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Abstract

Integrins are a group of heterodimeric transmembrane receptors that play essential roles in cell–

cell and cell–matrix interaction. Integrins are important in many physiological processes and 

diseases. Integrins acquire affinity to their ligand by undergoing molecular conformational 

changes called activation. Here we review the molecular biomechanics during conformational 

changes of integrins, integrin functions in leukocyte biorheology (adhesive functions during 

rolling and arrest) and molecules involved in integrin activation.
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1. Integrins

Integrins are αβ heterodimers that function as activation-dependent adhesion molecules at 

the interface between cells and immobilized ligands in the extracellular matrix or other cell 

surfaces [1–3]. The interactions of integrins with their ligands are broadly relevant to a 

multitude of physiological and disease situations, such as inflammation [4–7], immune 

responses [8–11], thrombosis and hemostasis [12–15], extracellular matrix assembly [1–

3,16–18], tumor metastasis [15,19–22] and other cellular processes. This review is focused 

on the four β2 integrins (Table 1) among the known 24 integrins [9,23]: αLβ2 (LFA-1, 

lymphocyte function-associated antigen 1), αMβ2 (Mac-1, macrophage-1 antigen), αXβ2 

(p150,95), αDβ2.

Excellent reviews cover the structures of integrins [9,78–81]. Both α and β subunits of 

integrins have large ectodomains, a single membrane-spanning helix (transmembrane, TM) 

and, usually, a short unstructured cytoplasmic tail (Fig. 1). Typically the α and β subunits 

contain around 1000 and 750 amino acids, respectively [78]. Specifically, human αL has 

1170 amino acids, αM has 1152 amino acids, αX has 1163 amino acids, αD has 1161 amino 

acids and β2 has 769 amino acids. All α chains of the β2 integrins contain an I domain with 
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homology to von Willebrand factor (VWF) A domain. The ectodomains are composed of 

several domains with flexible linkers between them. Each α ectodomain has (from C to N 

terminus) calf-1 and 2 domains, a thigh domain, a β propeller domain, and an α I domain. 

The β2 ectodomains have a β-tail domain, integrin epidermal growth factor like repeat 

domains (I-EGF-1 to 4), a plexin-semaphorin-integrin (PSI) domain, a hybrid domain, and a 

β I-like domain. The ectodomains can be divided into headpiece and tailpiece as shown in 

Fig. 1. The α and β cytoplasmic tails of integrins are extended and flexible and can directly 

bind several adapter proteins with different functional effects [82–88] (Table 2).

β2 integrins, also known as leukocyte integrins [4,27], are the most important molecules in 

recruiting leukocytes, especially neutrophils and naïve lymphocytes, from the blood stream 

to sites of immune responses and inflammation. β2 integrins are involved in slowing down 

rolling [24,100,124–128], promoting arrest [100,129–137], supporting spreading and 

migration [128,136–143], homotypic and heterotypic cell–cell interactions [8,10,11,144–

148] and phagocytosis [6,137,149–153]. Unlike other integrins, leukocyte integrins have few 

extracellular matrix ligands.

2. Conformational activation

Integrins regulate their adhesiveness through changes in the conformation of their 

ectodomain [154], which can increase ligand affinity by ∼10,000 fold [155]. The first 

integrin structure was solved for αVβ3 integrin [156,157] starting a rich stream of 

publications with information about integrin ectodomain structures. It is widely accepted 

that β2 integrins have at least three conformations with different ligand binding affinities 

[8,9,88,158–160] (Fig. 2(A)–(C)): bent ectodomain with closed headpiece (E−H−, resting 

state, low affinity), extended ectodomain with closed headpiece (E+H−, intermediate 

[88,100,135,161–163] or low [159] affinity), and extended ectodomain with open headpiece 

(E+H+, high affinity). Furthermore, a structure of bent ectodomain with open headpiece 

(E−H+, Fig. 2(D)), which can bind small soluble ligands [164,165], was found in structures 

of αvβ3 [164] (Electron Microscopy, EM) and αxβ2 [67] (X-ray crystallography), but it is not 

clear whether this structure exists on the cell surface and whether it has any function.

