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Abstract

Oxidative stress and the generation of reactive oxygen species (ROS) can lead to mitochondrial 

dysfunction, DNA damage, protein misfolding, programmed cell death with apoptosis and 

autophagy, and the promotion of aging –dependent processes. Mitochondria control the processing 

of redox energy that yields adenosine triphosphate (ATP) through the oxidation of glucose, 

pyruvate, and nicotinamide adenine dinucleotide. Ultimately, the generation of ROS occurs with 

the aerobic production of ATP. Although reduced levels of ROS may lead to tolerance against 

metabolic, mechanical, and oxidative stressors and the generation of brief periods of ROS during 

ischemia-reperfusion models may limit cellular injury, under most circumstances ROS and 

mitochondrial dysfunction can lead to apoptotic caspase activation and autophagy induction that 

can result in cellular demise. Yet, new work suggests that ROS generation may have a positive 

impact through respiratory complex I reverse electron transport that can extend lifespan. Such 

mechanisms may bring new insight into clinically relevant disorders that are linked to cellular 

senescence and aging of the body’s system. Further investigation of the potential “bright side” of 

ROS and mitochondrial respiration is necessary to target specific pathways, such as the 

mechanistic target of rapamycin, nicotinamidases, sirtuins, mRNA decoupling and protein 

expression, and Wnt signaling, that can impact oxidative stress-ROS mechanisms to extend 

lifespan and eliminate disease onset.
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Increased reactive oxygen species production through reverse electron 

transport may extend lifespan and prevent programmed cell death

Reactive oxygen species (ROS) are generated during oxidative stress that include nitrogen 

based free radical species, such as nitric oxide and peroxynitrite, and oxygen derivatives 

involving superoxide free radicals, hydrogen peroxide, and singlet oxygen [1-3]. 
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Mitochondria lead to the generation of ROS. Mitochondria yield adenosine triphosphate 

(ATP) through the oxidation of glucose, pyruvate, and nicotinamide adenine dinucleotide 

(NAD+) that exist in the cytosol. In the tricarboxylic acid cycle, NAD+ and flavin adenine 

dinucleotide (FAD) are reduced to NADH and FADH2. The redox energy from NADH and 

FADH2 is transferred to oxygen through the electron transport chain. This process allows 

protons to be transferred from respiratory complexes I, III, and IV in the inner membrane to 

the intermembrane space with a subsequent proton gradient that is formed across the inner 

membrane. Complex V (ATP synthase) subsequently accumulates the energy from this 

gradient to produce ATP from adenosine diphosphate (ADP) and inorganic phosphate (Pi). 

With the aerobic production of ATP, the generation of ROS occurs [4].

A fine balance appears necessary for the generation of ROS to limit cell injury and extend 

lifespan. For example, moderate levels of ROS may be required for the tolerance against 

metabolic, mechanical, and oxidative stressors [5] and the generation of brief periods of 

ROS during ischemia-reperfusion models may limit cellular injury [6,7] through several 

different pathways such as those that involve the mechanistic target of rapamycin (mTOR) 

[8] or Wnt signaling [9,10]. Yet, at increased levels, ROS through oxidative stress can result 

in mitochondrial and other organelle injury, DNA damage, protein misfolding, cell demise, 

and the promotion of aging [11]. The depletion of NAD+ has been associated with aging and 

the maintenance of adequate NAD+ stores has been linked to a reduction in the aging 

process and increased resistance to oxidative stress [12]. In addition, agents such as 

nicotinamide may reduce ROS and prevent cellular senescence [13,14]. At high levels of 

ROS generation, mitochondrial dysfunction and oxidative stress also can result in the 

induction of apoptotic pathways [11,15-18]. Mitochondrial dysfunction results in the 

opening of the mitochondrial membrane permeability transition pore, release of cytochrome 

c, and apoptotic caspase activation [19-21]. Other pathways of programmed cell death also 

may be involved during oxidative stress and mitochondrial dysfunction [22,23]. Autophagy 

can impair endothelial progenitor cells, and lead to mitochondrial oxidative and endoplasmic 

reticulum stress [15,24]. However, autophagy also may be necessary for the removal of 

misfolded proteins and to eliminate non-functioning mitochondria [25] that has been shown 

to maintain β-cell function and prevent the onset of diabetes mellitus [26].

Interestingly, new work suggests that ROS may be necessary for the promotion of extended 

lifespan [27]. Although the work supports prior studies that increased ROS can lead to injury 

and reduce lifespan, the study also illustrates that ROS production with reduced ubiquinone 

and possibly through respiratory complex I reverse electron transport can extend lifespan in 

Drosophila. The authors suggest that an intact respiratory complex I may be required in this 

model as compared to other studies that can reverse oxidative damage with blockade of 

respiratory complex I [28].

There are a number of cell signaling pathways that may be tied to these mitochondrial 

processes that extend lifespan and control the aging process. For example, increased 

decoupling of mRNA and protein expression can affect mTOR signaling and aging –

dependent changes [29]. Hormones such as melatonin can oversee pathways of insulin-like 

growth factor 1 to increase lifespan [30]. Modulation of of nicotinamidases and sirtuin 

pathways also are involved in lifespan extension [31-34]. Down-regulation of mTOR 
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pathways [35-38] as well as modulating forkhead transcription factors [39-42] may be 

another avenue to control cell senescence, extend lifespan, and modulate the process of 

aging. Each of these mechanisms are clinically relevant and impact the aging process 

throughout the body such as the musculoskeletal system [43] and the endocrine system [44]. 

Further investigation is certainly warranted to target the potentially beneficial aspects of 

ROS generation through mitochondrial respiration to modulate the aging process of 

organisms and, in turn, hopefully extend lifespan and reduce disease onset.
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