, 7, 

13, 7; bin counts for triangular lattices (Fig. 3d) are 5, 14, 16, 13, 16, 15, 5, 5, 10, 7; and bin 

counts for linear lattices (Supplementary Fig. 6) are 5, 7, 8, 8, 9, 9, 6, 5, 6, 7, 6, 8, 9, 5, 6, 5, 

6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Edge currents determine antiferromagnetic and ferromagnetic order in a square lattice 
of bacterial vortices.
a, Three domains of antiferromagnetic order highlighted by dashed white lines (gap width w 
= 6 μm). Scale bar: 50 μm. Overlaid false colour shows spin magnitude (see Supplementary 

Video 1 for raw data). b, Bacterial flow PIV field within an antiferromagnetic domain 

(Supplementary Video 1). For clarity, not all velocity vectors are shown. Largest arrows 

correspond to speed 40 μm/s. Scale bar: 20 μm. c, Schematic of bacterial flow circulation in 

the vicinity of a gap. For small gaps w < wcrit, bacteria forming the edge currents (blue 

arrows) swim across the gap, remaining in their original cavity. Bulk flow (red) is directed 

opposite to the edge current15,16 (Supplementary Video 3). d, Graph of the Union Jack 

double-lattice model in an antiferromagnetic state with zero net pillar circulation. Solid and 

dashed lines depict vortex–vortex and vortex–pillar interactions of respective strengths Jv 

and Jp. Vortices and pillars are colour-coded according to their spin. e, For supercritical gap 

widths w > wcrit, extended domains of ferromagnetic order predominate (Supplementary 

Video 2; w = 11 μm). Scale bar: 50 μm. f, PIV field within a ferromagnetic domain 

(Supplementary Video 2). Largest arrows: 36 μm/s. Scale bar: 20 μm. g, For w > wcrit, 

bacteria forming the edge current (blue arrows) swim along the PDMS boundary through the 

gap, driving bulk flows (red) in the opposite directions, thereby aligning neighbouring vortex 

spins. h, Ferromagnetic state of the Union Jack lattice induced by edge current loops around 

the pillars. i, Trajectories of neighbouring spins (*-symbols in a,e) fluctuate over time, 

signalling exploration of an equilibrium under a non-zero effective temperature (top: 
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antiferromagnetic; bottom: ferromagnetic). j, The zero of the spin–spin correlation χ at wcrit 

≈ 8 μm marks the phase transition. The best-fit Union Jack model (solid line) is consistent 

with the experimental data. k, RMS vortex spin  decreases with the gap size w, 

showing weakening of the circulation. RMS pillar spin  increases with w, reflecting 

enhanced bacterial circulation around pillars. Each point in j,k represents an average over ≥ 

5 movies in 3 μm bins at 1.5 μm intervals; vertical bars indicate standard errors (Methods).
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Figure 2. Best-fit mean-field LFT model captures the phase transition in the square lattice.
a, A sign change of the effective interaction βJ signals the transition from antiferro- to 

ferromagnetic states. b, The effective energy barrier, βa2/(4b) when a < 0 and zero when a > 

0 (Supplementary Sec. 5), decreases with the gap size w, reflecting increased susceptibility 

to fluctuations. c, The spin Vmin minimizing the single-spin potential (Supplementary Sec. 

5) decreases with w in agreement with the decrease in the RMS vortex spin (Fig. 1k). Each 

point in a–c represents an average over ≥ 5 movies in 3 μm bins at 1.5 μm intervals; blue 

circles are from distribution fitting, red diamonds are from SDE regression, and vertical bars 

indicate standard errors (Methods). d-f, Examples of the effective single-spin potential 

conditional on the mean spin of adjacent vortices [V]V. Data (points) and estimated potential 

(surface) for three movies with gap widths 6, 10 and 17 μm.
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Figure 3. Frustration in triangular lattices determines the preferred order.
a,b, Triangular lattices favour ferromagnetic states of either handedness (Supplementary 

Video 4). Vortices are colour-coded by spin. c, At the largest gap size, bacterial circulation 

becomes unstable. Scale bar: 50 μ m. d, The spin–spin correlation χ shows strongly 

enhanced ferromagnetic order compared with the square lattice (Fig. 1j). Each point 

represents an average over ≥ 5 movies in 3 μm bins at 1.5 μm intervals; vertical bars indicate 

standard errors (Methods).
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