2.1. Models of integrin activation

Most studies on conformational integrin activation are limited to the truncated ectodomains, 

often modified by site-directed mutagenesis to stabilize conformations. In these studies, 

amino acids thought to be in close proximity in one of the conformations are replaced by 

cysteines to form disulfide bonds. By necessity, such stabilized integrins must be studied 

outside their natural cellular context. These experiments suggested two different models of 

integrin conformational activation. The “switchblade” model proposes that integrin 

extension is required for headpiece opening and the bent integrin first undergoes extension 

followed by rearrangements in the metal ion-dependent adhesion site (MIDAS) motif 

leading to headpiece-opening and high affinity ligand binding [8,9,154,161,162,166,167] 

(Fig. 2, (A) to (B) to (C)). An alternative model is the “deadbolt” model, where interactions 

between the headpiece and the legs keep the integrin in the closed, bent conformation and 

extension can only occur after the “deadbolt” is released. Two studies have shown that E−H+ 
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integrin can exist, suggesting that integrins can open their headpiece prior to extending their 

ectodomain (Fig. 2, (A) to (D) to (C)). It is not known whether this conformation exists on 

living cells. A third model is extension first, then force-facilitated headpiece opening 

[10,11,135].

2.2. Extension

The resting state of β2 integrins shows a bent structure shaped like an inverted “V” with the 

low affinity headpiece closely approaching the plasma membrane [154,168], experimentally 

verified in live leukocytes by Förster resonance energy transfer (FRET) [169,170], in which 

FRET from α I domain (FITC-conjugated antibodies) to plasma membrane (Octadecyl 

rhodamine B, ORB) was observed in resting leukocytes and disappeared when the cells were 

activated. The bent ectodomain of β2 integrins is about 11 nm above the plasma membrane, 

whereas the extended ectodomain is about 23 nm (with α I domain) [78]. To allow the 

headpiece to bind ligands on other cells or surfaces in trans, the ectodomain needs to be 

extended. Integrin extension is initiated by inside-out signaling [9]. EM and FRET studies 

show that the α and β feet of extended integrins are more separated than those of bent 

integrins [154,160]. This could be achieved by lateral displacement of the cytoplasmic tails 

or by a change of the angle between the α and β transmembrane domains, or both. Such 

molecular rearrangements could conceivably provide the force necessary to extend the 

ectodomain. There is good evidence that β2 integrin extension is mediated by talin binding in 

the β cytoplasmic tail of integrin [88,100], thus causing the conformational changes of 

cytoplasmic tail and transmembrane domain [171].

2.3. Headpiece opening

The integrin headpiece includes the α I domain, the β propeller domain and the thigh domain 

of the α subunit and the β I-like domain, the hybrid domain, the PSI domain and the I-EGF-1 

domain of the β subunit [9]. In β2 integrins, the ligand-binding pocket is located in the α I 

domain. During integrin activation, the headpiece undergoes conformational changes 

allowing two ligand binding sites to be exposed, one for the external ligand like ICAM-1 and 

one for an internal ligand formed by the α I domain, binding to the β I-like domain. On αM 

or αL, the MIDAS is formed by the metal ion (such as Mg2+) and the residues T209, D242 

and the D140XSXS motif of the αM I domain [9,172], or the residues T206, D239 and the 

D137XSXS motif of αL I domain [155], respectively. It has been demonstrated by 

introducing disulfide bonds that wild-type isolated αL I-domain has low affinity for 

ICAM-1, whereas pulling down the α7 helix of the I-domain partially or completely will 

include the stabilized intermediate or high affinity αL I-domain [155,173]. The α I-domain 

sits on top of the β propeller domain, in close proximity to the β I-like domain. In natural 

integrin without disulfide bonds, it is thought that upon integrin activation, the β I-like 

domain binds an internal ligand (amino acid residue G310) of the αL I domain. This binding 

pulls down the α7 helix and stabilizes the high affinity conformation of α I [9,67,154,174]. 

The internal ligand binding requires that the MIDAS in the β I-like domain is open, which is 

thought to be induced by hybrid domain swing-out [175,176]. In the “switchblade” model, it 

is suggested that integrin extension enables hybrid domain swing-out [175,176], thus 

inducing further conformational changes of the α and β I and I-like domains and acquiring 

high affinity for ligand [9,174]. However, in cell-free systems it has also been observed that 
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bent integrin can have swung-out hybrid domain and open headpiece [154,174]. This bent 

conformation with open headpiece [67,164,177] (E−H+) can bind (small) soluble ligands 

[164,165,177] prior to extension, suggesting that integrin extension is not necessary for 

headpiece-opening. These observations are difficult to reconcile with the switchblade model. 

Kindlin-3 (another important adapter protein) deficient murine neutrophils or kindlin-3 

knock down HL-60 cells show a defect in headpiece-opening as reported by conformation-

specific antibodies [100]. A mutant talin-1 (L325R) [178] was also demonstrated to prevent 

headpiece-opening of β2 integrin on neutrophils, which exhibit a similar phenotype as 

kindlin-3 knock out neutrophils [100]: both show normal slow rolling but deficient arrest.

2.4. Cytoplasmic tail separation

In live cells, the cytoplasmic domains of the integrin α and β subunits are close to one 

another [171] in the resting (bent) state, close enough so FRET occurs between fluorescent 

proteins fused to the α and β cytoplasmic domains [171]. Replacement of the α and β 

cytoplasmic domains with acidic and basic amino acids that form a heterodimeric α-helical 

coiled-coil forces the two cytoplasmic domain together and stabilizes integrins in their 

inactive state [179]. The natural integrin cytoplasmic tails have flexible structures and 

several binding sites for different regulatory adaptor proteins (Table 2). Important regions of 

the cytoplasmic tails are the NPxY motifs in the β2 tail, which bind talin (membrane-

proximal NPxY) [83,101] and kindlin (membrane-distal NPxY) [109,110], respectively. The 

integrin “off” state is stabilized by binding of filamin or other phosphotyrosine-binding 

(PTB) domain-containing proteins. It is thought that filamin competes with talin. Tyrosine 

phosphorylation of the β-tail by some Src family kinases (SFK) has also been suggested to 

be involved in stabilizing the bent conformation through inhibiting talin binding [180]. β tail 

phosphorylation promotes the binding of PTB-containing proteins such as Dok1 (docking 

protein 1), thus preventing the binding of talin. The binding of other PTB-containing talin 

competitors, such as ICAP1 (integrin cytoplasmic domain associated protein 1), is not 

dependent on integrin tyrosine phosphorylation [84]. Upon talin binding, cytoplasmic tails 

separation occurred, resulting in diminished FRET between fluorescent proteins fused to the 

α and β cytoplasmic domains [171]. This separation of α and β cytoplasmic tails is thought 

to be critical for integrin extension and, in the switchblade model, also for headpiece 

opening [179].

2.5. Transmembrane domain (TMD) structure changes

The TMD of α and β are both α helices. The α and β helices cross at specific angles relative 

to the plane of the plasma membrane. This is stabilized by in-register alignment of side-

chain arrays (Fig. 3) [181]. Nuclear magnetic resonance (NMR) spectroscopy showed the 

structures of the αIIbβ3 TMD complex – the αIIb TMD helix is roughly perpendicular to the 

membrane while the β3 TMD helix is tilted [182,183]. A specific α-helical interface (salt-

bridge) between the α and β transmembrane domains stabilizes integrin in the resting state 

[181,184,185]. Three models have been proposed for the movement of the transmembrane 

domains during integrin activation: moving apart [184], pistoning up and down [181], or an 

angle change [181] between α and β. The pistoning model is related to the angle change 

model, because it suggests that intracellular activating signals could shorten the portion of 

helix which is buried within the lipid bilayer, thereby changing membrane tilt angle and 
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register with the neighboring helix to avoid hydrophobic mismatch with the fixed width of 

the membrane bilayer. This change in tilt angle could be the critical event in disrupting 

transmembrane interactions that stabilize the low-affinity conformation, leading to integrin 

activation [181,186]. Structural studies of a complex between talin and the integrin β3 

cytoplasmic domain [102] suggested two talin binding sites on the β3 cytoplasmic domain – 

membrane-proximal (MP) and membrane-distal (MD) sites. Talin binding to the MD part of 

the β cytoplasmic domain subsequently engages the MP binding site, resulting in 

reorientation of the TMD (Fig. 3(A)). The interaction of the MP part with talin results in the 

position and angle change of MP part, thus leading to the pistoning [102] and moving apart 

[187] of the transmembrane helices. A recent study showed that phosphatidylinositol 4,5-

bisphosphate (PIP2) can interact with residue Arg995 within the TMD and break the salt-

bridge when talin is bound, thus helping integrin activation [188].

3. Adaptor proteins and integrin activation

The main adaptor molecules regulating integrin activation include talin, Rap1-GTP 

interacting adapter molecule (RIAM) and kindlin (kindlin-3 in leukocytes). Talin and kindlin 

are reported to bind the integrin β cytoplasmic tail directly, whereas RIAM is thought to bind 

and recruit talin to integrin.

3.1. Talin

Talin is a high-molecular-weight cytoskeletal protein concentrated at regions of cell-

substratum contact [189]. There are two genes, talin-1 and talin-2. Talin-1 contains an N-

terminal 47-kD head domain and a ∼220-kD C-terminal flexible rod domain [190]. Talin-1 

interacts with both actin and integrin [103]. The head domain consists of an N-terminal 

FERM domain (protein 4.1, ezrin, radixin and moesin) with three subdomains (F1, F2, F3) 

and an F0 subdomain with no homology to known domains [191]. It is suggested that the 

talin head domain has a unique extended structure different from the typical cloverleaf 

structure seen in other FERM domains [192]. The F3 subdomain contains a PTB domain 

that binds the integrin β subunit tail at the membrane-proximal NxxY site and promotes 

integrin activation [101–104]. The talin rod domain is composed of a series of helical 

bundles (R1 to 13) and a C-terminal single helix dimerization domain (DD). The rod domain 

contains multiple binding sites for RIAM [193–195], vinculin [195,196], deleted in liver 

cancer 1 (DLC1) [197], synemin [198], a second binding site for integrin [199,200], binding 

sites for actin [87,201,202] and internal binding sites for the talin F3 subdomain [203]. It is 

not clear whether and how all these binding sites are occupied when the attendant integrins 

are resting or activated.

Talin binding to integrin β cytoplasmic tail leads to spatial changes of the tail and TMD. Two 

models have been proposed for these changes: the “moving apart” model, in which talin 

binding leads to the moving apart of the α/β “legs” as demonstrated by FRET assay [171]; 

and the “piston and angle change” model, in which talin binding leads to angle change, 

pistoning up and down along with moving apart of the α and β TMDs (Fig. 3), supported by 

NMR structure studies using short peptides including the TMDs [102,181,187,204,205]. It is 

thought that the change of the position of the α and β chains relative to each other induces 
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the conformation changes in the ectodomain, but it is not known how the forces are 

transduced.

The interaction of the talin F3 subdomain with the β2 cytoplasmic tail is necessary but not 

sufficient for integrin activation. The interaction of talin and the membrane is also important 

[87]. Some basic residues in the F2 subdomain (Fig. 3), which is located close to the plasma 

membrane during talin-integrin binding, can bind acidic phospholipids in the plasma 

membrane [187]. This interaction is also thought to be necessary for integrin activation 

[204], because mutations of the membrane binding residues on F2 domain significantly 

decrease the binding of PAC-1 antibody, which is specific for activated αIIbβ3 integrin. A 

recent molecular dynamics study using atomistic molecular stimulation demonstrated that 

PIP2 and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) are important for talin-

mediated salt bridge breaking, which leads to spatial changes of the β TMD and leads to 

integrin activation [188].

3.2. RIAM

RIAM is a broadly expressed adapter protein that contains an RA (Ras association)-like 

domain, a pleckstrin homology (PH) domain, and several proline-rich sequences. RIAM is 

important for talin recruitment and integrin activation in leukocytes [206,207], but not 

platelets [208]. A short amphipathic helix (residues 6–30) in the N-terminal region of RIAM 

binds talin. A fusion protein containing this helix fused to the membrane-targeting sequence 

of Rap1A mimics recruitment of talin to the plasma membrane by the RIAM-Rap1 complex 

and supports integrin activation [193]. This result shows that RIAM is sufficient to recruit 

talin, but does not address the question whether it is required. RIAM and vinculin compete 

for the same binding site on talin-1 and their binding to talin is mutually exclusive [194]. 

RIAM is located in the newly formed protrusions of adherent cells, whereas vinculin is 

located in mature focal adhesions [194]. This suggests a model where RIAM binding to talin 

initializes the talin recruitment and integrin activation, then RIAM is replaced by vinculin to 

further stabilize the activated state of integrin. Interestingly, RIAM was also shown to 

immunoprecipitate with kindlin-3, even before it immunoprecipitates with talin [209]. 

However, whether RIAM directly interact with kindlin-3 is unknown.

3.3. Kindlin-3

Kindlin is a family of focal adhesion proteins including three subtypes – kindlin-1, 2, and 3, 

which are also known as fermitin family homolog 1, 2 and 3 (FERMT1, FERMT2, 

FERMT3) respectively [210]. Kindlin-3 is expressed in leukocytes and platelets and is 

another essential player that binds to the integrin β2 subunit tail at the membrane-distal 

NxxY site [109,110]. Kindlin binding to β2 does not compete with talin binding. Kindlin 

shows high levels of sequence similarity to talin FERM domain [211]. The main difference 

is that kindlin contains a PH domain that may be involved in membrane recruitment by 

phosphoinositide binding [190]. The subdomain 3 in kindlin binds the distal NPxY motif of 

integrin β tails [109,212,213]. Kindlin-3 is expressed exclusively in cells of haematopoietic 

origin. Mutations in kindlin-3 are found in leukocyte adhesion deficiency III (LAD-III) 

patients, which have severe bleeding and immune deficiency caused by defective integrin 

activation in leukocytes and platelets [109,214– 217]. These findings demonstrate a critical 
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role for kindlin-3 in leukocyte integrin activation, but the specific mechanisms remain 

controversial. Kindlin-3 knockout mice show a defect in neutrophil arrest but not slow 

rolling, which suggests that kindlin-3 is required for headpiece-opening but not extension of 

β2 integrin [100]. Kindlin-3 knockdown in the HL-60 promyeloid cell line results in a 

binding defect of mAb24 [218–221], which is specific for open β2 headpiece, but not 

KIM127 [222,223], which reports β2 integrin extension. These results suggest essential roles 

of kindlin-3 in headpiece-opening of β2 integrin [100]. An alternative hypothesis suggests 

that kindlin can promote talin binding to integrin cytoplasmic tail [224]. However, although 

kindlin, talin and integrin cytoplasmic tail can form a ternary complex, the binding of 

kindlin to integrins neither enhances talin–integrin binding nor increases talin targeting to 

the membrane [225,226], and no direct talin–kindlin interaction has been reported. Another 

hypothesis suggests that kindlin-binding may induce integrin clustering to enhance binding 

of multivalent ligands via increased avidity, rather than through conformational changes that 

lead to increased affinity for monovalent ligand [190,227], which is experimentally 

supported [228].

4. Leukocyte arrest and signaling of integrin activation

During infection or inflammation, leukocytes in blood, including granulocytes, monocytes 

and lymphocytes are recruited to the site of immune responses in a cascade-like fashion 

[17,27,136,229–234] that includes rolling, arrest, crawling, transendothelial migration and 

migration in tissues. Integrins play vital roles in all these processes. From rolling to arrest, 

leukocytes need to adhere with sufficient force to balance the force imposed by the drag and 

torque exerted by the flowing blood. Arrest is thought to be triggered by rapid changes in β2 

integrin conformation through inside-out signaling, which may be triggered from surface 

receptors P-selectin glycoprotein ligand-1 (PSGL-1) or chemokine receptors. This requires 

regulation of several kinases and assembly and disassembly of multiprotein complexes that 

form around the cytoplasmic tails of integrins.

4.1. Rolling

The dominant molecules involved in leukocyte rolling are selectins and their ligands, whose 

biomechanics has been reviewed before [24,25,125,127,235–238]. The interaction of 

endothelial selectins with leukocyte PSGL-1 primes integrin activation, specifically 

promoting extension of β2 integrins [24,88,125,126,239]. Assays using conformation-

specific antibodies have confirmed that rolling on P-or E-selectins can induce integrin 

extension on leukocytes within human blood [24]. Thus, β2 integrins also serve as “rolling 

receptors” [27]: they transiently engage their ligand ICAM-1, thereby reducing rolling 

velocity (slow rolling). Slow rolling has been proposed to be mediated by extended integrin 

with intermediate affinity [24,100,125–127,135,161–163,240]. This mechanism of integrin-

dependent slow rolling was confirmed by using an allosteric inhibitor [125,163] that allows 

integrin to assume the extended, but not high affinity conformation, and by using kindlin-3 

knocked out mice, in which integrin can be extended but the headpiece cannot be opened 

[100].
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4.2. PSGL-1 signaling (Fig. 4)

During leukocyte rolling, interactions of endothelial E- and P-selectins with PSGL-1 activate 

a key signaling pathway. PSGL-1 is the major ligand for P-selectin [239,241,242] and also 

binds E-selectin [236,243] and L-selectin [237] under flow conditions. PSGL-1 is 

preferentially located on the tips of leukocyte microvilli [25,244], which enables interactions 

with selectins during rolling. Granulocytes rolling on P- or E-selectin partially activate β2 

integrin through PSGL-1 induced inside-out signaling, which was demonstrated by 

observation of slow rolling on ICAM-1 [24,125,126] accompanied by increased staining 

with the β2 extension reporter antibody KIM127 [24]. A mutational study of PSGL-1 

showed that the cytoplasmic tail was crucial for this signal transduction, whereas the 

extracellular domain is responsible for leukocyte rolling [238].

Under no-flow conditions, soluble P-selectin-Fc chimeric protein was shown to induce SFK-

dependent phosphorylation of Naf-1, followed by recruitment of the phosphoinositide-3-OH 

kinase (PI3K) p85-p110δ (PI3Kδ) heterodimer and priming of integrin activation [245]. This 

pathway may be important when leukocytes bind platelets, which have much higher density 

of P-selectin than endothelial cells. This pathway is not operative in rolling leukocytes, 

because PI3Kδ deficient leukocytes showed normal slow rolling on P-selectin and ICAM-1 

under flow conditions [246].

On the neutrophil surface, PSGL-1 is closely associated with L-selectin and this does not 

require interaction of the L-selectin lectin domain with the known selectin-binding domain 

of PSGL-1 [127]. Engagement of P- or E-selectin with PSGL-1 triggers signaling through 

lateral interaction with L-selectin [127], followed by phosphorylation of the SFKs Fgr, Hck 

and Lyn [126,127,246,247]. Further studies indicated that Fgr is the main SFK required for 

slow rolling [126]. The phosphorylation of Fgr induces phosphorylation of the ITAM-

containing adaptor proteins DAP12 or FcRγ [126], which subsequently interact with and 

phosphorylate the tyrosine kinase Syk [126,246]. Bruton tyrosine kinase (Btk) [246,248], 

which is one of Tec family kinase, acts downstream from Syk, where the signaling appears 

to divide into two pathways: one through phospholipase C-γ2 (PLCγ2); the other through 

PI3Kγ [248]. The downstream molecules of PLCγ2 are CalDAG-GEFI and p38 MAPK, 

which are known to activate the small GTPase Rap1a [240]. Rap-1a activation is associated 

with LFA-1 activation, but the details are unknown. Rap-1 has been proposed to bring talin-1 

to the β2 subunit, or it may be involved in kindlin-3 recruitment. In the PI3Kγ pathway, Akt 

is phosphorylated [127,248], which was reported to inhibit the integrin negative regulator 

GSK3α/β in platelets [249]. Again, the details are unknown. The PI3Kγ pathway could also 

be involved in integrin clustering.

4.3. Chemokine receptor signaling (Fig. 4)

Although PSGL-1 signaling can prime integrin activation by promoting integrin extension 

and cause slow rolling of leukocytes [24,100,125,126,250], chemokine receptor signaling is 

thought to be required for full integrin activation (probably associated with headpiece 

opening) and leukocyte arrest [125,130,135,251]. Chemokine receptors are G-protein 

coupled receptors (GPCRs), which are seven-transmembrane proteins that are identified by 

the coupling with the heterotrimeric G protein containing a particular α-subunit (Gαi) paired 
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with a βγ -complex (Gβγ) [252]. Several chemokine receptors are expressed on leukocytes, 

and many of them can trigger arrest [253]. The best-studied chemokine receptor in this 

context is the C-X-C chemokine receptor type 2 (CXCR2), which binds the chemokine (C-

X-C motif) ligands (CXCL) 1, 2, 3, 5, 6 and 7.

The chemokine receptor signaling pathway triggering integrin activation is incompletely 

understood [88,234]. In neutrophils, the most relevant chemokine receptor responsible for 

arrest is CXCR2 [254]. In vitro flow chamber assays show that immobilized CXCL1 

stimulating CXCR2 leads to LFA-1 activation and neutrophil arrest on an E-selectin/

intercellular adhesion molecule 1 (ICAM-1) substrate through Gαi depended signaling [125]. 

Specifically, Gαi2 but not Gαi3 is required. Gαi-dependent Ras activation leads to the 

activation of phosphoinositide 3-kinase (PI3K) by binding to its catalytic subunit [255]. The 

dissociated Gβγ subunit has been shown to interact with a number of molecules, including 

PI3K isoforms [256,257], PDZ proteins [258], guanine nucleotide exchange factors (GEFs) 

such as PIP3-dependent Rac exchanger (P-Rex) [259] and protein kinase D [260]. A recent 

study showed that the β subunits 1, 2, 4, and 5 in Gβγ are indispensable for GPCR-mediated 

integrin activation and leukocyte recruitment, in which Ras-related C3 botulinum toxin 

substrate 1 (Rac-1) and phosphoinositide phospholipase C (PLC) β2 and β3 are involved in 

downstream signaling pathway [261]. In vivo, PI3Kγ [262,263] and protein kinase C (PKC) 

θ [264] deficient neutrophils show no defect in arrest, but they revert to rolling again, 

suggesting that there is a defect in integrin bond maturation. Blockade of p44/42 and p38 

mitogen-activated protein kinases (MAPK), PI3K, or PKC signaling does not affect 

chemokine triggered integrin activation on monocytes. The role of inositol triphosphate 

(IP3) and intracellular free calcium (Ca2+), the calcium-binding messenger protein 

calmodulin, and inositol-1,4,5-triphosphate receptors as downstream events of PLC 

activation is controversial [265,266]. Ca2+/diacylglycerol (DAG)-regulated guanine 

nucleotide exchange factor I (CalDAG-GEFI) is required for activation of Ras-related 

protein 1 (Rap1) and integrin in neutrophils [267]. In contrast, when the neutrophils were 

stimulated by fMLP, integrins were activated by activation of Rac through proto-oncogene 

vav (Vav1) and P-Rex 1 [268]. Two (incomplete) chemokine receptor pathways leading to 

activation of different integrins were demonstrated in T-lymphocytes stimulated by CXCL12 

or PMA: PLCγ → Ca2+/DAG → CalDAG-GEFI → Rap1 → LFA-1 and PLCγ → Ca2+/

diacylglycerol → PKC → very late antigen-4 (VLA-4) [269] respectively. Another GTPase, 

cell division control protein 42 (Cdc42), may be a negative regulator of integrin activation 

upon chemokine stimulation [270]. Phospholipase D1 (PLD-1) was demonstrated as the 

downstream of Rac1 and RhoA [270]. Phosphatidylinositol-4-phosphate 5-kinase type I 

gamma (PIP5KC) is downstream of PLD-1 and found to specifically control the transition of 

LFA-1 from an extended low-intermediate state to a high-affinity state [270]. In a recent 

study [271] CXCL12 was shown to induce Janus kinase (JAK) 2 and 3 activation in a Gαi-

independent manner. JAK2 and 3 were upstream of Vav1, which then activates Ras homolog 

gene family member A (RhoA) and Rac-1. Blockade of RhoA and PLD-1 inhibits the 

activation of Rap1a. Another study on αIIbβ3 suggests that Rap1 is downstream of PKC 

[272].

In conclusion, the proximal (GPCR to Gαi2 to PLCβ) and distal (GALDAG-GEFI to Rap1 to 

talin-1 to integrin) parts of the pathway are clear, but the middle parts are not clear. It is also 
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unknown whether integrin activation is local, i.e. in the microvillus where the leukocyte is in 

touch with chemokine, or global (whole cell).

4.4. Rap-1

As reviewed, the pathways of PSGL-1 signaling and chemokine receptor signaling may 

converge on Rap1. However, PSGL-1 ligation triggers only extension and chemokine 

receptor ligation triggers high affinity (open headpiece). This discrepancy requires that 

molecules other than Rap-1 are involved. During integrin activation, activated Rap1 needs to 

be recruited to the plasma membrane by a signaling module comprising the cytosolic adapter 

proteins ADAP (adhesion and degranulation promoting adapter protein) and SKAP55 (src 

kinase-associated protein of 55 kDa) [273]. RapL is one of the Rap1 downstream effectors, 

which was identified by a yeast two-hybrid screen [89,274]. RapL binds to a site consisting 

of two lysine residues (K1097/K1099) following the GFFKR motif, which is found only in 

the αL [90] subunit. RapL forms a complex with the serine/threonine kinase Mst1. Rap1 

activation recruits both RapL and Mst1 to LFA-1 and actives Mst1 kinase activity. RapL-

deficiency impairs Mst1 activation in cells. Knocking down Mst1 expression reduces 

integrin activation in response to chemokine stimulation [91], but it is not known how Mst1 

is involved in extension or high affinity.

RIAM is another important Rap1 binding protein, which is very important in integrin 

activation [275]. RIAM has been reported to interact with SKAP-55 and play key roles in the 

recruitment of Rap1/RIAM complex to the plasma membrane [276]. The ability of Rap1 to 

activate integrins depends on talin binding to integrin cytoplasmic tail [272]. Rap1 induces 

the formation of an integrin-activation complex containing talin in combination with RIAM 

[272,277]. RIAM deficient mice have no defect in platelet arrest [206,208], but a severe 

defect in neutrophil arrest [207], macrophage adhesion [207], and lymphocyte adhesion 

[206,207]. A recent study shows that SLAT (SWAP-70-like adaptor of T cells) can interact 

with Rap-1 through its PH domain and promotes TCR-mediated, Rap1-dependent LFA-1 

activation and adhesion [278]. Since SLAT is activated by T cell receptor engagement, this 

mechanism is unlikely to be involved in triggering arrest.

5. Conclusions and open questions

β2 integrins are fascinating molecular machines that translate intracellular adaptor binding 

(kindlin-3, talin-1, RIAM) into conformation changes of the ectodomains. This may be 

transmitted through moving the cytoplasmic and transmembrane domains apart, or changing 

their crossing angle. The molecular mechanics by which these movements are translated to 

ectodomain changes are unknown. β2 integrin activation is triggered by PSGL-1 ligation or 

chemokine receptor ligation or both. Under physiologic conditions, PSGL-1 ligation alone 

reduces the rolling velocity in a β2 integrin-dependent fashion. When (soluble or 

immobilized) chemokines are available, full integrin activation (E+H+) ensues and leads to 

arrest of the rolling cell. Both the PSGL-1and the chemokine receptor signaling pathways to 

β2 integrins are only partially understood. The initial hypothesis that all integrins are 

activated in the same way was refuted: not only are different integrins activated in different 

ways, but activation mechanisms even appear to be cell type-specific. The methods used to 
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study integrin activation include crystallography of conformationally stabilized integrins, 

rotary shadowing EM, NMR, reporter antibodies, and functional studies of rolling and arrest. 

It is very challenging to integrate findings obtained with these fundamentally different and 

mutually exclusive methods.
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Fig. 1. 
Structural schematic of the extended β2 integrin. α chain red, β chain blue. Subdomains and 

headpiece/tailpiece portions labeled.

Fan and Ley Page 26

Biorheology. Author manuscript; available in PMC 2016 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The existing conformations of the β2 integrins and the proposed consequences of 

conformational changes. (A) The resting state of β2 integrin has bent ectodomain with closed 

headpiece. (B) The resting β2 integrin can extend its ectodomain. This conformation may 

have intermediate affinity to the ligand and mediate leukocyte slow rolling. (C) Further 

conformational changes can induce headpiece-opening and acquire fully activated β2 

integrin. This conformation has high affinity to the ligands and is thought to support arrest 

and leukocyte adhesion. (D) The structure of bent ectodomain with open headpiece was also 

crystallized in β2 integrin.
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Fig. 3. 
The movements of β2 integrins' TMD induced by talin binding. The α and β TMDs of β2 

integrins cross at an angle at rest. The two stars indicate the talin binding sites (MP and MD) 

of the β cytoplasmic domain. (A) Upon binding to the talin F3 domain through the MD 

binding site of the β cytoplasmic domain, the attractions between talin F3 domain and the 

MP binding site of β cytoplasmic domain, as well as the attractions between the talin F2 

domain and the plasma membrane, force the β TMD to move, resulting in an angle change 

between α and β TMDs, along with the pistoning of β TMD and the dissociation of α and β 

TMDs. (B) A more recent study suggested that talin first interacts with the plasma 

membrane through its F2 domain, then the attractions between talin F3 domain and the two 

β cytoplasmic binding sites force the β TMD to move and change their crossing angle, along 

with the pistoning of β TMD and the dissociation of α and β TMDs.
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Fig. 4. 
Schematics of the inside-out signaling of integrin activation. The integrin activation through 

inside-out signaling can be divided into PSGL-1 signaling (green) and chemokine receptor 

(GPCR) signaling (blue). Molecules involved in both two signaling pathway are shown in 

both colors. The signaling source of kindlin-3 (black) is unknown.
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Table 1
β2 integrins expressed on leukocytes

α subunit β subunit Alternative name Expressed in cells Main ligands

αL (CD11a) β2 (CD18) LFA-1 Neutrophils [24–26], T-lymphocytes 
[11,27,28], B-lymphocytes [28,29], Monocyte 
[26], Macrophage [30], Dendritic cells [31], 
Natural killer cells [32]

ICAM-1 [28,33–36], ICAM-2 [25,37], 
ICAM-3 [38], ICAM-4 [39,40], ICAM-5 
[41,42], Collagen [34]

αM (CD11b) β2 (CD18) Mac-1 Neutrophils [24,26,43], T-lymphocytes [27], 
B-lymphocytes [44], Monocytes [26,45], 
Macrophages [46], Dendritic cells [47], 
Natural killer cells [32]

ICAM-1 [48–50], ICAM-2 [51], ICAM-4 
[39], Fibrinogen [43,45,52], Collagen 
[34], iC3b [34,53], Heparin [54], GPIbα 
[55], JAM- 3 [56], Thy-1 [57], 
Plasminogen [58]

αX (CD11c) β2 (CD18) p150,95 Neutrophils [59,60], T-lymphocytes [27], B-
lymphocytes [61,62], Monocytes [59,63], 
Macrophages [59], Dendritic cells [46], 
Natural killer cells [32]

ICAM-1 [64,65], ICAM-2 [63], ICAM-4 
[66], VCAM-1 [63], Fibrinogen 
[60,62,65], Collagen [34], iC3b 
[34,59,65,67], Heparin [68], GPIbα [69], 
Thy-1 [70], Plasminogen [71]

αD (CD11d) β2 (CD18) Neutrophils [72,73], T-lymphocytes [27], 
Monocytes [72,73], Macrophages [72–74], 
Dendritic cells [73]

ICAM-3 [72], VCAM-1 [75,76], 
Fibrinogen [77], Vitronectin [77], Cyr61 
[77], Plasminogen [77]
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Table 2

Cytoplasmic tail binding proteins of integrins*

Tail of subunits Activating Inactivating Signaling Recycling

α RapL [89–92] SHARPIN [21], Nischarin 
[95,96], MDGI [97], Paxillin 
[98,99]

PP2A [93] Rab21 [94], p120RasGAP 
[94]

β Talin [100–104], Kindlin 
[100,109–111], Cytohesin 
[117,118]

Dok1 [105,106], Filamin [112–
114], ICAP1 [119]

α-actinin [103,107], 
14-3-3 [115], Arg [120], 
Src [122,123]

Numb [108], SNX17 [116], 
DAB2 [121]

*
Not necessarily shown for β2 integrins.
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